Common fixed point theorems for generalized TAC contraction condition in b-metric spaces

K. P. R. Sastry, M. V. R. Kameswari and D. M. K. Kiran
Communicated by Jose Luis Lopez-Bonilla

MSC 2010 Classifications: Primary 47H10, Secondary 54H25,
Keywords and phrases: Common fixed points, generalized TAC- contractions, cyclic (α, β)-admissible mappings, bmetric spaces, self maps.

Abstract

In this paper we obtain common fixed point theorems for four self maps using generalized TAC contractive condition in b-metric spaces. These results generalize the results of Abbas and Doric[1], Roshan, Shobkolaei, Sedghi and Abbas[20] and extend the results of Babu and Dula[9] to four mappings. To support our results some illustrative examples are also furnished

1 Introduction

Now a days there are too many generalizations of metric spaces like b- metric spaces, quasimetric space, quasi-b-metric space, dislocated metric space (or metric-like space), dislocated bmetric space (or b-metric-like space), dislocated quasi-metric space (or quasi- metric-like space), dislocated quasi-b-metric space (or quasi-b-metric-like space). For instance, we refe[2,7,13,16, 18-21, 23-26].

In 1997, Alber and Guerre-Delabrere[4] proved that a weakly contractive map defined on a Hilbert space is a Picard operator. Rhoades[22] extended this result considering the domain of the mapping a complete metric space. Dutta and Choudhury[14] introduced (ψ, φ)-weakly contractive maps and proved fixed point theorems in complete metric spaces. In continuation , in 2010 Abbas and Doric[1] proved a common fixed point theorem for four maps for a generalized (ψ, φ)-weakly contractive map. Recently, Chandok, Tas and Ansari[12] introduced the concept of TAC- contractions and proved some fixed point theorems in the setting of metric spaces. In sequel, Babu and Dula[9] extended this result to b-metric spaces.

We start by recalling some definitions and properties of b-metric spaces and well known results.

Definition 1.1. [11] Let X be a non-empty set and $s \geq 1$ be a real number. A function $d: X \times X \rightarrow[0, \infty)$ is called a b-metric on X if it satisfies the following conditions:
(1) $d(x, y)=0$ if and only if $x=y$.
(2) $d(x, y)=d(y, x)$ for all $x, y \in X$.
(3) $d(x, y) \leq s[d(x, z)+d(z, y)]$, for all $x, y, z \in X$.

Then the order pair (X, d) is said to be ab- metric space with $s \geq 1$.
Here we note that the class of b-metric spaces is larger class than the class of metric spaces, since (X, d) is a metric space when $s=1$.

In the following we give examples of b-metric which are not metric spaces.
Example 1.2. Let $X=R^{2}$ and we define $d: X \times X \rightarrow R$ by $d(x, y)=\left|x_{1}-y_{1}\right|^{2}+\left|x_{2}-y_{2}\right|^{2}$ for all $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in X$. Then (X, d) is a b-metric space with $s=3$.

Example 1.3. Let $X=\{0,1,2\}$. Define $d: X \times X \rightarrow R$ by $d(x, x)=0$ for all $x \in X$, $d(0,1)=d(1,0)=1, d(1,2)=d(2,1)=2, d(0,2)=d(2,0)=6$. Then clearly, d is a b-metric space with $s=2$. But, (X, d) is not a metric space. For, let $x=0, y=2, z=1$ then

$$
d(0,2)=6>d(0,1)+d(1,2)=1+2
$$

Hence (X, d) is not a metric space.
Definition 1.4. [11] Let (X, d) be b-metric space.
(i) A sequence $\left\{x_{n}\right\}$ in X is called b-convergent if there exists $x \in X$ such that $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$. In this we write $\lim _{n \rightarrow \infty} x_{n}=x$.
(ii) A sequence $\left\{x_{n}\right\}$ in X is called b-Cauchy if $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$.
(iii) The b-metric space (X, d) is said to be b-complete if every b-Cauchy sequence in X is b-convergent.
(iv) A set $B \subseteq X$ is said to be b-closed if for any sequence $\left\{x_{n}\right\}$ in B such that $\left\{x_{n}\right\}$ is b-convergent to $z \in X$, we have $z \in B$.
Proposition 1.5. [11] In a b-metric space (X, d) the following assertions hold:
(i) a b-convergent sequence has a unique limit
(ii) each b-convergent sequence is b-Cauchy
(iii) in general, a b-metric need not be continuous.

Lemma 1.6. [3] Let (X, d) be a b-metric space and $\lim _{n \rightarrow \infty} x_{n}=x, \lim _{n \rightarrow \infty} y_{n}=y$. Then
(i) $\frac{1}{s^{2}} d(x, y) \leq \liminf _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leq \lim \sup _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leq s^{2} d(x, y)$. In particular, if $x=y$ then $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$.
(ii) For each $x \in X$ $\frac{1}{s} d(x, z) \leq \liminf _{n \rightarrow \infty} d\left(x_{n}, z\right) \leq \lim \sup _{n \rightarrow \infty} d\left(x_{n}, z\right) \leq s d(x, z)$.
Lemma 1.7. [16] Let (X, d) be a b-metric space with $s \geq 1$ and $\left\{x_{n}\right\}$ be a sequence in (X, d). Then the following are equivalent.
(i) $\left\{x_{n}\right\}$ is a b-Cauchy sequence in (X, d)
(ii) $\left\{x_{2 n}\right\}$ is a b-Cacuchy sequence in (X, d) and $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0$.

Definition 1.8. [16] Let A and B be nonempty subsets of X. A mapping $f: A \cup B \rightarrow A \cup B$ is said to be cyclic if $f(A) \subset B$ and $f(B) \subset A$.
Definition 1.9. [5] Let X be a nonempty set, f be a selfmap of X and $\alpha, \beta: X \rightarrow[0, \infty)$ be two mappings. We say that f is a cyclic (α, β)-admissible mapping if
(i) for any $x \in X$ with $\alpha(x) \geq 1 \Rightarrow \beta(f x) \geq 1$, and
(ii) for any $y \in X$ with $\beta(y) \geq 1 \Rightarrow \alpha(f y) \geq 1$.

In 2016, Hussain, Isik and Abbas[17] extended the definition of cyclic (α, β)-admissible mapping two pair of maps as follows.

Definition 1.10. Let $\mathrm{f}, \mathrm{g}, \mathrm{S}$ and T be selfmaps of a nonempty set X and $\alpha, \beta: X \rightarrow R^{+}$. Then the pair (f, g) is called cyclic (α, β)-admissible with respect to (S, T) (briefly, (f, g) is cyclic $(\alpha, \beta)(\mathrm{S}, \mathrm{T})$-admissible pair) if
(i) $\alpha(S x) \geq 1$ for some $x \in X$ implies $\beta(f x) \geq 1$,
(ii) $\beta(T x) \geq 1$ for some $x \in X$ implies $\alpha(g x) \geq 1$.

If we take $S=T=I X$ (identity mapping on X) and $f=g$, then Definition 1.10 reduces to Definition 1.9.

Recently, Ansari [6] defined the concept of C-class functions in the following.

Definition 1.11. [6] A mapping $F: R^{+} X R^{+} \rightarrow R^{+}$is called \mathcal{C}-class function if it is continuous and satisfies following conditions:
(1) $F(s, t) \leq s$;
(2) $F(s, t)=s$ implies that either $s=0$ or $t=0$ for all $s, t \in R^{+}$.

Here we note that $F(0,0)=0$.
We denote the set of C-class functions as \mathcal{C}.

Example 1.12. [6] The following functions $F: R^{+} X R^{+} \rightarrow R^{+}$are elements of \mathcal{C}, for all $s, t \in R^{+}$:
(1) $F(s, t)=\left\{\begin{array}{cc}s-t & \text { if } s \geq t \\ 0 & \text { otherwise }\end{array}\right.$
(2) $F(s, t)=k s$ for $0<k<1$, if $F(s, t)=s$ then $s=0$;
(3) $F(s, t)=\frac{k}{r} s$ for $0<k<1$ and $r \in(1, \infty)$ if $F(s, t)=s$ then $s=0$;
(4) $F(s, t)=\frac{s}{1+t}$ then if $F(s, t)=s$ then either $s=0$ or $t=0$.

For more literature on \mathcal{C} class functions we refer [8, 15].
Notation: Throught this paper we denote:
$\Psi=\left\{\psi:[0, \infty) \rightarrow[0, \infty) \mid \psi\right.$ is continuous, nondecreasing and $\left.\psi^{-1}(0)=0\right\}$,
$\Phi=\left\{\phi:[0, \infty) \rightarrow[0, \infty) \mid \lim _{n \rightarrow \infty} \phi\left(t_{n}\right) \rightarrow 0 \Rightarrow \lim _{n \rightarrow \infty} t_{n}=0\right\}$,
Here we observe that if $\phi \in \Phi$, then $t=0$ implies $\phi(t)=0$
$\Phi_{1}=\{\phi:[0, \infty) \rightarrow[0, \infty) \mid \phi$ is lower semicontinuous, $\phi(t)>0$ for all $t>0, \phi(0)=0\}$,
$C(f, g)$: set of all common fixed points of f and g and $W=\{0,1,2,3, \ldots .\}.$.
The following theorem was proved by Abbas and Doric[1] in complete metric spaces.
Theorem 1.13. [1] Let f, g, S and T be selfmaps of a complete metric space (X, d). Suppose that $f(X) \subseteq T(X), g(X) \subseteq S(X)$ and the pairs $\{f, S\}$ and $\{g, T\}$ are weakly compatible. If

$$
\begin{equation*}
\psi(d(f x, g y)) \leq \psi(M(x, y))-\phi(M(x, y)) \tag{1.13.1}
\end{equation*}
$$

for all $x, y \in X$, where $\psi \in \Psi, \phi \in \Phi_{1}$ and
$M(x, y)=\max \left\{d(S x, T y), d(f x, S x), d(g y, T y), \frac{d(S x, g y)+d(f x, T y)}{2}\right\}$
then f, g, S and T have a unique fixed point in X provided one of the ranges $f(X), g(X), S(X)$ and $T(X)$ is closed.

