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Abstract The concept of multigroups is an algebraic structure of multisets which generalize
group theory. This paper establishes some results on multigroups, submultigroups and proposes
the concept of multigroupoid. Various types of submultigroup are introduced and some related
results are obtained. Some properties of commutative multigroups are presented and the notions
of semimultigroups and multimonoids are introduced. The concepts of center and centralizer in
multigroups setting are proposed and some homomorphic properties of commutative multigroups
are explored.

1 Introduction

The concept of multigroups was proposed by Dresher and Ore [7] as algebraic systems that
satisfied all the axioms of group except that the multiplication operation (which is the only
operation) is multivalued. This notion of multigroup is neither in conformity with the idea of
multisets nor in alignment with other non-classical groups studied in [4, 18, 20, 21]. Other
attempts to generalize groups can be found in [3, 16, 19] but, none of these portrait multigroup
with multiset in mind.

The invention of the notion of multisets (see [5, 6, 15, 22, 23, 24] for details) as a math-
ematical framework that allows repeated elements in a collection is a boost to the concept of
multigroups which generalizes group theory. Nazmul et al. [17] proposed the concept of multi-
groups drawn from multisets (and parallel to other non-classical groups), obtained some results
and defined the notion of abelian multigroups. For further studies on the concept of multigroups
drawn from multisets, see [1, 2, 8, 9, 10, 11, 12, 13, 14] for details.

In this paper, we propose the notion of multigroupoid, present some results on multigroups,
and introduce various types of submultigroup. The concept of semimultigroups is proposed
and commutative multigroup is studied. The ideas of center and centralizer of multigroups are
introduced in multigroup context. Finally, some homomorphic properties of commutative multi-
groups are considered.

2 Preliminaries

In this section, we present some basic definitions and existing results to be used in the sequel.

Definition 2.1. [22] Let X = {x1, x2, ..., xn, ...} be a set. A multiset A over X is a cardinal-
valued function, that is, CA : X → N such that for x ∈ Dom(A) implies A(x) is a cardinal and
A(x) = CA(x) > 0, where CA(x) denoted the number of times an object x occur in A, that is, a
counting function of A (where CA(x) = 0, implies x /∈ Dom(A)).

Suppose that X = {a, b, c} is a set, then the multiset A = [a, a, b, b, c, c, c] can be represented
as A = [a2, b2, c3]. The set X is called the ground or generic set of the class of all multisets
containing objects from X .

A multiset A is said to be regular if CA(x) = CA(y) ∀x, y ∈ X . Various forms of multiset
representations is found in [22]. The set of all multisets over X is denoted by MS(X).
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Definition 2.2. [23] Let A,B ∈MS(X). Then A is called a submultiset of B written as A ⊆ B
if CA(x) ≤ CB(x)∀x ∈ X . Also, if A ⊆ B and A 6= B, then A is called a proper submultiset of
B and denoted as A ⊂ B. A multiset is called the parent in relation to its submultiset.

Definition 2.3. [24] Let A,B ∈ MS(X). Then the intersection, union and sum of A and B,
denoted by A ∩ B,A ∪ B and A + B respectively, are defined by the rules that for any object
x ∈ X ,

(i) CA∩B(x) = CA(x) ∧ CB(x),

(ii) CA∪B(x) = CA(x) ∨ CB(x),

(iii) CA+B(x) = CA(x) + CB(x),

where ∧ and ∨ denote minimum and maximum respectively.

Definition 2.4. [24] Let A,B ∈ MS(X). A and B are comparable to each other if A ⊆ B or
B ⊆ A, and A = B if CA(x) = CB(x)∀x ∈ X .

Definition 2.5. [17] Let X be a group. A multiset G is called a multigroup of X if the count
function of G, that is, CG : X → N satisfies the following conditions:

(i) CG(xy) ≥ CG(x) ∧ CG(y)∀x, y ∈ X ,

(ii) CG(x−1) ≥ CG(x)∀x ∈ X .

It follows immediately that,

CG(x
−1) = CG(x),∀x ∈ X

since
CG(x) = CG((x

−1)−1) ≥ CG(x
−1).

The set of all multigroups of X is denoted by MG(X).

Remark 2.6. [17] Let X be a group and G be a multiset over X . If

CG(xy
−1) ≥ CG(x) ∧ CG(y),

for all x, y ∈ X , then G is called a multigroup of X .

Remark 2.7. [8] Every multigroup is a multiset but the converse is not necessarily true.

Definition 2.8. [17] Let A ∈MG(X). Then the sets A∗ and A∗ are defined as

A∗ = {x ∈ X | CA(x) > 0}

and
A∗ = {x ∈ X | CA(x) = CA(e)},

where e is the identity element of X .

Proposition 2.9. [17] Let A ∈MG(X). Then A∗ and A∗ are subgroups of X .

Definition 2.10. [17] Let A ∈MG(X). Then A−1 is defined by

CA−1(x) = CA(x
−1)∀x ∈ X.

Thus, we notice that A ∈MG(X)⇔ A−1 ∈MG(X).

Definition 2.11. Let A,B ∈ MG(X). Then the product A ◦ B of A and B is defined to be a
multiset over X as follows:

CA◦B(x) =

{ ∨
x=yz(CA(y) ∧ CB(z)), if ∃ y, z ∈ X such that x = yz

0, otherwise.
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This definition is adapted from [17].

Remark 2.12. [17] Let A,B ∈ MG(X). Then A ◦ B is a multigroup of X if and only if
A ◦B = B ◦A. Also, A ◦A = A.

