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Abstract In this article we present some new algorithms of addition, subtraction, multiplica-
tion and division of two positive integers using Zeckendorf form, moreover, we calculated their
complexity. Such results find application in coding theory.

1 Introduction

There are few previous work in this area. Graham, Knuth and Patashnik (see[6]) discussing the
addition of 1 in the Zeckendorf representation, but have not talked about the actual arithmetic.
Fliponi (see[4]) did for addition and multiplication, and Freitag philips(see[2]) for the subtrac-
tion and division (see[3]). Thus, no previous work has discussed arithmetic as a coherent whole,
covering all major operations, including multiplication and division. All these algorithms have
been implemented and tested on a computer. Most algorithms are developed by analogy with
conventional arithmetic methods. For example, multiplication is carried out by adding appro-
priate multiples of the multiplicand, depending on the selected bit pattern of the multiplier. The
division will use a sequence of test subtraction, as in the normal long division. Here we use
arithmetic complexity models, where cost is measured by the number of machine instructions
performed on a single processor with addition and subtractions ofm-bit integers that costsO(m)
(see[7])

2 Zeckendorf theorems for Lucas numbers

Lucas numbers are defined by the recursion formula:{
Ln = Ln−1 + Ln−2, n ≥ 2
L0 = 2, L1 = 1.

and for all n ≥ 0, we have the well-known
Ln = Fn+1 + Fn−1 where Fn is the nth Fibonacci number.

Theorem 2.1. Let n be an integer satisfying 0 < n ≤ Lk for k ≥ 1. Then n =
∑k−1

i=0 αiLi where
αi ∈ {0, 1} such that {

αiαi+1 = 0, for any i > 0;
α0α2 = 0.

this representation is unique.

Proof: (see[1])

3 Zeckendorf decomposition method

To decompose an integer m of the Zeckendorf form m =
∑∝

n=0 αnLn, proceeding as follows :

(i) Find the greater Lucas number Ln ≤ m.
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(ii) Do subtraction M = m− Ln, assign a 1 to en and keep this coefficient.

(iii) Assign M to m and repeat steps 1 et 2 until M have a zero.

(iv) Assign of 0 to ei where 0 ≤ i ≤ n and ei 6= 1.

The result of this decomposition is a vector of n elements that contains the coefficients ei
decomposition. Example decomposition of 50, this table shows the performance:

Lucas sequence 2 1 3 4 7 11 18 29 47 76
Vector er 0 0 1 0 0 0 0 0 1 0

So 50L = 001000001

Proposition 3.1. Let m > 1, if Ln ≤ m then n ≤ ln(m−1)
ln(ϕ) , where ϕ is the golden ratio.

Proof: let Ln = ϕn + 1
ϕn ≤ ϕn + 1.

While Ln ≤ m then ϕn + 1 ≤ m ⇒ ϕn ≤ m− 1
⇒ ln(ϕn) ≤ ln(m− 1)
⇒ n ≤ ln(m−1)

ln(ϕ) .

We conclude that the bit Zeckendorf number for representation n is at most equal to b ln(m− 1)
ln(ϕ)

c.

4 Addition

We take two positive integers a and b written in the form of Zeckendorf, obtainable form of
a + b Zeckendorf repeating adding, at the same time, numbers of Lucas occupant in one of
two numbers , say b , to another number a. This gives an initial amount for which figures are
di ∈ {0, 1} , where each di is Li its number of Lucas.
For di = 2 does not exist because n = 1 → 2L1 = L0, we replace 020 by 001 and n ≥ 2 →
2Ln = Ln+1 + Ln−2, we replace 00200 by 01001. In way is equivalent model x 2 y z figures
transforms to (1 + x)0y(1 + z).
This rule does not apply to terms with a weight of 1, which is covered by the special case below.
If the combination 011 exists in the vector er, we will substitute it by 001. This step must be
performed by scanning left to right through the performance. Here is a table that summarizes all
possible cases of the addition in the representation of Zeckendorf:

Addition Lucas weight Li+1 Li Li−1 Li−2

Consecutive 1 x y 1 1
becomes x y + 1 0 0

Eliminate a 2 here x ≥ 2 w x y z

becomes w + 1 x− 2 y z + 1

Add,right bits L2 L1 L0

d2 ≥ 2 here x ≥ 2 x 0
becomes 0 1

d2 ≥ 2 0 x

becomes 1 1 0

Table 1. Adjustments and corrections in addition
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Theorem 4.1. The complexity of the addition algorithm is O(ln(a)).