The following TAC type contractive definition is due to Chandok and Ansari[12].
Definition 1.14. [12] Let (X, d) be a metric space and let $\alpha, \beta: X \rightarrow[0, \infty)$ be two given mappings. We say that $T: X \rightarrow X$ is a TAC-contractive mapping if for all $x, y \in X$ with

$$
\begin{equation*}
\alpha(x) \beta(y) \geq 1 \Rightarrow \psi(d(T x, T y)) \leq F(\psi(d(x, y), \phi(d(x, y))) \tag{1.14.1}
\end{equation*}
$$

where $\psi \in \Psi, \phi \in \Phi$ and $F \in \mathcal{C}$.

Recently, Babu and Dula [9] introduced the notion of generalized TAC-contractive map in b-metric space setting and proved fixed point theorems.

Definition 1.15. [9] Let (X, d) be a b- metric space and let $\alpha, \beta: X \rightarrow[0, \infty)$ be two mappings. We say that $T: X \rightarrow X$ is a generalized TAC-contractive map if there exist $\psi \in \Psi, \phi \in \Phi$ and $F \in \mathcal{C}$ such that for all $x, y \in X$ with

$$
\begin{equation*}
\alpha(x) \beta(y) \geq 1 \Rightarrow \psi\left(s^{3} d(T x, T y)\right) \leq F\left(\psi \left(M_{s}(x, y), \phi\left(M_{s}(x, y)\right)\right.\right. \tag{1.15.1}
\end{equation*}
$$

where $M_{s}(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T x)+d(y, T y)}{2 s}\right\}$.
Babu and Dula[9] established the following result.
Theorem 1.16. [9] Let (X, d) be a complete b-metric space with coefficient $s \geq 1$. Let $T: X \rightarrow$ X be a seflmap of X. Assume that there exist two mappings $\alpha, \beta: X \rightarrow[0, \infty), \psi \in \Psi, \phi \in \Phi$ and $F \in \mathcal{C}$ such that T is a generalized TAC-contractive mapping. Further, suppose that there exists $x_{0} \in X$ such that $\alpha\left(x_{0}\right) \geq 1$ and $\beta\left(x_{0}\right) \geq 1, T$ is a cyclic (α, β)-admissible mapping and either of the following conditions hold:
(i) T is continuous,
(ii) if $\left\{x_{n}\right\}$ is a sequence in X such that $x_{n} \rightarrow z \alpha\left(x_{n}\right)>1$ and $\beta\left(x_{n}\right)>1$ for all n, then $\alpha(z) \geq 1$ and $\beta(z) \geq 1$.

Then T has a fixed point in X. Moreover, if $\alpha(u) \geq 1$ and $\beta(u) \geq 1$ whenever $T u=u$. Then T has a unique fixed point in X.

The following theorem was proved by Roshan, Shobkolaei, Sedghi and Abbas[20].
Theorem 1.17. [20] Suppose that f, g, S and T are self mappings on a complete b-metric space (X, d) with $s \geq 1$ such that:
(i) $f(X) \subseteq T(X), g(X) \subseteq S(X)$.
$(i i) d(f x, g y) \leq \frac{q}{s^{4}} \max \left\{d(S x, T y), d(f x, S x), d(g y, T y), \frac{1}{2}(d(S x, g y)+d(f x, T y))\right\}$,
holds for each $x, y \in X$ with $0<q<1$. Then f, g, S and T have a unique common fixed point in X provided that S and T are continuous and pairs (f, S) and (g, T) are compatible.

The aim of the paper is to extend Theorem 1.16 to four mappings and generalize Theorem 1.13 and Theorem 1.17. To support our results examples are also furnished.

2 Fixed point theorems for generalized TAC-contractive map for four selfmaps

In this section, first we define a generalized TAC-contractive map for four selfmaps.
Definition 2.1. Let (X, d) be a b- metric space with coefficient $s \geq 1$. Let $\alpha, \beta: X \rightarrow[0, \infty)$ be two given maps and f, g, S and T be four seflmaps on X. Suppose there exist $\psi \in \Psi, \phi \in \Phi$ and $F \in \mathcal{C}$ such that for all $x, y \in X$ with
$\alpha(S x) \beta(T y) \geq 1 \Rightarrow \psi\left(s^{3} d(f x, g y)\right) \leq F\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right)$,
where $M_{s}(x, y)=\max \left\{d(S x, T y), d(f x, S x), d(T y, g y), \frac{d(S x, g y)+d(f x, T y)}{2 s}\right\}$.
Then the pair (f, g) is said to be generalized TAC- (S, T) contractive map in b- metric spaces.
Here we note that if we choose $f=g$ and $S=T=I$, the identity map on X then Definition 2.1 reduces to Definition 1.15.

Theorem 2.2. Let (X, d) be a complete b-metric space with coefficient $s \geq 1$ and f, g, S and T be four seflmaps on X. Assume that there exist two mappings $\alpha, \beta: X \rightarrow[0, \infty), \psi \in \Psi, \phi \in \Phi$ and $F \in \mathcal{C}$ such that (f, g) is a generalized TAC- (S, T) contractive mapping with respect to F. Assume that:
(i) $f X \subseteq T X$ and $g X \subseteq S X$
(ii) there exists $x_{0} \in X$ such that $\alpha\left(S x_{0}\right) \geq 1$ and $\beta\left(T x_{0}\right) \geq 1$.
(iii) If $\left\{x_{n}\right\}$ is a sequence in X such that $x_{n} \rightarrow x, \alpha\left(x_{n}\right) \geq 1$ and $\beta\left(x_{n}\right) \geq 1$ for all n, then $\alpha(x) \geq 1, \beta(x) \geq 1$.
(iv) one of the ranges $f X, g X, T X, S X$ is b-closed.

Then $C(f, S) \neq \phi$ and $C(g, T) \neq \phi$.

Proof. Let $x_{0} \in X$ as in (ii). By condition (i), we define a sequence $\left\{y_{n}\right\} \in X$ by

$$
\begin{equation*}
y_{2 n}=f x_{2 n}=T x_{2 n+1} \text { and } y_{2 n+1}=S x_{2 n+2}=g x_{2 n+1} . \tag{2.2.1}
\end{equation*}
$$

First we show that $\left\{y_{n}\right\}$ is a Cauchy sequence in X.
Since $\alpha\left(S x_{0}\right) \geq 1$ and (f, g) is cyclic (α, β)-admissible with respect to (S, T), we have $\beta\left(f x_{0}\right) \geq 1 \Rightarrow \beta\left(T x_{1}\right) \geq 1, \alpha\left(g x_{1}\right) \geq 1$ and $\beta\left(S x_{2}\right) \geq 1$.

On continuing this process, we have

$$
\begin{equation*}
\alpha\left(S x_{2 n}\right) \geq 1 \text { and } \beta\left(T x_{2 n+1}\right) \geq 1 \text { for all } n \in W \tag{2.2.2}
\end{equation*}
$$

Similarly, $\beta\left(T x_{0}\right) \geq 1$, we have

$$
\begin{equation*}
\beta\left(T x_{2 n}\right) \geq 1 \text { and } \alpha\left(S x_{2 n+1}\right) \geq 1 \text { for all } n \in W \tag{2.2.3}
\end{equation*}
$$

Thus from (2.2.2) and (2.2.3), we have

$$
\begin{equation*}
\alpha\left(S x_{n}\right) \geq 1 \text { and } \beta\left(T x_{n}\right) \geq 1 \text { for all } n \in W \tag{2.2.4}
\end{equation*}
$$

If $y_{2 n}=y_{2 n+1}$ for some $n \in W$ then we have

$$
\begin{aligned}
M_{s}\left(x_{2 n+2}, x_{2 n+1}\right)= & \max \left\{d\left(S x_{2 n+2}, T x_{2 n+1}\right), d\left(f x_{2 n+2}, S x_{2 n+2}\right), d\left(T x_{2 n+1}, g x_{2 n+1}\right),\right. \\
& \left.\frac{1}{2 s}\left[d\left(S x_{2 n+2}, g x_{2 n+1}\right)+d\left(f x_{2 n+2}, T x_{2 n+1}\right)\right]\right\} \\
= & \max \left\{d\left(y_{2 n+1}, y_{2 n}\right), d\left(y_{2 n+2}, y_{2 n+1}\right), d\left(y_{2 n+1}, y_{2 n}\right), \frac{1}{2 s} d\left(y_{2 n+2}, y_{2 n}\right)\right\} \\
\leq & \max \left\{d\left(y_{2 n+1}, y_{2 n}\right), d\left(y_{2 n+2}, y_{2 n}\right),\right. \\
& \left.\frac{s}{2 s}\left[d\left(y_{2 n+1}, y_{2 n}\right)+d\left(y_{2 n+1}, y_{2 n+2}\right)\right]\right\} \\
\leq & \max \left\{d\left(y_{2 n+1}, y_{2 n}\right), d\left(y_{2 n+1}, y_{2 n+2}\right)\right\} .
\end{aligned}
$$