Proposition 2.13. [17] Let A ∈MG(X). Then the following statements hold.

(i) CA(e) ≥ CA(x)∀x ∈ X , where e is the identity of X .

(ii) CA(xn) ≥ CA(x)∀x ∈ X,n ∈ N.

Definition 2.14. [10] Let A,B ∈MG(X) such that A ⊆ B. Then A is called a normal submulti-
group of B if for all x, y ∈ X ,

CA(xyx
−1) ≥ CA(y).

Proposition 2.15. [10] Let A,B ∈MG(X). Then the following statements are equivalent.

(i) A is a normal submultigroup of B.

(ii) CA(xyx−1) = CA(y)∀x, y ∈ X .

(iii) CA(xy) = CA(yx)∀x, y ∈ X .

Definition 2.16. [17] Let A ∈MG(X). Then A is said to be commutative if for all x, y ∈ X ,

CA(xy) = CA(yx).

Definition 2.17. [9] Let X and Y be groups and let f : X → Y be a homomorphism. Suppose
A and B are multigroups of X and Y , respectively. Then f induces a homomorphism from A to
B which satisfies

(i) Cf(A)(y1y2) ≥ Cf(A)(y1) ∧ Cf(A)(y2) ∀y1, y2 ∈ Y ,

(ii) CB(f(x1x2)) ≥ CB(f(x1)) ∧ CB(f(x2)) ∀x1, x2 ∈ X ,

where

(i) the image of A under f , denoted by f(A), is a multiset of Y defined by

Cf(A)(y) =

{ ∨
x∈f−1(y) CA(x), f−1(y) 6= ∅

0, otherwise

for each y ∈ Y and

(ii) the inverse image of B under f , denoted by f−1(B), is a multiset of X defined by

Cf−1(B)(x) = CB(f(x)) ∀x ∈ X.

Theorem 2.18. [9] Let f : X → Y be an isomorphism. Then A ∈ MG(X) ⇔ f(A) ∈ MG(Y )
and B ∈MG(Y )⇔ f−1(B) ∈MG(X).

3 Multigroupoids and multigroups

Definition 3.1. Let X be a group. A multiset G over X is called a multigroupoid of X if for all
x, y ∈ X ,

CG(xy) ≥ CG(x) ∧ CG(y),

where CG denotes count function of G from X into a natural number N.

Definition 3.2. Let X be a group. A multigroupoid G of X is called a multigroup of X if

CG(x
−1) = CG(x) ∀x ∈ X.
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Definition 3.3. Let G be a multigroup of a group X . The count of an element in G is the number
of occurrence of the element in G, and denoted by CG. The order of G is the sum of the count
of each of the elements in G, and is given by

|G| =
n∑

i=1

CG(xi) ∀xi ∈ X.

Example 3.4. The following are examples of multigroups with the exception of (iv).

(i) Let Z3 = {0, 1, 2} be a group with respect to addition. Then

G = [04, 13, 23]

is a multigroup of Z3. However, it follows that

G = [04, 13, 24]

is a multigroupoid of Z3.

(ii) The zeros of f(x) = x4 − 2x3 + 2x− 1 form a multigroup of a group X = {1,−1}.
(iii) The zeros of f(x) = x8 − 2x4 + 1 form a multigroup of a group

X = {1,−1, i,−i}.

(iv) Let X = {1, a, a2, a3} be a cyclic group by < a > such that a4 = 1. Then

A = [(1)4, (a)3, (a2)2, (a3)3]

is not a multigroup of X .

(v) Let X = {ρ0, ρ1, ρ2, ρ3, ρ4, ρ5} be a permutation group on a set

S = {1, 2, 3}

such that

ρ0 = (1), ρ1 = (123), ρ2 = (132), ρ3 = (23), ρ4 = (13), ρ5 = (12).

Then A = [ρ7
0, ρ

4
1, ρ

4
2, ρ

3
3, ρ

3
4, ρ

3
5] is a multigroup of X .

Remark 3.5. From Example 3.4, it implies that,

(i) a group is a special case of multigroup with a unit count.

(ii) every multigroup is a multiset but the converse is not necessarily true.

Lemma 3.6. Let A be a multigroup of a finite group X . Then CA(x−1) = CA(xn−1) ∀x ∈ X ,
n ∈ N.

Proof. Let x ∈ X , x 6= e. Since X is finite, x has finite order, say n > 1. Thus xn = e and so
x−1 = xn−1. Consequently, A is finite since A ∈MG(X), then we have

CA(x
−1) = CA(x

−1e) = CA(x
n−1xn)

≥ CA(x
n−1) ∧ CA(x

n)

= CA(x
n−1)

⇒ CA(x−1) ≥ CA(xn−1),
and

CA(x
n−1) = CA(x

n−1xn) = CA((x
n−2x)xn)

≥ CA(x
n−2x) ∧ CA(x

n)

≥ CA(x
n−2) ∧ CA(x)

≥ CA(x) ∧ ... ∧ CA(x)

= CA(x) = CA(x
−1).

⇒ CA(xn−1) ≥ CA(x−1). Hence, CA(x−1) = CA(xn−1) ∀x ∈ X .
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Theorem 3.7. A multigroupoid A of a finite group X is a multigroup if CA(x−1) = CA(xn−1)
∀x ∈ X and n ∈ N.