Proof: Let a and b two integers such that b ≤ a . We take n and n′ the bit Zeckendorf number
for a and b respectively. Then the addition (a+ b) cost O(Max(n, n

′
)). The total number T (a)

of operation is given by:

T (a) = O(
ln(a− 1)
ln(ϕ)

) = O(ln(a)).

This table shows the two additions examples 33+19 and 12+19 in Zeckendorf representation:

a 1 0 0 0 1 0 0 0 = 33
b 1 0 0 0 0 1 0 = 19
initial sum 1 1 0 0 1 0 1 0 = 52
consecutive 1 1 0 0 0 0 1 0 1 0 = 52
becomes 1 0 0 0 0 1 0 1 0 = 52
check 33 + 19 = 52

Table 2. Example of addition (33 + 19)

a 1 0 0 0 1 0 = 12
b 1 0 0 0 0 1 0 = 19
initial sum 1 1 0 0 0 2 0 = 31

1 1 0 0 0 0 1 = 31
consecutive 1 1 1 0 0 0 0 1 = 31

1 0 0 0 0 0 0 1 = 31
becomes 1 0 0 0 0 0 0 1 = 31
check 12 + 19 = 31

Table 3. Example of addition (12 + 19)

5 Subtraction

For subtraction, a− b = z, where b < a and Z the difference. We start by subtracting all figures
ai − bi = zi, where
zi ∈ {0, 1.− 1} Values 0 and 1 have no problem, as they are valid representation in Zeckendorf.
Where zi = −1 is the most difficult. If in this case, go to the next bit 1 and is written in the
Fibonacci rule 100→ 011 and write bit 1 rightmost pairs 1 is repeated until the bit 1 bit coincides
with the -1 in the same position and eliminates replacing the box by 0 then 1 consecutive passes.

Subtraction Lucas weights Li+2 Li+1 Li Li−1 Li−2

eliminate -1 1 0 0 0 -1
0 1 1 0 -1

becomes 0 1 0 1 0

Table 4. Adjustments and corrections in subtraction

Theorem 5.1. The complexity of the subtraction algorithm is O(ln(a)).
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Proof: Let a and b two integers such that b ≤ a . We take n and n′ the bit Zeckendorf number
for a and b respectively. Then the addition (a− b) cost O(Max(n, n

′
)). The total number T (a)

of operation is given by:

T (a) = O(
ln(a− 1)
ln(ϕ)

) = O(ln(a)).

This table shows the example 42-32 in Zeckendorf representation.

a 1 0 1 0 0 0 0 1 = 42
b 1 0 0 0 0 1 0 0 = 32
subtract bit by bit 1 0 0 -1 0 1 = 10
rewrite 1000 1 1 -1 0 1 = 10
rewrite 0110, cancelling -1 1 0 0 1 1 = 10
consecutive 1 1 0 1 0 0 = 10
becomes 1 0 1 0 0 = 10

Table 5. Example of subtraction (42− 32)

6 Multiplication

Using the following results (propositions 1,2,3,4) and section 3 above, one can derive a multipli-
cation method of integers in Zackendorf representation.

Proposition 6.1. If n ≥ 3, then

LkLk+n =

{
Fn−1 + Fn+1 + F2k+n±1 (k even),

Fn−2 + Fn+1 + F2k+n+1 +
∑k−2

j=1 F2j+n+2 (k ≥ 3, odd).

Proposition 6.2. If n ≥ 5, then

2LkLk+n =

{
Fn±3 + F2k+n±3 (k ≥ 4, even),
Fn−4 + F2k+n+3 +

∑3
j=1 F2j+n−3 +

∑k−4
j=1 F2j+n+4 (k ≥ 5, odd).

Proposition 6.3. If n ≥ 5, then

3LkLk+n =

{ ∑4
j=1 (F2j+n−5 + F2j+2k+n−5) (k ≥ 4, even),

Fn−4 + Fn+3 +
∑3

j=1 F2j+2k+n−3 +
∑k−4

j=1 F2j+n+4 (k ≥ 5, odd).