Therefore $M_{s}\left(x_{2 n+2}, x_{2 n+1}\right)=d\left(y_{2 n+1}, y_{2 n+2}\right)$.
Now from (2.1.1) and (2.2.4), we have

$$
\begin{aligned}
\psi\left(d\left(y_{2 n+1}, y_{2 n+2}\right)\right) & \leq \psi\left(s^{3} d\left(y_{2 n+1}, y_{2 n+2}\right)\right)=\psi\left(s^{3} d\left(f x_{2 n+2}, g x_{2 n+1}\right)\right) \\
& \leq F\left(\psi\left(M_{s}\left(x_{2 n+2}, x_{2 n+1}\right)\right), \phi\left(M_{s}\left(x_{2 n+2}, x_{2 n+1}\right)\right)\right) \\
& \leq F\left(\psi\left(d\left(y_{2 n+2}, y_{2 n+1}\right)\right), \phi\left(d\left(y_{2 n+2}, y_{2 n+1}\right)\right)\right) \\
& =\psi\left(d\left(y_{2 n+2}, y_{2 n+1}\right)\right)
\end{aligned}
$$

which implies $F\left(\psi\left(d\left(y_{2 n+2}, y_{2 n+1}\right)\right), \phi\left(d\left(y_{2 n+2}, y_{2 n+1}\right)\right)\right)=\psi\left(d\left(y_{2 n+2}, y_{2 n+1}\right)\right)$.
Due to the property of F, we have $\psi\left(d\left(y_{2 n+2}, y_{2 n+1}\right)\right)=0$ or
$\phi\left(d\left(y_{2 n+2}, y_{2 n+1}\right)\right)=0$, in any case $d\left(y_{2 n+1}, y_{2 n+2}\right)=0$ this implies $y_{2 n+1}=y_{2 n}=y_{2 n+2}$. On continuing this process we can prove that
$y_{2 n}=y_{2 n+1}=y_{2 n+2}=y_{2 n+3}=\ldots$. Thus $y_{2 n+1}=y_{2 n}$ for all $n \in W$. Thus $\left\{y_{k}\right\}_{k \geq 2 n}$ is a constant sequence hence it is convergent. Hence without loss of generality, assume that $y_{2 n} \neq y_{2 n+1}$ for all $n \in W$. First, we show that $\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=0$.

In view of condition (2.2.4), we have $\alpha\left(S x_{2 n}\right) \geq 1$ and $\beta\left(T x_{2 n+1}\right) \geq 1$ implies $\alpha\left(S x_{2 n}\right) \beta\left(T x_{2 n+1}\right) \geq 1$ for all $n \in W$.

Now on using inequality (2.1.1) with $x=x_{2 n}, y=x_{2 n+1}$, we have

$$
\begin{equation*}
\psi\left(\left(d\left(y_{2 n}, y_{2 n+1}\right)\right) \leq \psi\left(s^{3} d\left(f x_{2 n}, g x_{2 n+1}\right)\right) \leq F\left(\psi\left(M_{s}\left(x_{2 n}, x_{2 n+1}\right)\right), \phi\left(M_{s}\left(x_{2 n}, x_{2 n+1}\right)\right)\right)\right. \tag{2.2.5}
\end{equation*}
$$

Now, $M_{s}\left(x_{2 n}, x_{2 n+1}\right)=\max \left\{d\left(S x_{2 n}, T x_{2 n+1}\right), d\left(f x_{2 n}, S x_{2 n}\right), d\left(T x_{2 n+1}, g x_{2 n+1}\right)\right.$,

$$
\begin{align*}
& \left.\quad \frac{1}{2 s}\left[d\left(S x_{2 n}, g x_{2 n+1}\right)+d\left(f x_{2 n}, T x_{2 n+1}\right)\right]\right\} \\
& =\max \left\{d\left(y_{2 n}, y_{2 n-1}\right), d\left(y_{2 n}, y_{2 n+1}\right), \frac{1}{2 s} d\left(y_{2 n-1}, y_{2 n+1}\right)\right\} \\
& \leq \max \left\{d\left(y_{2 n}, y_{2 n-1}\right), d\left(y_{2 n}, y_{2 n+1}\right)\right\} . \tag{2.2.6}
\end{align*}
$$

If $d\left(y_{2 n}, y_{2 n+1}\right)>d\left(y_{2 n}, y_{2 n-1}\right)$ then from (2.2.6), we have
$\psi\left(\left(d\left(y_{2 n}, y_{2 n+1}\right)\right) \leq F\left(\psi\left(d\left(y_{2 n}, y_{2 n+1}\right), \phi\left(d\left(y_{2 n}, y_{2 n+1}\right)\right) \leq \psi\left(\left(d\left(y_{2 n}, y_{2 n+1}\right)\right)\right.\right.\right.\right.$.
Hence $F\left(\psi\left(d\left(y_{2 n}, y_{2 n+1}\right), \phi\left(d\left(y_{2 n}, y_{2 n+1}\right)\right)=\psi\left(\left(d\left(y_{2 n}, y_{2 n+1}\right)\right)\right.\right.\right.$.
Owing to the property of F, we have $\psi\left(d\left(y_{2 n}, y_{2 n+1}\right)\right)=0$ or $\phi\left(d\left(y_{2 n}, y_{2 n+1}\right)\right)=0$. In any case we have $y_{2 n}=y_{2 n+1}$, a contradiction to our assumption. Hence

$$
\begin{equation*}
d\left(y_{2 n}, y_{2 n+1}\right)<d\left(y_{2 n}, y_{2 n-1}\right) \text { for all } n \in W \text {. } \tag{2.2.8}
\end{equation*}
$$

Therefore $\left\{d\left(y_{2 n}, y_{2 n+1}\right)\right\}$ is a decreasing sequence of reals and hence it converges to $r \geq 0$. Suppose that $r>0$. From (2.2.7), we have
$\psi\left(d\left(y_{2 n}, y_{2 n+1}\right)\right) \leq F\left(\psi\left(d\left(y_{2 n}, y_{2 n+1}\right)\right), \phi\left(d\left(y_{2 n}, y_{2 n+1}\right)\right)\right)$.
On letting $n \rightarrow \infty$, using continuity of ψ and F, we have

$$
\psi(r) \leq F\left(\psi(r), \lim _{n \rightarrow \infty} \phi\left(d\left(y_{2 n}, y_{2 n+1}\right)\right) \leq \psi(r)\right.
$$

which implies $F\left(\psi(r), \lim _{n \rightarrow \infty} \phi\left(\left(d\left(y_{2 n}, y_{2 n+1}\right)\right)=\psi(r)\right.\right.$. Thus, by the property of F, we have $\psi(r)=0$ or $\lim _{n \rightarrow \infty} \phi\left(d\left(y_{2 n}, y_{2 n+1}\right)\right)=0$, this implies $r=0$. Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=0 . \tag{2.2.9}
\end{equation*}
$$

We now show that $\left\{y_{2 n}\right\}$ is a b-Cauchy sequence. If $\left\{y_{2 n}\right\}$ is not ab-Cauchy sequence then by lemma 1.7 , there exist $\epsilon>0$, and subsequences $\left\{y_{2 m(k)}\right\},\left\{y_{2 n(k)}\right\}$ of $\left\{y_{2 n}\right\}$ where $m(k)$ is smallest integer such that $m(k)>n(k) \geq k$ and

$$
\begin{equation*}
d\left(y_{2 m(k)}, y_{2 n(k)}\right) \geq \epsilon \operatorname{and} d\left(y_{2 m(k)-2}, y_{2 n(k)}\right)<\epsilon . \tag{2.2.10}
\end{equation*}
$$

Now from (2.2.10), we have

$$
\begin{aligned}
\epsilon & \leq d\left(y_{2 m(k)}, y_{2 n(k)}\right) \\
& \leq s d\left(y_{2 m(k)}, y_{2 m(k)-2}\right)+s d\left(y_{2 m(k)-2}, y_{2 n(k)}\right) \\
& <s^{2} d\left(y_{2 m(k)}, y_{2 m(k)-1}\right)+s^{2} d\left(y_{2 m(k)-1}, y_{2 m(k)-2}\right)+s \epsilon .
\end{aligned}
$$

Taking upper limit as $k \rightarrow \infty$, using (2.2.9), we get

$$
\begin{equation*}
\epsilon \leq \limsup _{k \rightarrow \infty} d\left(y_{2 m(k)}, y_{2 n(k)}\right) \leq s \epsilon . \tag{2.2.11}
\end{equation*}
$$

Again,

$$
d\left(y_{2 m(k)}, y_{2 n(k)+1}\right) \leq s d\left(y_{2 m(k)}, y_{2 n(k)}\right)+s d\left(y_{2 n(k)+1}, y_{2 n(k)}\right) .
$$

Taking upper limit as $k \rightarrow \infty$, using (2.2.9) and (2.2.11), we get

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} d\left(y_{2 m(k)}, y_{2 n(k)+1}\right) \leq s^{2} \epsilon \tag{2.2.12}
\end{equation*}
$$

Also, we have

$$
\epsilon \leq d\left(y_{2 m(k)}, y_{2 n(k)}\right) \leq s d\left(y_{2 m(k)}, y_{2 n(k)+1}\right)+s d\left(y_{2 n(k)+1}, y_{2 n(k)}\right) .
$$

Taking the upper limit as $k \rightarrow \infty$ and using (2.2.9), we have

$$
\begin{equation*}
\frac{\epsilon}{s} \leq \limsup _{k \rightarrow \infty} d\left(y_{2 m(k)}, y_{2 n(k)+1}\right) . \tag{2.2.13}
\end{equation*}
$$

Hence, from (2.2.12) and (2.2.13), it follows that

$$
\begin{equation*}
\frac{\epsilon}{s} \leq \limsup _{k \rightarrow \infty} d\left(y_{2 m(k)}, y_{2 n(k)+1}\right) \leq s^{2} \epsilon \tag{2.2.14}
\end{equation*}
$$