Proof. Since A is a multigroupoid of X , then CA(xy) ≥ CA(x) ∧ CA(y) for all x, y ∈ X . Sup-
pose CA(x−1) = CA(xn−1) ∀x ∈ X and n ∈ N. Using the notion of multigroupoid repeatedly,
we get

CA(x
−1) = CA(x

n−2x) ≥ CA(x
n−2) ∧ CA(x)

≥ CA(x) ∧ CA(x) ∧ ... ∧ CA(x)

= CA(x),

that is,
CA(x

−1) ≥ CA(x)

and by Definition 2.5,
CA(x) = CA((x

−1)−1) ≥ CA(x
−1),

implies
CA(x) ≥ CA(x

−1).

Hence, CA(x−1) = CA(x). Therefore, A is a multigroup of X by Definition 3.2.

Definition 3.8. Let {Ai}i∈I , I = 1, ..., n be an arbitrary family of multigroups of X . Then

C⋂
i∈I Ai

(x) =
∧
i∈I

CAi
(x) ∀x ∈ X

and
C⋃

i∈I Ai
(x) =

∨
i∈I

CAi
(x) ∀x ∈ X.

The family of multigroups {Ai}i∈I of X is said to have inf or sup assuming chain if either
A1 ⊆ A2 ⊆ ... ⊆ An or A1 ⊇ A2 ⊇ ... ⊇ An, respectively.

In [17], it was proved that, if A,B ∈ MG(X) and {Ai}i∈I is a family of multigroups of X ,
then A ∩ B ∈ MG(X),

⋂
i∈I Ai ∈ MG(X) and A ∪ B /∈ MG(X) in general. Now, we show

that
⋃

i∈I Ai ∈MG(X) if {Ai}i∈I have either sup/inf assuming chain.

Theorem 3.9. Let {Ai}i∈I be a family of multigroups of X . If {Ai}i∈I have sup/inf assuming
chain, then

⋃
i∈I Ai ∈MG(X).

Proof. Let A =
⋃

i∈I Ai, then CA(x) =
∨

i∈I CAi
(x). We show that

CA(xy
−1) ≥ CA(x) ∧ CA(y) ∀x, y ∈ X.

If either CA(x) = 0 or CA(y) = 0, then the inequality holds. Let CA(x) > 0 and CA(y) > 0,
then we have ∨

i∈I
CAi(x) > 0,

∨
i∈I

CAi(y) > 0.

By hypothesis, suppose ∃ i0 ∈ I such that CAi0
(x) =

∨
i∈I CAi(x), and also ∃ jo ∈ I such that

CAj0
(x) =

∨
i∈I CAi

(x). Since {Ai}i∈I have sup/inf assuming chain, it follows that either (i)
Ai0 ⊆ Aj0 or (ii) Aj0 ⊆ Ai0 .

(i) Suppose Ai0 ⊆ Aj0 , that is, CAi0
(x) ≤ CAj0

(x). Then

CA(xy
−1) = CAj0

(xy−1)

≥ CAj0
(x) ∧ CAj0

(y)

≥ CAi0
(x) ∧ CAi0

(y)

=
∨
i∈I

CAi(x) ∧
∨
i∈I

CAi(y)

= CA(x) ∧ CA(y).
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(ii) Suppose Aj0 ⊆ Ai0 , that is, CAj0
(x) ≤ CAi0

(x). Then

CA(xy
−1) = CAi0

(xy−1)

≥ CAi0
(x) ∧ CAi0

(y)

≥ CAj0
(x) ∧ CAj0

(y)

=
∨
i∈I

CAi
(x) ∧

∨
i∈I

CAi
(y)

= CA(x) ∧ CA(y).

Hence, A =
⋃

i∈I Ai ∈MG(X).

Theorem 3.10. If A,B ∈MG(X), then the sum of A and B is a multigroup of X .

Proof. Let x, y ∈ X . By Definition 2.3 and Remark 2.6, we have

CA+B(xy
−1) = CA(xy

−1) + CB(xy
−1)

≥ (CA(x) ∧ CA(y)) + (CB(x) ∧ CB(y))

= (CA(x) + CB(x)) ∧ (CA(y) + CB(y))

= CA+B(x) ∧ CA+B(y),

⇒ CA+B(xy−1) ≥ CA+B(x) ∧ CA+B(y). Hence, A+B ∈MG(X).

Remark 3.11. Let {Ai}i∈I ∈MG(X). Then
∑

i∈I Ai ∈MG(X).

Theorem 3.12. Let A ∈MG(X) and if x, y ∈ X with CA(x) 6= CA(y), then

CA(xy) = CA(yx) = CA(x) ∧ CA(y).

Proof. Let x, y ∈ X . Since CA(x) 6= CA(y), it implies that CA(x) > CA(y) or CA(y) > CA(x).
Suppose CA(x) > CA(y). Then CA(xy) ≥ CA(y) and

CA(y) = CA(x
−1xy) ≥ CA(x

−1) ∧ CA(xy)

= CA(x) ∧ CA(xy)

= CA(xy).

It follows that

CA(y) ≥ CA(xy) ≥ CA(x) ∧ CA(y)

= CA(y).

From here, we see that
CA(xy) ≥ CA(x) ∧ CA(y)

and
CA(x) ∧ CA(y) ≥ CA(xy).

Thus, CA(xy) = CA(x) ∧ CA(y).
Similarly, suppose CA(y) > CA(x). We have CA(yx) ≥ CA(x) and

CA(x) = CA(y
−1yx) ≥ CA(y

−1) ∧ CA(yx)

= CA(y) ∧ CA(yx)

= CA(yx).

Thus, we get

CA(x) ≥ CA(yx) ≥ CA(y) ∧ CA(x)

= CA(x).