Proposition 6.4. If n ≥ 6, then

4LkLk+n =

{ ∑4
j=1 (F3j+n−8 + F3j+2k+n−8) (k ≥ 6, even)

Fn−4 + Fn−2 + Fn+1 +
∑3

j=1 F3j+2k+n−5 +
∑k−5

j=1 F2j+n+4 (k ≥ 5, odd)

Proof: (see[5])

Theorem 6.5. The complexity of the multiplication algorithm is O(a ln(a)).

Proof: We have ab = a+ a+ ......a︸ ︷︷ ︸
b times

the addition costsO(ln(a)), then the addition a+ a+ ......a︸ ︷︷ ︸
b times

costs O(b ln(a)), but b ≤ a, then O(b ln(a)) = O(a ln(a)), finally :

T (a) = O(a ln(a)).
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This example shows how to compute 17× 10 in Zeckendorf representation :

a 1 0 1 0 0 1 =17
b 1 0 1 0 0 =10
Multiple of Luca 17
multiple L1 1 0 1 0 0 1 =17
multiple L2 1 0 0 0 0 1 0 0 0 =51
multiple L3 1 0 1 0 0 0 1 0 0 =68
multiple L4 1 0 1 0 1 0 0 1 0 0 =119
multiple L5 1 0 1 0 0 1 0 1 0 0 1 =187
Accumulate appropriate multiples
Add multiple of L2 1 0 0 0 0 1 0 0 0 =51
Add multiple of L4 1 0 1 0 1 0 0 1 0 0 =119
L2 + L4= 1 1 1 0 1 0 1 1 0 0 =170
Eliminate 1 consecutive1 0 0 1 0 1 1 0 0 0 0 =170
Eliminate 1 consecutive1 0 0 1 1 0 0 0 0 0 0 =170
becomes= 1 0 1 0 0 0 0 0 0 0 0 =170

Table 6. Example of Zeckendorf multiplication (17× 10)

7 Division

Using the following proposition 5 and section 4 above, one can derive a division method of inte-
gers in Zackendorf representation.

Proposition 7.1. First,for k = 4m and n odd, we obtain

Fkn

Fn
=

m∑
r=1

(
L(k−4r+3)n + L(k−4r+1)n

)
,

and thus
Fkn

Fn
= Sk,n,

say, where
Sk,n =

∑[k/4]−1
r=0 (F(k−4r−1)n+1 + (

∑n−2
s=1 F(k−4r−1)n−2s) + F(k−4r−3)n+1 + F(k−4r−3)n−2).

We similarly work through the other cases, where n is odd and k ≡ 1, 2 and 3 mod 4. In
each case, the "most significant" part of the Zeckendorf form is Sk,n. The precise Zackendorf
form is

Fkn

Fn
= Sk,n + ek,n,

where the least significant part of the Zeckendorf sum is

ek,n =


0, k ≡ 0 mod 4),
F2, k ≡ 1 mod 4),
Fn+1 + Fn−1, k ≡ 2 mod 4),
F2n+1 +

∑n−1
r=1 F2n−2r, k ≡ 3 mod 4).

Proof:(see[3])
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Theorem 7.2. The complexity of the Division algorithm is O(a ln(a)).

Proof: (as in Theorem 4)

This example shows how to compute 250÷ 17 in Zeckendorf representation:

a 1 0 1 0 1 0 0 0 1 0 0 =250
b 1 0 1 0 0 1 =17
Make lucas Multiples of divisor
multiple L1 1 0 1 0 0 1 =17
multiple L2 1 0 0 0 0 1 0 0 0 =51
multiple L3 1 0 1 0 0 0 1 0 0 =68
multiple L4 1 0 1 0 1 0 0 1 0 0 =119
multiple L5 1 0 1 0 0 1 0 1 0 0 1 =187
multiple L6 1 0 1 0 1 0 0 0 0 0 0 1 =306
Trial subtraction
L5 residue= 1 0 0 1 0 1 0 1 0 =63
L2 residue= 1 0 0 0 1 0 =12
quotient= 1 0 1 0 0 1 =17
remainder = 1 0 0 0 1 0 =12

Table 7. Example of Zeckendorf division (250÷ 17)

8 Conclusion

Although we have highlighted the main arithmetic operations on integers Zeckendorf, this arith-
metic should not stay more than a curiosity. In future research, we plan to study the applications
of our results to other areas of mathematics such as error correcting codes.
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