We also have
$d\left(y_{2 m(k)-1}, y_{2 n(k)}\right) \leq s d\left(y_{2 m(k)-1}, y_{2 m(k)}\right)+s d\left(y_{2 m(k)}, y_{2 n(k)}\right)$.
On taking upper limit as $k \rightarrow \infty$ using (2.2.9) and (2.2.11), we get
$\limsup \sup _{k \rightarrow \infty} d\left(y_{2 m(k)}, y_{2 n(k)-1}\right) \leq s^{2} \epsilon$.
Also, we have
$\epsilon \leq d\left(y_{2 m(k)}, y_{2 n(k)}\right) \leq s d\left(y_{2 m(k)}, y_{2 m(k)-1}\right)+s d\left(y_{2 m(k)-1}, y_{2 n(k)}\right)$.
On taking the upper limit as $k \rightarrow \infty$ and using (2.2.9), we have

$$
\begin{equation*}
\frac{\epsilon}{s} \leq \limsup _{k \rightarrow \infty} d\left(y_{2 m(k)-1}, y_{2 n(k)}\right) \tag{2.2.16}
\end{equation*}
$$

Now, on combining (2.2.15) and (2.2.16), we have

$$
\begin{equation*}
\frac{\epsilon}{s} \leq \limsup _{k \rightarrow \infty} d\left(y_{2 m(k)-1}, y_{2 n(k)}\right) \leq s^{2} \epsilon \tag{2.2.17}
\end{equation*}
$$

In view of triangle inequality, we have

$$
\begin{aligned}
d\left(y_{2 n(k)+1}, y_{2 m(k)-1}\right) & \leq s\left[d\left(y_{2 n(k)+1}, y_{2 n(k)}\right)+d\left(y_{2 n(k)}, y_{2 m(k)-1}\right)\right] \\
& \leq s\left[d\left(y_{2 n(k)+1}, y_{2 n(k)}\right)+s d\left(y_{2 n(k)}, y_{2 m(k)}\right)+s d\left(y_{2 m(k)}, y_{2 m(k)-1}\right)\right]
\end{aligned}
$$

Letting upper limit as $k \rightarrow \infty$, using (2.2.9) and (2.2.11), we get

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} d\left(y_{2 n(k)+1}, y_{2 m(k)-1}\right) \leq s^{3} \epsilon . \tag{2.2.18}
\end{equation*}
$$

Again,
$\epsilon \leq d\left(y_{2 m(k)}, y_{2 n(k)}\right) \leq s d\left(y_{2 m(k)}, y_{2 m(k)-1}\right)+s d\left(y_{2 m(k)-1}, y_{2 n(k)}\right)$

$$
\leq s d\left(y_{2 m(k)}, y_{2 m(k)-1}\right)+s^{2} d\left(y_{2 m(k)-1}, y_{2 n(k)+1}\right)+s^{2} d\left(y_{2 n(k)+1}, y_{2 n(k)}\right)
$$

Taking the upper limit as $k \rightarrow \infty$ and using (2.2.9) and (2.2.13), we get

$$
\begin{equation*}
\frac{\epsilon}{s^{2}} \leq \limsup _{k \rightarrow \infty} d\left(y_{2 m(k)-1}, y_{2 n(k)+1}\right) \tag{2.2.19}
\end{equation*}
$$

Thus, from (2.2.20) and (2.2.21), we get

$$
\begin{equation*}
\frac{\epsilon}{s^{2}} \leq \limsup _{k \rightarrow \infty} d\left(y_{2 m(k)-1}, y_{2 n(k)+1}\right) \leq s^{3} \epsilon \tag{2.2.20}
\end{equation*}
$$

From the condition (2.2.4), we have $\alpha\left(S x_{2 m(k)}\right) \geq 1$ and $\beta\left(T x_{2 n(k)+1}\right) \geq 1$, thus $\alpha\left(S x_{2 m(k)}\right) \beta\left(T x_{2 n(k)+1}\right) \geq 1$, therefore from (2.1.1), we have

$$
\begin{align*}
\psi\left(s^{3} d\left(y_{2 m(k)}, y_{2 n(k)+1}\right)\right) & =\psi\left(s^{3} d\left(f x_{2 m(k)}, g x_{2 n(k)+1}\right)\right) \\
& \leq F\left(\psi\left(M_{s}\left(x_{2 m(k)}, x_{2 n(k)+1}\right)\right), \phi\left(M_{s}\left(x_{2 m(k)}, x_{2 n(k)+1}\right)\right)\right) \tag{2.2.21}
\end{align*}
$$

where

$$
\begin{align*}
& M_{s}\left(x_{2 m(k)}, x_{2 n(k)+1}\right)=\max \left\{d\left(y_{2 m(k)-1}, y_{2 n(k)}\right), d\left(y_{2 m(k)-1}, y_{2 m(k)}\right)\right. \\
& \left.d\left(y_{2 n(k)}, y_{2 n(k)+1}\right), \frac{1}{2 s}\left[d\left(y_{2 m(k)-1}, y_{2 n(k)+1}\right)+d\left(y_{2 m(k)}, y_{2 n(k)}\right)\right]\right\} . \tag{2.2.22}
\end{align*}
$$

Letting limit supremum as $k \rightarrow \infty$ and using (2.2.11), (2.2.17) and (2.2.20), we have

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} M_{s}\left(x_{2 m(k)}, x_{2 n(k)+1}\right) \leq \max \left\{s^{2} \epsilon, \frac{1}{2 s}\left(s^{3} \epsilon+s \epsilon\right)\right\}=s^{2} \epsilon \tag{2.2.23}
\end{equation*}
$$

Now from in (2.2.21), using (2.2.14) and (2.2.23), we have

$$
\begin{aligned}
\psi\left(s^{2} \epsilon\right) & =\psi\left(s^{3} \frac{\epsilon}{s}\right) \leq \psi\left(s^{3} \limsup _{k \rightarrow \infty} d\left(y_{2 m(k)}, y_{2 n(k)+1}\right)\right) \\
& \leq F\left(\psi\left(\lim \sup _{k \rightarrow \infty} M_{s}\left(x_{2 m(k)}, x_{2 n(k)+1}\right)\right), \phi\left(\lim \sup _{k \rightarrow \infty} M_{s}\left(x_{2 m(k)}, x_{2 n(k)+1}\right)\right)\right) \\
& \leq F\left(\psi\left(s^{2} \epsilon\right), \limsup _{k \rightarrow \infty} \phi\left(M_{s}\left(x_{2 m(k)}, x_{2 n(k)+1}\right)\right) \leq \psi\left(s^{2} \epsilon\right)\right.
\end{aligned}
$$

this implies that $F\left(\psi\left(s^{2} \epsilon\right), \lim \sup _{k \rightarrow \infty} \phi\left(M_{s}\left(x_{2 m(k)}, x_{2 n(k)+1}\right)\right)=\psi\left(s^{2} \epsilon\right)\right.$.
Hence by the property of F, we have either $\psi\left(s^{2} \epsilon\right)=0$ or
$\limsup { }_{k \rightarrow \infty} \phi\left(M_{s}\left(x_{2 m(k)}, x_{2 n(k)+1}\right)\right)=0$, this implies $s^{2} \epsilon=0$ or
$\lim \sup _{n \rightarrow \infty} M_{s}\left(x_{2 m(k)}, x_{2 n(k)+1}\right)=0$. In both the cases we have $\epsilon=0$ which is a contraction.Hence $\left\{y_{2 n}\right\}$ is a b-Cauchy sequence in X. Thus by Lemma 1.7, we conclude that $\left\{y_{n}\right\}$ is a b-Cauchy sequence in X. Since (X, d) is b-complete, there exists $z \in X$ such that $\lim _{n \rightarrow \infty} y_{2 n}=$ z. Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f x_{2 n}=\lim _{n \rightarrow \infty} T x_{2 n+1}=\lim _{n \rightarrow \infty} S x_{2 n+2}=\lim _{n \rightarrow \infty} g x_{2 n+1}=z \tag{2.2.24}
\end{equation*}
$$

Case (i) : Suppose $S X$ is closed.
In view of (2.2.24), we have $z \in S X$, there exists $u \in X$ such that $z=S u$. From our assumption (iii) and (2.2.4), we have $\alpha(S u) \geq 1$ and $\beta\left(T x_{2 n+1}\right) \geq 1$. Now on using inequality (2.1.1), we have
$d(f u, z) \leq s\left[d\left(f u, g x_{2 n+1}\right)+d\left(g x_{2 n+1}, z\right)\right]$.
On taking upper limit as $n \rightarrow \infty$ in the above inequality and using (2.2.24), we have
$\frac{1}{s} d(f u, z) \leq \lim \sup _{n \rightarrow \infty} d\left(f u, g x_{2 n+1}\right)$.
Also, $d\left(f u, g x_{2 n+1}\right) \leq s\left[d(f u, z)+d\left(z, g x_{2 n+1}\right)\right]$.
Taking limit supremum as $n \rightarrow \infty$ and again using (2.2.24), we get
$\limsup _{n \rightarrow \infty} d\left(f u, g x_{2 n+1}\right) \leq s^{2} d(f u, z)$.
Therefore

$$
\begin{align*}
\psi(d(f u, z)) & \leq \psi\left(s^{2} d(f u, z)\right)=\psi\left(s^{3}\left(\frac{1}{s} d(f u, z)\right)\right. \\
& \leq \psi\left(s^{3} \lim _{\sup }^{n \rightarrow \infty}\right. \\
& \leq F\left(f u, g x_{2 n+1}\right) \tag{2.2.25}\\
& \leq \lim \sup _{n \rightarrow \infty} \psi\left(M_{s}\left(u, x_{2 n+1}\right)\right), \lim \sup _{n \rightarrow \infty} \phi\left(M_{s}\left(u, x_{2 n+1}\right)\right)
\end{align*}
$$