Clearly, CA(yx) = CA(y) ∧ CA(x).
Therefore, CA(xy) = CA(yx) = CA(x) ∧ CA(y) ∀x, y ∈ X .
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Theorem 3.13. Let A be a regular multiset defined over a group X . Then A is a multigroup of
X if and only if A∗ is a subgroup of X .

Proof. Let X be a group and x, y ∈ X . Suppose A∗ is a subgroup of X . Then xy−1 ∈ A∗ by
Proposition 2.9. Since A is regular and A∗ is the root set of A, it follows that

CA(xy
−1) ≥ CA(x) ∧ CA(y) ∀x, y ∈ X.

Thus, A is a multigroup of X by Remark 2.6.
Conversely, suppose A ∈MG(X). Then by Proposition 2.9, A∗ is a subgroup of X .

Theorem 3.14. Let A and B be multigroups of a group X . Then

(i) A ⊆ A ◦B if CA(e) ≤ CB(e).

(ii) A ⊆ A ◦B and B ⊆ A ◦B if CA(e) = CB(e).

Proof. (i) Let x ∈ X . Suppose CA(e) ≤ CB(e). Then by Definition 2.11, we get

CA◦B(x) =
∨

x=yz

(CA(y) ∧ CB(z)) ∀y, z ∈ X.

Also, it follows that
CA◦B(x) ≥ CA(x) ∧ CB(e).

Now,

CA◦B(x) =
∨

x=yz

(CA(y) ∧ CB(z)) ∀y, z ∈ X

≥ CA(x) ∧ CB(e)

≥ CA(x) ∧ CA(e)

= CA(x).

⇒ CA◦B(x) ≥ CA(x) that is, A ⊆ A ◦B.
(ii) Let x ∈ X . Assume that CA(e) = CB(e). Then, it follows from (i) that A ⊆ A ◦B.
Also, the proof of the second part follows; that is

CA◦B(x) =
∨

x=yz

(CA(y) ∧ CB(z)) ∀y, z ∈ X

≥ CA(e) ∧ CB(x)

= CB(e) ∧ CB(x)

= CB(x).

⇒ CA◦B(x) ≥ CB(x) that is, B ⊆ A ◦B.

Theorem 3.15. Let A,B ∈ MG(X) such that CA(e) = CB(e). If A ◦ B is a multigroup of X ,
then A ◦B is generated by A and B.

Proof. Suppose that A ◦ B ∈ MG(X). Then, we show that A ◦ B is the smallest multigroup of
X containing A and B. By Theorem 3.14, we see that A ⊆ A ◦B and B ⊆ A ◦B.
Let C be any multigroup of X containing both A and B. Let x ∈ X , then we get

CA◦B(x) =
∨

x=yz

(CA(y) ∧ CB(z))∀y, z ∈ X

≤
∨

x=yz

(CC(y) ∧ CC(z))∀y, z ∈ X

= CC◦C(x),

since CA(y) ≤ CC(y) and CB(z) ≤ CC(z). Because C ∈ MG(X) and C ◦ C = C by Remark
2.12, we have A ◦B ⊆ C. Consequently, A ◦B is a multigroup generated by A and B.
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4 Submultigroups of a multigroup

Definition 4.1. Let A ∈MG(X). A submultiset B of A is called a submultigroup of A denoted
by B v A if B form a multigroup. A submultigroup B of A is a proper submultigroup denoted
by B < A, if B v A and A 6= B.

Example 4.2. Let X = {e, a, b, c} be a Klein 4-group and A = [e6, a4, b5, c4] be a multigroup
generated from X . Then

A = [e6, a4, b5, c4], B = [e5, a3, b4, c3],

C = [e4, a2, b3, c2], D = [e3, a, b2, c] and E = [e2, b]

are submultigroups of A.
But

B = [e5, a3, b4, c3], C = [e4, a2, b3, c2],

D = [e3, a, b2, c] and E = [e2, b]

are proper submultigroups of A.

Definition 4.3. Let A ∈MG(X). Then we define the following types of submultigroup.

(i) A submultigroup B of A is said to be complete if B∗ = A∗.

(ii) A submultigroup B of A is said to be incomplete if B∗ 6= A∗.

(iii) A submultigroup B of A is said to be regular complete if B is complete and
CB(x) = CB(y) ∀x, y ∈ X .

(iv) A submultigroup B of A is said to be regular incomplete if B is incomplete and
CB(x) = CB(y) ∀x, y ∈ X .

Remark 4.4. If A ∈ MG(X) and B v A, then B ∈ MG(X). Again, suppose A,B ∈ MG(X),
C ∈MS(X), B v A and C ⊆ B, respectively. Then C v A if and only if C v B.

Remark 4.5. Let A,B ∈MG(X), then the following statements hold.

(i) A v B ⇔ A−1 v B−1.

(ii) A v A−1 ⇔ A−1 v A.

Proposition 4.6. Let A,B ∈MG(X) such that CA(x) ≤ CB(x) ∀x ∈ X . Then

(i) A∗ is a subgroup of B∗,

(ii) A∗ is a subgroup of B∗.

Proof. (i) Let X be a group and x ∈ X because X 6= ∅. Since A,B ∈ MG(X), then A∗ is
a subgroup of X , and consequently, B∗ is a subgroup of X by Proposition 2.9. Since A is a
submultigroup of B, the result follows.

(ii) Follows from (i).

Proposition 4.7. If A,B,C ∈MG(X) such that A ⊆ B ⊆ C, then

(i) A ∩B is submultigroup of C,

(ii) A ∪B is submultigroup of C.

Proof. (i) Suppose A,B,C ∈ MG(X), then CA∩B(x) ≤ CC(x) ∀x ∈ X since A ⊆ B ⊆ C.
Thus, A ∩B is submultigroup of C.

(ii) Follows from (i).

Theorem 4.8. Let A ∈ MG(X) and B be a submultiset of A. Then B is a complete submulti-
group of A if and only if (i) B 6= ∅ and (ii) for every x, y ∈ X,CB(xy−1) ≥ CB(x) ∧ CB(y).
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Proof. Suppose that B is a complete submultigroup of A, then B 6= ∅, that is, B has at least
e such that CB(e) ≥ CB(x) ∀x ∈ X . For any x, y ∈ X , we get CB(y−1) = CB(y) and so,
CB(xy−1) ≥ CB(x) ∧ CB(y) ∀x, y ∈ X .

Conversely, let B ⊆ A and suppose that, given any x, y ∈ X , we get

CB(xy
−1) ≥ CB(x) ∧ CB(y).

Since B 6= ∅, for any element x◦ ∈ X , CB(x◦) = CB(x−1
◦ ). Then, by the properties of B we

have
CB(e) = CB(x◦x

−1
◦ ) ≥ CB(x◦).

Now let x ∈ X , then CB(x−1) = CB(ex−1). Moreover, given y ∈ X , we have CB(y−1) =
CB(y) and hence

CB(xy) = CB(x(y
−1)−1) ≥ CB(x) ∧ CB(y) ∀x, y ∈ X.

Therefore, B is a complete submultigroup of A.

Proposition 4.9. Let A ∈ MG(X) and B be a nonempty submultiset of A. Then the following
statements are equivalent.

(i) B is a submultigroup of A.

(ii) CB(xy) ≥ CB(x) ∧ CB(y) and CB(x−1) = CB(x) ∀x, y ∈ X .

(iii) CB(xy−1) ≥ CB(x) ∧ CB(y) ∀x, y ∈ X .

Proof. (i)⇒(ii). Suppose B v A. Then from Remark 4.4, it follows that B ∈ MG(X). Thus,
CB(xy) ≥ CB(x) ∧ CB(y) and CB(x−1) = CB(x) ∀x, y ∈ X .

(ii)⇒(iii). We have seen that B ∈MG(X). Then it follows that,

CB(xy
−1) ≥ CB(x) ∧ CB(y) ∀x, y ∈ X

by Remark 2.6.

(iii)⇒(i). Since B ⊆ A and B ∈MG(X), it implies that B v A.

Theorem 4.10. Let A1, A2, ..., Ak be all the regular incomplete submultigroups of B ∈MG(X)
such that only CA1∩A2∩...∩Ak

(e) exists and

CA1+A2+...+Ak
(e) ≤ CB(e),

where e is the identity element of X . Then A1 +A2 + ...+Ak is a submultigroup of B.

Proof. Suppose CA1+A2+...+Ak
(e) ≤ CB(e) for e ∈ X . Since only CA1∩A2∩...∩Ak

(e) exists, we
notice that, the count of each elements of A1, A2, ..., Ak is distinct with the exception of e. By
Definition 2.3, it follows that

CA1+A2+...+Ak
(x) ≤ CB(x) ∀x ∈ X.

Hence, A1 +A2 + ...+Ak is a submultigroup of B.

5 Commutative multigroups

Recall that, a multigroup A of X is said to be commutative or Abelian if for all x, y ∈ X ,

CA(xy) = CA(yx).

To validate this, we consider the following examples of multigroup.
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Example 5.1. The set of matrices X = {e, a, b, c} such that

e =

(
1 0
0 1

)
, a =

(
−1 0
0 1

)
, b =

(
1 0
0 −1

)
, c =

(
−1 0
0 −1

)

is a group under matrix multiplication. Then A = [e4, a3, b4, c3] is a commutative multigroup of
X .

Example 5.2. Let X = {g1, g2, g3, g4, g5, g6, g7, g8} be a group under matrix multiplication such
that

g1 =

(
1 0
0 1

)
, g2 =

(
0 −1
1 0

)
, g3 =

(
−1 0
0 −1

)
, g4 =

(
0 1
−1 0

)
,

g5 =

(
1 0
0 −1

)
, g6 =

(
−1 0
0 1

)
, g7 =

(
0 1
1 0

)
, g8 =

(
0 −1
−1 0

)
.

Then A = [g10
1 , g

5
2 , g

7
3 , g

5
4 , g

5
5 , g

5
6 , g

7
7 , g

8
8] is a multigroup of X but not commutative.

Remark 5.3. Let A be a multigroup of X .

(i) If X is an abelian group, then A is commutative.

(ii) If CA(x) = CA(y) ∀x, y ∈ X , then A is commutative whether X is not abelian.

Proposition 5.4. Let B be a commutative multigroup of a group X . Then every complete sub-
multigroup of B is a normal submultigroup.

Proof. Suppose A is a complete submultigroup of B ∈ MG(X) and B is commutative. Then
for all x, y ∈ X,CA(xy) = CA(yx). Consequently,

CA(xyx
−1) = CA(yxx

−1) ≥ CA(y).

Thus, A is a normal submultigroup of B.

Theorem 5.5. Let A,B ∈ MG(X) such that CA(e) = CB(e), where e is the identity element of
X . Then B is commutative if and only if A is a commutative multigroup of X .