Now,

$$
\begin{array}{r}
M_{s}\left(u, x_{2 n+1}\right)=\max \left\{d\left(S u, T x_{2 n+1}\right), d(f u, S u), d\left(T x_{2 n+1}, g u x_{2 n+1}\right),\right. \\
\left.\frac{1}{2 s}\left[d\left(S u, g x_{2 n+1}\right)+d\left(f u, T x_{2 n+1}\right)\right]\right\}
\end{array}
$$

On taking upper limits as $n \rightarrow \infty$ and using (2.2.24) we have

$$
\begin{align*}
\limsup _{n \rightarrow \infty} & M_{s}\left(x_{2 n+1}, u\right) \\
& =\limsup _{n \rightarrow \infty} \max \left\{d\left(S u, T x_{2 n+1}\right), d(f u, S u), d\left(T x_{2 n+1}, g u x_{2 n+1}\right),\right. \\
& =d(f u, S u) .
\end{align*}
$$

Thus from (2.2.25) and (2.2.26), we get
$\psi(d(f u, z)) \leq F\left(\psi(d(f u, z)), \lim \sup _{n \rightarrow \infty} \phi\left(M_{s}\left(u, x_{2 n+1}\right)\right) \leq \psi(d(f u, z))\right)$.
This implies $\psi(d(f u, z)))=0$ or $\limsup _{n \rightarrow \infty} \phi\left(M_{s}\left(u, x_{2 n+1}\right)=0\right.$, thus, $f u=z$. Hence

$$
\begin{equation*}
z=S u=f u \tag{2.2.27}
\end{equation*}
$$

Since $z=f u \in f X \subseteq T X$, We have $z \in T X$, there exists $v \in X$ such that

$$
\begin{equation*}
T v=z . \tag{2.2.28}
\end{equation*}
$$

We now show that $g v=T v$.
Owing to the assumption (iii) and (2.2.4), we have

$$
\begin{equation*}
\alpha\left(S x_{2 n}\right) \geq 1 \text { and } \beta(T v) \geq 1 \tag{2.2.29}
\end{equation*}
$$

By triangle inequality, we have

$$
d(z, g v) \leq s\left[d\left(z, f x_{2 n}\right)+d\left(f x_{2 n}, g v\right)\right]
$$

Taking limit supremum as $n \rightarrow \infty$, we have

$$
\begin{equation*}
\frac{1}{s} d(z, g v) \leq \limsup _{n \rightarrow \infty} d\left(f x_{2 n}, g v\right) \tag{2.2.30}
\end{equation*}
$$

Also,

$$
d\left(f x_{2 n}, g v\right) \leq s\left[d\left(f x_{2 n}, z\right)+d(z, g v)\right] .
$$

Taking limit supremum as $n \rightarrow \infty$, we have
$\lim \sup _{n \rightarrow \infty} d\left(f x_{2 n}, g v\right) \leq s d(z, g v)$.
Thus, from (2.1.1), (2. 2.29) and (2.2.30), it follows that

$$
\begin{align*}
\psi(d(z, g v)) & \leq \psi\left(s^{2} d(z, g v)\right) \leq \psi\left(s^{3}\left(\frac{1}{s} d(z, g v)\right)\right. \\
& \leq \psi\left(s^{3} \limsup _{n \rightarrow \infty} d\left(f x_{2 n}, g v\right)\right) \\
& \leq \lim \sup _{n \rightarrow \infty} F\left(\psi\left(M_{s} d\left(x_{2 n}, v\right)\right), \phi\left(M_{s} d\left(x_{2 n}, v\right)\right)\right. \tag{2.2.32}
\end{align*}
$$

Now,
$M_{s}\left(x_{2 n}, v\right)=\max \left\{d\left(S x_{2 n}, T v\right), d\left(S x_{2 n}, f x_{2 n}\right), d(T v, g v), \frac{1}{2 s}\left[d\left(\left(S x_{2 n}, g v\right)+d\left(f x_{2 n}, T v\right)\right]\right\}\right.$.

Taking limit supremum as $n \rightarrow \infty$, using (2.2.24) and (2.2.28), we have

$$
\begin{align*}
\lim \sup _{n \rightarrow \infty} M_{s}\left(x_{2 n}, v\right) & =\max \left\{d(z, T v), 0, d(z, g v), \frac{1}{2 s}[d(z, g v)+d(z, g v)]\right\} \\
& =d(z, g v) . \tag{2.2.34}
\end{align*}
$$

Hence from (2.2.33) and (2.2.34), we have

$$
\begin{aligned}
& \psi(d(z, g v)) \leq F\left(\lim \sup _{n \rightarrow \infty} \psi\left(M_{s}\left(x_{2 n}, v\right)\right), \lim _{\sup }^{n \rightarrow \infty}\right. \\
& \leq F\left(\psi\left(M_{s}\left(x_{2 n}, v\right)\right)\right) \\
&\left.\leq \psi(z, g v)), \lim \sup _{n \rightarrow \infty} \phi\left(M_{s}\left(x_{2 n}, v\right)\right)\right) \\
&
\end{aligned}
$$

which implies that $\psi(d(z, g v))=0$ or $\left.\lim \sup _{n \rightarrow \infty} \phi\left(M_{s}\left(x_{2 n}, v\right)\right)\right)=0$.
In both cases we have $d(z, g v)=0$ Hence $z=g v$.
Thus, from (2.2.27) and (2.2.35), it follows that

$$
\begin{equation*}
f u=S u=g v=T v=z \tag{2.2.36}
\end{equation*}
$$

Hence
$C(f, S) \neq \phi$ and $C(g, T) \neq \phi$.
Case (ii): Suppose that $g X$ is closed. In this case $z \in g X$, since $g X \subseteq S X$, we have $z \in S X$ and hence we can choose $u \in X$ such that $z=S u$. Hence the proof follows. For the cases $T X$ and $f X$ closed, the proof runs in the same lines of case (i) and case $(i i)$.

Theorem 2.3. In addition to the hypotheses of Theorem 2.2, suppose
(i) (f, S) and (g, T) are weakly compatible and
(ii) $\alpha(S u) \geq 1$ and $\beta(T v) \geq 1$ whenever u and v are coincident points of (f, S) and (g, T) respectively.
Then f, g, T and S have a unique common fixed point in X.

Proof. In the light of Theorem 2.1, we have $z=f u=S u=T v=g v$. Since the pair (f, S) is weakly compatible, we have $f z=f S u=S f u=S z . z$ is a coincidence point of (f, S). In view of hypotheses $(i i)$, we have $\alpha(S z) \geq 1$ and $\beta(T v) \geq 1$ this implies $\alpha(S z) \beta(T v) \geq 1$. Now on using the inequality with $x=z$ and $y=v$, we have

$$
\begin{equation*}
\psi(d(f z, g v)) \leq \psi\left(s^{3} d(f z, g v)\right) \leq F\left(\psi\left(M_{s}(z, v)\right), \phi\left(M_{s}(z, v)\right)\right) \tag{2.3.1}
\end{equation*}
$$

Now

$$
\begin{align*}
M_{s}(z, v) & =\max \left\{d(S z, T v), d(f z, S z), d(T v, g v), \frac{1}{2 s}[d(S z, g v)+d(f z, T v)]\right\} \\
& =\max \left\{d(f z, g v), 0,0, \frac{1}{2 s}[d(S z, g v)+d(f z, g v)]\right\} \\
& =d(f z, g v) \tag{2.3.2}
\end{align*}
$$

Therefore from (2.3.1) and (2.3.2), we have
$\psi(d(f z, g v)) \leq F(\psi(d(f z, g v)), \phi(d(f z, g v))) \leq \psi(d(f z, g v))$,
this implies

$$
F(\psi(d(f z, g v)), \phi(d(f z, g v)))=\psi(d(f z, g v))
$$

which in turn implies $\psi(d(f z, g v))=0$ or $\phi(d(f z, g v))=0$, in either case we have $d(f z, g v)=$ 0. Hence

$$
\begin{equation*}
f z=S z=z \tag{2.3.3}
\end{equation*}
$$

Thus, z is a common fixed point of f and S.
Since (g, T) is weakly compatible, we have $T z=T g v=g T v=g z . z$ is a coincidence point of (T, g). Again by our hypotheses (ii) we have, $\alpha(S u) \geq 1$ and $\beta(T z) \geq 1$ this implies $\alpha(S u) \beta(T z) \geq 1$. Now on using the inequality (2.1.1) with $x=u$ and $y=z$, we have

$$
\begin{equation*}
\psi(d(f u, g z)) \leq \psi\left(s^{3} d(f u, g z)\right) \leq F\left(\psi\left(M_{s}(u, z)\right), \phi\left(M_{s}(u, z)\right)\right) \tag{2.3.4}
\end{equation*}
$$

Now

$$
\begin{aligned}
M_{s}(u, z) & =\max \left\{d(S u, T z), d(f u, S u), d(T z, g z), \frac{1}{2 s}[d(S u, g z)+d(f u, T z)]\right\} \\
& =\max \left\{d(z, g z), 0,0, \frac{1}{2 s}[d(S u, g z)+d(z, g z)]\right\} \\
& =d(z, g z)
\end{aligned}
$$

Therefore
$\psi(d(f u, g z)) \leq F(\psi(d(f u, g z)), \phi(d(f u, g z))) \leq \psi(d(f u, g z))$, this implies
$F(\psi(d(f u, g z)), \phi(d(f u, g z)))=\psi(d(f u, g z))$, which in turn implies $\psi(d(f u, g z))=0$ or $\phi(d(f u, g z))=0$, in either case we have $d(f u, g z)=0$. Hence

$$
\begin{equation*}
g z=T=z \tag{2.3.5}
\end{equation*}
$$

Thus, z is a common fixed point of T and g.
We now show that f, g, S and T have a unique common fixed point in X. Suppose that u and z are two fixed points of S, f, g and T. Hence

$$
\begin{equation*}
f z=T z=S z=g z=z \tag{2.3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f u=T u=g u=S u=u \tag{2.3.7}
\end{equation*}
$$

By the hypotheses, we have $\alpha(S u) \geq 1$ and $\beta(T z) \geq 1$ this implies

$$
\psi(d(f u, g z)) \leq \psi\left(s^{3} d(f u, g z)\right) \leq F\left(\psi\left(M_{s}(u, z), \phi\left(M_{s}(u, z)\right)\right)\right.
$$

Now,
$M_{s}(u, z)=\max \left\{d(S u, T z), d(f z, S z), d(T z, g z), \frac{1}{2 s}[d(S u, g z)+d(f u, T z)]\right\}$

$$
=\max \left\{d(u, z), 0,0, \frac{1}{2 s}[d(u, z)+d(u, z)]\right\}=d(u, z)
$$

Therefore $\psi(d(f u, g z)) \leq F(\psi(d(f u, g z)), \phi(d(f u, g z)) \leq \psi(d(f u, g z))$,
this implies $F(\psi(d(f u, g z)), \phi(d(f u, g z)))=\psi(d(f u, g z))$, which implies $\psi(d(f u, g z))=0$ or $\phi(d(f u, g z))=0$.

Hence $u=z$. Thus f, g, S, T have a unique common fixed point in X.
Theorem 2.4. Let A and B be two nonempty closed subsets of a b-metric space (X, d) such that $A \cap B \neq \phi$ and let $f, g: A \cup B \rightarrow A \cup B$ be mappings with $f A \subset B$ and $g B \subset A$. Assume that thereexist $\psi \in \Psi, \phi \in \Phi, F \in \mathcal{C}$ such that

$$
\begin{equation*}
\psi\left(s^{3} d(f x, g y)\right) \leq F\left(\psi\left(M_{s}(x, y), \phi\left(M_{s}(x, y)\right)\right) \text { for all } x \in A \text { and } y \in B\right. \tag{2.4.1}
\end{equation*}
$$

where $M_{s}(x, y)=\max \left\{d(x, y), d(f x, x), d(y, g y), \frac{1}{s} d(x, g y), \frac{1}{s} d(f x, y)\right\}$.
Then f and g have a unique common fixed point $u \in A \cap B$.
Proof. Let us define $\alpha, \beta: A \cup B \rightarrow R^{+}$by
$\alpha(x)=\left\{\begin{array}{ll}1 & \text { if } x \in A \\ 0 & \text { otherwise },\end{array} \quad\right.$ and $\beta(x)= \begin{cases}1 & \text { if } x \in B \\ 0 & \text { otherwise },\end{cases}$
For any $x, y \in A \cup B$ with $\alpha(x) \beta(y) \geq 1$, we have $\alpha(x)=1 \beta(y)=1$ and $x \in A, y \in B$. Hence, from (2.4.1), we have

$$
\psi(d(f x, g y)) \leq F\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right.
$$

for all $x \in A$ and $y \in B$. Suppose $x \in A \cup B$ with $\alpha(x) \geq 1$. Then $x \in A$ and $f x \in f A \subset B$ so that $\beta(f x) \geq 1$. Suppose that $y \in A \cup B$ with $\beta(y) \geq 1$. Then $y \in B$, so that $g y \in g B \subset A$ so that $\alpha(g y) \geq 1$. Therefore (f, g) is cyclic (α, β) admissible map. Since $A \cap B \neq \phi$, thereexist $x_{0} \in A \cap B$ such that $\alpha\left(x_{0}\right) \geq 1$ and $\beta\left(x_{0}\right) \geq 1$.

If $\left\{x_{n}\right\}$ is a sequence in $A \cup B$ such that $x_{n} \rightarrow x$ and $\alpha\left(x_{n}\right) \geq 1, \beta\left(x_{n}\right) \geq 1$ for all n, then $x_{n} \in A$ and $x_{n} \in B$. Since A and B are closed, $x \in A$ and $x \in B$ implies $\alpha(x) \geq 1$ and $\beta(x) \geq 1$. By choosing $S=T=I$ on X in Theorem 2.3, f and g satisfy the hypotheses of Theorem 2.3. Hence f and g have a unique common fixed point say u and clearly, $u \in A \cap B$.

3 Corollaries

Corollary 3.1. Let (X, d) be a complete b-metric space with $s \geq 1$. Suppose that $\alpha, \beta: X \rightarrow$ $[0, \infty)$ are two mappings. Let f, g, S and T be four seflmaps on X satisfying
(i) the pair (f, g) is cyclic (α, β) admissible mapping with respect to (S, T)
(ii) $\alpha(S x) \beta(T y) \geq 1 \Rightarrow \psi\left(s^{3} d(f x, g y)\right) \leq \psi(M(x, y))-\phi(M(x, y))$
for all $x, y \in X$, where $\psi \in \Psi, \phi \in \Phi$ and

$$
M(x, y)=\max \left\{d(S x, T y), d(f x, S x), d(g y, T y), \frac{d(S x, g y)+d(f x, T y)}{2}\right\}
$$

(iii) $f X \subseteq T X, g X \subseteq S X$
(iv) there exists $x_{0} \in X$ such that $\alpha\left(S x_{0}\right) \geq 1$ and $\beta\left(T x_{0}\right) \geq 1$.
(v) If $\left\{x_{n}\right\}$ is a sequence in X such that $x_{n} \rightarrow x$ and $\alpha\left(x_{n}\right) \geq 1$ and $\beta\left(x_{n}\right) \geq 1$ for all n, then $\alpha(x) \geq 1, \beta(x) \geq 1$.
(vi) one of the ranges $f X, g X, T X, S X$ is b-closed.
(vii) $\alpha(S u) \geq 1$ and $\beta(T v) \geq 1$ whenever u and v are coincidence points of (f, S) and (g, T) respectively.
Then f, g, T and S have a unique common fixed point in X provided (f, S) and (g, T) are weakly compatible on X.

Proof. Proof follows from Theorem 2.3 by choosing

$$
F(s, t)=\left\{\begin{array}{cc}
s-t & \text { if } s \geq t \\
0 & \text { otherwise }
\end{array}\right.
$$

Corollary 3.2. Let (X, d) be a complete b-metric space with $s \geq 1$. Suppose that f, g, S and T be four seflmaps on X satisfying
(i) $f X \subseteq T X, g X \subseteq S X$
(ii) $\psi\left(s^{3} d(f x, g y)\right) \leq F\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right)$
for all $x, y \in X$, where $\psi \in \Psi, \phi \in \Phi, F \in \mathcal{C}$ and

$$
M_{s}(x, y)=\max \left\{d(S x, T y), d(f x, S x), d(g y, T y), \frac{d(S x, g y)+d(f x, T y)}{2 s}\right\}
$$

(iii) one of the ranges $f X, g X, T X, S X$ is b-closed.

Then f, g, T and S have a unique common fixed point in X provided (f, S) and (g, T) are weakly compatible on X.

Proof. Proof follows by choosing $\alpha(x)=1$ and $\beta(x)=1$ for all $x \in X$ in Theorem 2.3.
Corollary 3.3. . Let (X, d) be a complete b-metric space. Suppose that $\alpha, \beta: X \rightarrow[0, \infty)$ are two mappings. Let f, g, S and T be four seflmaps on X satisfying:
(i) $f X \subseteq T X, g X \subseteq S X$
(ii) the pair (f, g) is cyclic (α, β) admissible mapping with respect to (S, T)
(iii) $\alpha(S x) \beta(T y) \psi\left(s^{3} d(f x, g y)\right) \leq F\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right)$ for all $x, y \in X$, where $\psi \in \Psi, \phi \in \Phi, F \in \mathcal{C}$ and

$$
M_{s}(x, y)=\max \left\{d(S x, T y), d(f x, S x), d(g y, T y), \frac{d(S x, g y)+d(f x, T y)}{2}\right\}
$$

(iv) there exists $x_{0} \in X$ such that $\alpha\left(S x_{0}\right) \geq 1$ and $\beta\left(T x_{0}\right) \geq 1$.
(v) If $\left\{x_{n}\right\}$ is a sequence in X such that $x_{n} \rightarrow x$ and $\alpha\left(x_{n}\right) \geq 1$ and $\beta\left(x_{n}\right) \geq 1$ for all n, then $\alpha(x) \geq 1, \beta(x) \geq 1$.
(vi) one of the ranges $f X, g X, T X, S X$ is b-closed.
(vii) $\alpha(S u) \geq 1$ and $\beta(T v) \geq 1$ whenever u and v are coincident points of (f, S) and (g, T) respectively.
Then f, g, T and S have a unique common fixed point in X provided (f, S) and (g, T) are weakly compatible on X.