Proof. Let X be a group such that x, y ∈ X . Suppose B is commutative. Then, it follows that

CB((xy)(xy)
−1) = CB(e) = CB((xy)(yx)

−1)

= CA((xy)(yx)
−1) = CA(e),

since CA(e) = CB(e). Thus, CA(xy) = CA(yx) ∀x, y ∈ X .
Conversely, assume A is a commutative multigroup of X . Then, we have CB(xy) = CB(yx)

∀x, y ∈ X using the same logic in the necessity part.

Definition 5.6. A multiset G over a group X is a semimultigroup if

CG(xyz) = CG(yxz)∀ x, y, z ∈ X,

and a multimonoid of X if in addition to being a semimultigroup of X ,

CG(e) ≥ CG(x) ∀x ∈ X,

where e is the identity element of X .

Let X be a group and x, y ∈ X . Recall that a commutator of x and y in X is defined by
[x, y] = x−1y−1xy.

Theorem 5.7. Let B be a commutative multigroup of a group X . Then

(i) CB([x, y]) = CB(e),
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(ii) CB([x, y]) ≥ CB(x), where e is the identity element of X .

Proof. (i) Let x, y ∈ X such that x and y commute with each other. Now,

CB([x, y]) = CB(x
−1y−1xy) = CB(x

−1xy−1y)

≥ CB(x
−1x) ∧ CB(y

−1y)

= CB(e) ∧ CB(e)

= CB(e)

⇒ CB([x, y]) ≥ CB(e), and

CB(e) = CB(xyx
−1y−1) = CB((xyx

−1y−1)e)

= CB((xyx
−1y−1)(xyx−1y−1))

≥ CB(xyx
−1y−1) ∧ CB(xyx

−1y−1)

= CB(x
−1y−1xy)

= CB([x, y])

⇒ CB(e) ≥ CB([x, y]). Hence, CB([x, y]) = CB(e).

(ii) Also,

CB([x, y]) = CB(x
−1y−1xy) ≥ CB(x

−1) ∧ CB(y
−1xy)

≥ CB(x) ∧ CB(x)

= CB(x).

Thus, CB([x, y]) ≥ CB(x).

Corollary 5.8. Let A be a semimultigroup of a group X . Then A is a multimonoid if

CA([x, y]) ≥ CA(x) ∀x, y ∈ X.

Proof. Let x, y ∈ X such that x, y 6= e, where e is the identity element of X . Since A is a
semimultigroup of X , the result follows if we show that CA(e) ≥ CA(x) ∀x ∈ X . Suppose
CA([x, y]) ≥ CA(x) ∀x, y ∈ X . By Theorem 5.7, CA(e) = CA([x, y]) ∀x, y ∈ X . Hence,
CA(e) ≥ CA(x) ∀x ∈ X . Therefore, A is a multimonoid of X by Definition 5.6.

Theorem 5.9. Let A ∈ MG(X) be commutative and n ∈ N. Then CA((xy)n) = CA(xnyn) for
all x, y ∈ X .

Proof. Let x, y ∈ X , we have

CA((xy)
n) = CA(xy...xyxyxy) = CA(xy...xyxy

2x[x, y])

≥ CA(xy...xyxy
2x) ∧ CA([x, y]) = CA(x

2y...xyxy2)

= CA(x
2y...xy3x) = CA(x

2y...xy3x[x, y])

≥ CA(x
3y...xy3) ≥ ... ≥ CA(x

n−1yxyn−1)

= CA(x
n−1xyn[x, yn−1]) ≥ CA(x

n−1ynx)

= CA(x
nyn)

⇒ CA((xy)n) ≥ CA(xnyn).
Also,

CA(x
nyn) = CA(x

n−1ynx) = CA(x
n−1yxyn−1[yn−1, x])

≥ CA(x
n−1yxyn−1) ≥ ... ≥ CA(xy...xyxy

2x)

= CA(xy...xyxyxy[x, y]) ≥ CA(xy...xyxyxy)

= CA((xy)
n)

⇒ CA(xnyn) ≥ CA((xy)n). Hence, CA((xy)n) = CA(xnyn).
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Definition 5.10. Let B ∈ MG(X) and A be a submultiset of B. Then the centralizer of a
submultiset A of B is the set

Z(A) = {x ∈ X | CA(xy) = CA(yx) and CA(xyz) = CA(yxz) ∀y, z ∈ X}.

Lemma 5.11. B ∈MG(X) and A be a submultiset of B. Then x ∈ Z(A) if

CA(xy1...yn) = CA(y1xy2...yn) = ... = CA(y1y2...ynx) ∀y1, y2, ..., yn ∈ X.

Proof. We prove by induction on n. For n = 1, we have

CA(xy1y2) = CA(y1xy2) ∀y1, y2 ∈ X.

Thus, x ∈ Z(A).
Now, we prove for n = k + 1. It follows that,

CA(xy1...(ykyk+1)) = CA(y1xy2...(ykyk+1))

= ...

= CA(y1y2...x(ykyk+1))

= CA(y1y2...(ykyk+1)x)

and

CA(x(y1y2)...ykyk+1) = CA((y1y2)x...ykyk+1)

= ...

= CA((y1y2)...ykxyk+1)

= CA((y1y2)...ykyk+1x) ∀y,y2, ..., yk, yk+1 ∈ X.

The result follows.

Lemma 5.12. B ∈MG(X) and A be a submultiset of B, and

T = {x ∈ X | CA(xyx
−1y−1) = CA(e) ∀y ∈ X}.

Then T = Z(A).