Proof. Let $x, y \in X$ with $\alpha(S x) \beta(T y) \geq 1$. Then

$$
\psi\left(s^{3} d(f x, g y)\right) \leq \alpha(S x) \beta(T y) \psi\left(s^{3} d(f x, g y)\right) \leq F\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right)
$$

Hence the conclusion this theorem follows from Theorem 2.3.
Corollary 3.4. Let f, g, S and T be selfmaps of a complete metric space (X, d). Suppose that $f(X) \subseteq T(X), g(X) \subseteq S(X)$ and the pairs (f, S) and (g, T) are weakly compatible. If

$$
\begin{equation*}
\psi(d(f x, g y)) \leq \psi(M(x, y))-\phi(M(x, y)) \tag{3.4.1}
\end{equation*}
$$

for all $x, y \in X$, where $\psi \in \Psi, \phi \in \Phi$ and
$M(x, y)=\max \left\{d(S x, T y), d(f x, S x), d(g y, T y), \frac{d(S x, g y)+d(f x, T y)}{2}\right\}$
then f, g, S and T have a unique fixed point in X provided one of the ranges $f(X), g(X), S(X)$ and $T(X)$ is closed.

Proof. The proof of this corollary follows from Corollary 3.2 by choosing $s=1$ and

$$
F(s, t)=\left\{\begin{array}{cc}
s-t & \text { if } s \geq t \\
0 & \text { otherwise }
\end{array}\right.
$$

Remark 3.5. By choosing $f=g=T$ and $S=T=I$, where I is the identity map on R^{+}, Theorem 1.15 follows as a Corollary to Theorem 2.3.

Corollary 3.6. Suppose that f, g, S and T are self mappings on a complete b-metric space (X, d) with $s \geq 1$ such that:
(i) $f(X) \subseteq T(X), g(X) \subseteq S(X)$.
(ii) $s^{4} d(f x, g y) \leq \operatorname{qmax}\left\{d(S x, T y), d(f x, S x), d(g y, T y), \frac{1}{2 s}(d(S x, g y)+d(f x, T y))\right\}$, (3.6.1)
holds for each $x, y \in X$ with $0<q<1$, then f, g, S and T have a unique common fixed point in X provided that S and T are continuous and and pairs f, S and g, T are compatible.

Proof. Proof follows by choosing $\alpha(x)=1, \beta(x)=1$ for all $x \in X, \psi(t)=t, \phi(t)=1$, and $F(r, t)=\frac{q}{s} r$, where $s \in[0, \infty)$ and $0<k<1$ in Theorem 2.3.

4 Examples

Example 4.1. Let $X=[0,1]$ and we define $d: X \times X \rightarrow[0, \infty)$ by $d(x, y)=|x-y|^{2}$ for all $x, y \in X$. Then (X, d) is a complete b metric space with $s=2$. We define f, g, S and T on X by
$f(x)=\left\{\begin{array}{ll}\frac{x^{8}}{2^{8}} & \text { if } x \in\left[0, \frac{1}{2}\right] \\ \frac{1}{32} & \text { if } x \in\left(\frac{1}{2}, 1\right],\end{array}\right.$ and $g(x)=\left\{\begin{array}{cc}\frac{x^{4}}{2^{4}} & \text { if } x \in\left[0, \frac{1}{2}\right] \\ \frac{1}{16} & \text { if } x \in\left(\frac{1}{2}, 1\right],\end{array}\right.$
$S(x)=\left\{\begin{array}{cc}\frac{x^{2}}{4} & \text { if } x \in\left[0, \frac{1}{2}\right] \\ \frac{1}{6} & \text { if } x \in\left(\frac{1}{2}, 1\right],\end{array} \quad T(x)=\frac{x^{4}}{2^{4}}\right.$ for all $x \in[0,1]$.
Clearly, $f X=\left[0, \frac{1}{2^{8} \times 2^{8}}\right] \cup\left\{\frac{1}{32}\right\} \subseteq T X=\left[0, \frac{1}{2^{4}}\right]$ and $g X=\left[0, \frac{1}{2^{4} \times 2^{4}}\right] \cup\left\{\frac{1}{16}\right\} \subseteq\left[0, \frac{1}{2^{4}}\right]=S X$. Clearly, TX is closed.

Also, the pairs (f, S) and (g, T) are weakly compatible. We now define α, β on X by
$\alpha(x)=\left\{\begin{array}{cc}\frac{x+5}{4} & \text { if } x \in\left[0, \frac{1}{2}\right] \\ 0 & \text { otherwise },\end{array}\right.$ and $\beta(x)=\left\{\begin{array}{cc}e & \text { if } x \in\left[0, \frac{1}{2}\right] \\ 0 & \text { otherwise },\end{array}\right.$
We now prove that (f, g) is cyclic (α, β) admissible mapping with respect to (S, T), indeed if

$$
\alpha(S x) \geq 1 \Rightarrow x \in\left[0, \frac{1}{2}\right] \Rightarrow \beta(f x)=\frac{x^{8}}{2^{8}}=e \geq 1
$$

Similarly, if
$\beta(T x) \geq 1 \Rightarrow x \in\left[0, \frac{1}{2}\right] \Rightarrow \alpha(g x)=\alpha\left(\frac{x^{4}}{2^{4}}\right)=\frac{x^{4}}{2^{6}}+\frac{5}{4} \geq 1$.
Hence (f, g) is cyclic (α, β) admissible mapping with respect to (S, T). Also, at $x_{0}=0$, $\alpha\left(S x_{0}\right)=\alpha(0)=\frac{5}{4} \geq 1$ and $\beta\left(x_{0}\right)=\beta(0)=e \geq 1$. Next we will show that, (f, g) is a generalized TAC- (S, T) contractive map with $\psi(t)=t, \phi(t)=\frac{20}{32} t$ and $f(s, t)=\frac{s}{1+t}$, for all $s, t \in$ $[0, \infty)$. Clearly, $\phi \in \Phi$ and $\psi \in \Psi$. Now, if $\left\{x_{n}\right\}$ is a sequence in X such that $x_{n} \rightarrow x$, $\alpha\left(x_{n}\right) \geq 1$ and $\beta\left(x_{n}\right) \geq 1$ for all $n \in W$ then by the definition of α and β we have $x_{n} \in\left[0, \frac{1}{2}\right]$, therefore $\alpha(x) \geq 1, \beta(x) \geq 1$, hence we have
$\psi\left(s^{3} d(f x, g y)\right)=\left(2^{3}\left[\left(\frac{x^{8}}{2^{8}}\right)-\left(\frac{y^{4}}{2^{4}}\right)\right]^{2}\right)=\left(2^{3}\left[\left(\frac{x^{4}}{2^{4}}\right)^{2}-\left(\frac{y^{2}}{2^{2}}\right)^{2}\right]^{2}\right]$

$$
\begin{aligned}
& =\left(2^{3}\left[\left(\frac{x^{4}}{2^{4}}\right)^{2}+\left(\frac{y^{2}}{2^{2}}\right)^{2}\right]^{2}\left[\left(\frac{x^{4}}{2^{4}}\right)^{2}-\left(\left(\frac{y^{2}}{2^{2}}\right)^{2}\right]^{2}\right)\right. \\
& \leq\left(2^{3}\left[\frac{1}{2^{4}}+\frac{1}{2^{2}}\right]^{2} d(S x, T y)\right) \\
& =\frac{5}{2^{4}} d(S x, T y) \\
& \leq \frac{d(S x, T y)}{1+\frac{20}{32} d(S x, T y)} \\
\leq & \frac{M_{s}(x, y)}{1+\frac{20}{32} M_{s}(x, y)} \\
= & \frac{\psi\left(M_{s}(x, y)\right)}{1+\phi\left(M_{s}(x, y)\right)} \\
= & f\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right) .\right.
\end{aligned}
$$

Hence (f, g) is a generalized TAC- (S, T) contractive map. Hence f, g, S and T satisfy all the conditions of Theorem 2.3 and 0 is the unique common fixed point of S, T, f and g. Here we note that the with the usual distance, the condition (1.13.1) fails to hold when $x \in\left(\frac{1}{2}, 1\right]$ and $y=1$, for any $\phi \in \Phi$ and $\psi \in \Psi$, since

$$
\psi(d(f x, g y))=\psi\left(\frac{1}{16}\right) \neq \psi\left(M_{s}(x, y)\right)-\phi\left(M_{s}(x, y)\right)=\psi\left(\frac{1}{16}\right)-\phi\left(\frac{1}{16}\right)
$$

Hence Theorem 1.13 is not applicable.
Also, we observe that the inequality (1.17.1) fails to hold for any $q \in[0,1)$ since
$d(f x, g y)=\frac{1}{256}=\frac{q}{2^{4}} \frac{1}{256}$
$=\frac{q}{s^{4}} \max \left\{d(S x, T y), d(f x, S x), d(g y, T y), \frac{1}{2}(d(S x, g y)+d(f x, T y))\right\}$.
Hence Theorem 1.17 is not applicable.
Example 4.2. Let $X=\{1,2,3,4\}$. We write
$S_{1}=\{(1,1),(2,2),(3,3),(4,4)\}$
$S_{2}=\{(1,3),(3,1)\}$ and $S_{3}=\{(2,3),(3,2),(4,3),(3,4)\}$.
We define $d: X \times X \rightarrow R$ by
$d(x, y)=\left\{\begin{array}{c}0 \text { if }(x, y) \in S_{1} \\ 1 \text { if }(x, y) \in S_{2} \\ 32 \text { if }(x, y) \in S_{3} \\ 16 \text { otherwise }\end{array}\right.$
Then (X, d) is a complete b-metric space with $s=2$. Let $A=\{1,2,3\}$ and $B=\{1,2,3,4\}$. We define $f, g: A \cup B \rightarrow R^{+}$by $f 1=1, f 2=3, f 3=1, f 4=2 g 1=1, g 2=3, g 3=$ $1, g 4=3$. Clearly, $f A=f(\{1,2,3\})=\{1,2,3\} \subseteq B$ and $g B=(\{1,2,3,4\})=\{1,3\} \subseteq A$, $A \cap B=\{1,2,3\} \neq \phi$. We define $\psi, \phi:[0, \infty) \rightarrow[0, \infty)$ by $\psi(t)=t, \phi(t)=\frac{t}{16}, t \geq 0$ and $F:[0, \infty)^{2} \rightarrow R$ by $F(a, t)=\frac{a}{1+t}$. Now we verify the inequality (2.4.1).
Case(i): If $(x, y) \in\{(1,1),(1,3),(2,2),(2,4),(3,1),(3,3)\}$. Then

$$
\psi(8 d(f x, g y))=0 \leq F\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right)
$$

Case(ii): If $(x, y)=\{(1,2),(1,4),(2,1),(2,3),(3,2),(3,4)\}$. Then

$$
\psi(8 d(f x, g y))=8 \leq \frac{32}{3}=F\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right) .
$$

Also, 1 is the unique fixed point of f and g.
Example 4.3. Let $X=\{1,2,3,4\}$. We write $\mathrm{A}=\{(1,3),(3,1)\}, B=\{(1,2),(2,1)\}, C=$ $\{(2,3),(3,2)\} \quad D=\{(1,4),(4,1)\}$ and
$E=\{(3,4),(4,3),(2,4),(4,2)\}$. We define $d: X \times X \rightarrow R$ by
$d(x, y)=\left\{\begin{array}{c}0 \text { if } x=y \\ 1 \text { if }(x, y) \in A \\ 5 \text { if }(x, y) \in B \\ 11 \text { if }(x, y) \in C \\ 48 \text { if }(x, y) \in D \\ 96 \text { if }(x, y) \in E .\end{array}\right.$
Then (X, d) is a complete b-metric space with $s=2$. We now define f, g, S and T on X by $f 1=1, f 2=1, f 3=1, f 4=2, g 1=1, g 2=3, g 3=1, g 4=3$,
$S 1=1, S 2=3, S 3=2, S 4=4$ and $T 1=1, T 2=2, T 3=4, T 4=4$. Clearly, $f X=\{1,2\} \subseteq$ $T X=\{1,2,4\} g X=\{1,3\} \subseteq S X=\{1,2,3,4\}$.

We define $\alpha, \beta:[0, \infty) \rightarrow[0, \infty)$ by $\alpha(x)=1$ and $\beta(x)=1, \psi:[0, \infty) \rightarrow[0, \infty)$ by $\psi(t)=t \phi:[0, \infty) \rightarrow[0, \infty)$ by $\phi(t)=\frac{t}{16}, t \geq 0$ and $F:[0, \infty)^{2} \rightarrow R$ by

$$
F(s, t)=\left\{\begin{array}{cc}
s-t \quad & \text { if } s \geq t \\
0 & \text { ifotherwise }
\end{array}\right.
$$

Now we verify the inequality (2.1.1)
Case(i): If $(x, y) \in\{(1,1),(1,3),(2,1),(2,3),(3,1),(3,3)\}$. Then

$$
\psi\left(s^{3} d(f x, g y)\right)=0 \leq F\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right)
$$

Case(ii): If $(x, y)=\{(1,2),(2,2),(3,2)\}$. Then

$$
\psi\left(s^{3} d(f x, g y)\right)=8 \leq 11-\frac{11}{16}=10.3=F\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right)
$$

Case(iii): If $(x, y)=\{(2,4),(1,4),(3,4)\}$. Then

$$
\psi\left(s^{3} d(f x, g y)\right)=8 \leq 96-\frac{96}{16}=90=f\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right)
$$

Case(iv): If $(x, y)=\{(4,2),(4,4)\}$. Then

$$
\psi\left(s^{3} d(f x, g y)\right)=88 \leq 96-\frac{96}{16}=90=F\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right)
$$

Case(v): If $(x, y)=\{(4,1),(4,3)\}$. Then

$$
\psi\left(s^{3} d(f x, g y)\right)=40 \leq 96-\frac{96}{16}=90=F\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right)
$$

Here we observe that with the usual distance the inequality (1.13.1) fails to hold at $x=3$ and $y=2$ for any $\phi \in \Phi$ and $\psi \in \Psi$ since

$$
d(f x, g y)=2 \neq \psi\left(M_{s}(x, y)\right)-\phi\left(M_{s}(x, y)\right)=1
$$

Hence Theorem 1.13 is not applicable.

Also, the inequality (1.17.1) fails to hold at $x=3$ and $y=2$ for any $q<1$ since

$$
d(f x, g y)=1>\frac{q}{2^{4}}\left(M_{s}(x, y)\right)=\frac{11}{16} .
$$

Hence Theorem 1.17 is not applicable.

References

[1] Abbas, M., and Doric D., Common fixed point theorem for four mappings satisfying generalized weak contractive condition, Filomat 24(2010), 1-10.
[2] Abbas,M., Imran Zulfiqar Chemac, Abdolrahman Razanid, Existence of Common Fixed Point for b-Metric Rational Type Contraction, Filomat 30 (2016), 1413-1429.
[3] Aghajani, A. Abbas,M. and Roshan, J. R., Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca 64(2014), 941-960.
[4] Alber, Ya. I, Guerre-Delabriere, S., Principle of weakly contractive maps in Hilbert spaces, New results in operator theory and its applications, Oper. Theory Adv. Appl., 98(1997), 7-22.
[5] Alizadeh S., Moradlou, F., and Salimi, P., Some fixed point results for $(\alpha, \beta)-(\psi, \phi)$-contractive mappings, Filomat, 28(2014),635-647.
[6] Ansari. A. H., Note on (ψ, ϕ)-contractive type mappings and related fixed points, 2nd Regional Conference on Mathematics and Applications, Payame Noor University, Tehran, 2014, 377-380
[7] Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26 -37.
[8] Babu, G. V. R., and Dula, T. M., Common fixed points of generalized tac-rational contractive mappings in α-complete metric spaces, Journal of the international mathematical virtual institute, 6(2016), 87-102.
[9] Babu G. V. R ., and Dula, T. M., Fixed points of generalized TAC-contractive mappings in b-metric spaces, Matematiicki vesni 69 (2017), 75-88.
[10] Boriceanu, M., Bota,M., and Petrusel, A., Mutivalued fractals in b-metric spaces, Cent. Eur. J. Math, 8 (2010), 367-377.
[11] Czerwik, S., Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra., 1 (1993) 511.
[12] Chandok,S., Tas, K., Ansari, A. H., Some fixed point results for TAC-type contractive mappings, J. Function Spaces, 2016, Article ID 1907676, 6 pages.
[13] Doric , D., Common fixed point for generalized (ψ, ϕ))-weak contractions, Appl. Math. Lett., 22 (2009) 1896-1900.
[14] Dutta, P. N., Choudhury, B. S., A generalization of contraction principle in metric spaces, Fixed Point Theory Appl., 2008, Article ID 406368, 8 pages.
[15] Fadail, Z. M., Ahmad, A. G. B., Ansari, A. H., Radenovic,S., Rajovic,M., Some common fixed point results of mappings in σ--complete metric-like spaces via new function, Appl. Math. Sci., 9 (2015), 4109-4127.
[16] Han, B. T. N., and Hieu,N. T., fixed point theorem for generalized cyclic contractive mappings in b-metric spaces, Facta universitatis, ser. math. inform., 31(2016), 399-415.
[17] Hussain, N., Isik H., and Abbas, M., Common fixed point results of generalized almost ra- tional contraction mappings with an application, The Journal of Nonlinear Science and Applications(JNSA), 9(2016), 2273-2288.
[18] Kirk,W. A., Srinivasan, P. S., and Veeramani, P., Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory and Appl., 4 (2003), no. 1, 79-89.
[19] Latif, A., Al-Mezel, Fixed point results in quasi-metric spaces, Fixed point theory and Appl., 2011(2011), 8 pages.
[20] Roshan J. R., Shobkolaei, N. , Sedghi S., and Abbas, M., Common fixed point of four maps in b-metric spaces, Hacettepe J. of Math. and Stat. 43 (2014), 613-624
[21] Rano, G., and Beg T., Quasimetric space and fixed point theorems, Internat. J. of Math. and Scientific Computing, 3 (2013),
[22] Rhoades, B. E., Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683-2693.
[23] Shukla, S., Radenović and S. Rajić, V. Ć., Some common fixed point theorems in 0- σ complete metric-like spaces Vietnam J. Math., 41 (2013), 341-352.
[24] Zhu, C.X., Chen, C.F., and Zhang, X., Some results in quasi-b-metric-like spaces, J. Inequal. Appl., 2014 (2014)
[25] Zoto,K., Hoxha,E., and Isufati, A., Fixed point theorems for cyclic contraction in dislocated metric spaces, Adv. Research in Scientific Areas, December, 2013, 2-6.
[26] Zoto, K., Kumari,P. S., and Hoxha, E., Some fixed point theorems and cyclic contractions in dislocated and dislocated quasi-metric spaces, Amer. J. Num. Anal., 2 (2014) 79-84.

Author information

K. P. R. Sastry, M. V. R. Kameswari and D. M. K. Kiran, K. P. R. Sastry, D.No. 8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatnam-530 017, India.
M. V. R. Kameswari, Department of Engineering Mathematics, GIT, GITAM University newline Visakhapatm-530 045, India,.
E-mail: mvrkameswari@gmail.com
D. M. K. Kiran, Department of Engineering Mathematics, Vizag Institute of Technology, Affiliated to JNTUK, Visakhapatnam- 531162

Received: December 27, 2017.
Accepted: May 27, 2018.