Proof. Let x ∈ T . Then for all y, z ∈ X , we get

CA((xyz(yxz)
−1) = CA(xyzz

−1x−1y−1)

= CA(xyx
−1y−1)

= CA(e)

⇒ CA(xyz) = CA(yxz) ∀y, z ∈ X and so, x ∈ Z(A). Thus, T ⊆ Z(A).
Again, if x ∈ Z(A) then CA(xy) = CA(yx)⇒ CA(xyx−1y−1) = CA(e)

∀x, y ∈ X . So x ∈ T . Thus, Z(A) ⊆ T . Hence, T = Z(A).

Corollary 5.13. Let A ∈ MG(X). Then CA(xyx−1y−1) = CA(e) ∀x, y ∈ X if and only if A is
a commutative multigroup of X .

Proof. Suppose CA(xyx−1y−1) = CA(e) ∀x, y ∈ X . Then we have

CA(xy(yx)
−1) = CA(e)⇒ CA(xy) = CA(yx) ∀x, y ∈ X.

So, A is commutative.
Conversely, let A be a commutative multigroup of X . It follows that

CA(xy) = CA(yx)⇒ CA(xyx
−1y−1) = CA(e) ∀x, y ∈ X.
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Theorem 5.14. Let B be a multiset over a semigroup X and A be a submultiset of B. If Z(A) is
nonempty, then Z(A) is a subsemigroup of X . Moreover, if X is a group, then Z(A) is a normal
subgroup of X .

Proof. Let x1, x2 ∈ Z(A). Then for all y, z ∈ X , we have

CA((x1x2)yz) = CA(y(x1x2)z)

by Lemma 5.11, and clearly CA((x1x2)y) = CA(y(x1x2)). Hence, we have x1x2 ∈ Z(A). Thus,
Z(A) is a subsemigroup of X . Suppose X is a group. Then Z(A) is nonempty since e ∈ Z(A).
If x ∈ Z(A), then

CA(x
−1yz) = CA(x

−1yx−1xz)

= CA(xx
−1yx−1z)

= CA(yx
−1z) ∀y, z ∈ X

and so, x−1 ∈ Z(A). Hence, Z(A) is a subgroup of X by the first part of the proof. Next, let
x ∈ Z(A) and g ∈ X . Then by Lemma 5.11,

CA((g
−1xg)yz) = CA(xg

−1gyz) = CA(xyg
−1gz)

= CA(yg
−1xgz) = CA(y(g

−1xg)z) ∀y, z ∈ X,

and so, g−1xg ∈ Z(A). Thus, Z(A) is a normal subgroup of X .

Theorem 5.15. Let C be a semimultigroup of a group X , and both A and B be submultisets of
C. Then Z(A) ∩ Z(B) ⊆ Z(A ∩B).

Proof. Let x ∈ Z(A) and x ∈ Z(B)⇒ x ∈ Z(A) ∩ Z(B). For any y, z ∈ X , we get

CA∩B(xyz) = CA(xyz) ∧ CB(xyz)

= CA(gxyzg
−1) ∧ CB(gxyzg

−1) ∀g ∈ X
= CA(y(gx)zg

−1) ∧ CB(y(gx)zg
−1)

= CA(y(xg)zg
−1) ∧ CB(y(xg)zg

−1)

= CA(y(xg)g
−1z) ∧ CB(y(xg)g

−1z)

= CA(yxz) ∧ CB(yxz)

= CA∩B(yxz).

Also, CA∩B(xy) = CA∩B(yx). Hence, x ∈ Z(A ∩B) and consequently,
Z(A) ∩ Z(B) ⊆ Z(A ∩B).

Corollary 5.16. Let C be a multigroup of a group X , and both A and B be submultisets of C
such that CA(e) = CB(e). Then Z(A) ∩ Z(B) = Z(A ∩B).

Proof. By Lemma 5.12, x ∈ Z(A ∩B)
⇔ CA∩B(e) = CA∩B(xyx−1y−1) ∀y ∈ X
⇔ CA(e) = CB(e) = CA∩B(e) = CA(xyx−1y−1) ∧ CB(xyx−1y−1) ∀y ∈ X
⇔ CA(xyx−1y−1) = CA(e) and CB(xyx−1y−1) = CB(e) ∀y ∈ X
⇔ x ∈ Z(A) and x ∈ Z(B)
⇔ x ∈ Z(A) ∩ Z(B).
Thus, Z(A) ∩ Z(B) = Z(A ∩B).

Proposition 5.17. Let C be a multigroup of a group X , and both A and B be submultisets of C.
Then Z(A) ◦ Z(B) ⊆ Z(A ◦B).
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Proof. Let x1 ∈ Z(A) and x2 ∈ Z(B). Then for all y, z ∈ X ,

CA◦B((x1x2)yz) =
∨

x1x2yz=ab

(CA(a) ∧ CB(b)) ∀a, b ∈ X

=
∨

x1x2yz=ab

(CA(x1x2yzb
−1) ∧ CB(b)) ∀b ∈ X

=
∨

x1x2yz=ab

(CA(x2yx1zb
−1) ∧ CB(b)) ∀b ∈ X

=
∨

x2yx1z=ab

(CA(a) ∧ CB(b)) ∀a, b ∈ X

=
∨

x2yx1z=ab

(CA(a) ∧ CB(a
−1x2yx1z)) ∀a ∈ X

=
∨

x2yx1z=ab

(CA(a) ∧ CB(a
−1yx1x2z)) ∀a ∈ X

=
∨

yx1x2z=ab

(CA(a) ∧ CB(b)) ∀a, b ∈ X

= CA◦B(y(x1x2)z).

Similarly, CA◦B((x1x2)y) = CA◦B(y(x1x2)). Hence, x1x2 ∈ Z(A ◦ B). Thus, Z(A) ◦ Z(B) ⊆
Z(A ◦B).

Remark 5.18. Let C be a multigroup of a group X , and both A and B be submultisets of C.
Suppose A ⊆ B, then Z(A) ⊆ Z(B).

Definition 5.19. Let A be a multigroup of a group X . Then the center of A is defined as

C(A) = {x ∈ X | CA([x, y]) = CA(e) ∀y ∈ X}.

Theorem 5.20. If A is a multigroup of a group X , then C(A) is a subgroup of X .

Proof. C(A) 6= ∅ since e ∈ C(A). Let x, y ∈ C(A). Then
CA([x, z]) = CA(e) and CA([y, z]) = CA(e) ∀z ∈ X . Consequently,

CA([xy, z]) = CA([x, z]
y[y, z]) (for [x, z]y = yx−1z−1xzy−1)

≥ CA([x, z]
y) ∧ CA([y, z])

≥ CA([x, z]
y) (sinceCA([y, z]) = CA(e))

= CA(y[x, z]y
−1) = CA([x, z]) = CA(e).

Thus, xy ∈ C(A).
Again, let x ∈ C(A). Then CA([x, z]) = CA(e) ∀z ∈ X . Hence,

CA([x
−1, z]) = CA(xz

−1x−1z) = CA(xz
−1x−1zxx−1)

= CA(z
−1x−1zxx−1x) = CA([z, x])

= CA([x, z]
−1) = CA([x, z]) = CA(e).

Thus, x−1 ∈ C(A). Therefore, C(A) is a subgroup of X .

Remark 5.21. Let A be a multigroup of X . We notice that, C(A) = A∗ whenever A is either
commutative or regular. Otherwise, C(A) ⊆ A∗.

Now, some homomorphic properties of commutative multigroups are explored.

Theorem 5.22. Let f be an isomorphism of an abelian group X onto an abelian group Y . Let A
and B be multigroups of X and Y , respectively. If A and B are commutative, then
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(i) f(A) is commutative.

(ii) f−1(B) is commutative.

Proof. By Theorem 2.18, f(A) ∈MG(Y ) and f−1(B) ∈MG(X).
(i) Let x, y ∈ Y . Since f is an isomorphism, then for some a ∈ X we have f(a) = x. Thus,

Cf(A)(xyx
−1) = CA(f

−1(xyx−1) = CA(f
−1(y)

= Cf(A)(y).

From Proposition 2.15, f(A) is commutative.
(ii) Let a, b ∈ X , then we have

Cf−1(B)(aba
−1) = CB(f(aba

−1)) = CB(f(b))

= Cf−1(B)(b)

⇒ Cf−1(B)(aba
−1) = Cf−1(B)(b). The result follows from Proposition 2.15.

Theorem 5.23. Let f be a homomorphism of a group X onto a group Y . Let C and D be multi-
groups of X and Y , respectively. Suppose A is a submultiset of C, then f(Z(A)) ⊆ Z(f(A)).

Proof. Let x ∈ f(Z(A)). Then ∃u ∈ Z(A) such that f(u) = x. For all y, z ∈ Y ,

Cf(A)(xyz) = CA(f
−1(xyz)) = CA(f

−1(x)f−1(y)f−1(z))

= CA(f
−1(f(u))f−1(f(v))f−1(f(w))) = CA(uvw)

= CA(vuw) = CA(f
−1(y)f−1(x)f−1(z))

= CA(f
−1(yxz)) = Cf(A)(yxz),

where v, w ∈ X such that f(v) = y and f(w) = z. Thus, x ∈ Z(f(A)). Hence,

f(Z(A)) ⊆ Z(f(A)).

Theorem 5.24. Let f : X → Y be an isomorphism of groups. Let C and D be multigroups of X
and Y , respectively. Suppose B is a submultiset of D, then f−1(Z(B)) = Z(f−1(B)).

Proof. Let x ∈ f−1(Z(B)). Then for all y, z ∈ X ,

Cf−1(B)(xyz) = CB(f(xyz)) = CB(f(x)f(y)f(z))

= CB(f(y)f(x)f(z)) = CB(f(yxz))

= Cf−1(B)(yxz).

Similarly, Cf−1(B)(xy) = Cf−1(B)(yx). Thus, x ∈ Z(f−1(B)). Hence,
f−1(Z(B)) ⊆ Z(f−1(B)).

Again, let x ∈ Z(f−1(B)) and f(x) = u. Then for all v, w ∈ Y ,

CB(uvw) = CB(f(x)f(y)f(z)) = CB(f(xyz))

= Cf−1(B)(xyz) = Cf−1(B)(yxz)

= CB(f(yxz)) = CB(f(y)f(x)f(z))

= CB(vuw),

where y, z ∈ X such that f(y) = v and f(z) = w. Similarly, we have CB(uv) = CB(vu). Thus,
u ∈ Z(B), that is, x ∈ f−1(Z(B)). Hence, it implies that Z(f−1(B)) ⊆ f−1(Z(B)). Therefore,
f−1(Z(B)) = Z(f−1(B)).
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6 Conclusion

The concepts of multigroups and submultigroups have been studied and some results were estab-
lished. The notion of multigroupoid was proposed and various types of submultigroup based on
their formations were introduced. We also explored commutative multigroups, proposed semi-
multigroups and multimonoids with some related results. The concepts of center and centralizer
of a multigroup were introduced. Finally, we considered homomorphic image and homomor-
phic preimage of commutative multigroups. Nonetheless, other group theoretic notions could be
exploited in multigroup setting.
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