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Abstract. In this paper we obtain common fixed point theorems for four self maps using
generalized TAC contractive condition in b-metric spaces. These results generalize the results
of Abbas and Doric[1], Roshan , Shobkolaei , Sedghi and Abbas[20] and extend the results of
Babu and Dula[9] to four mappings. To support our results some illustrative examples are also
furnished

1 Introduction

Now a days there are too many generalizations of metric spaces like b- metric spaces, quasi-
metric space, quasi-b-metric space, dislocated metric space (or metric-like space), dislocated b-
metric space (or b-metric-like space), dislocated quasi-metric space (or quasi- metric-like space),
dislocated quasi-b-metric space (or quasi-b-metric-like space). For instance, we refe[2,7,13,16,
18-21, 23-26].

In 1997, Alber and Guerre-Delabrere[4] proved that a weakly contractive map defined on
a Hilbert space is a Picard operator. Rhoades[22] extended this result considering the domain
of the mapping a complete metric space. Dutta and Choudhury[14] introduced (ψ,ϕ)-weakly
contractive maps and proved fixed point theorems in complete metric spaces. In continuation , in
2010 Abbas and Doric[1] proved a common fixed point theorem for four maps for a generalized
(ψ,ϕ)-weakly contractive map. Recently, Chandok, Tas and Ansari[12] introduced the concept
of TAC- contractions and proved some fixed point theorems in the setting of metric spaces. In
sequel, Babu and Dula[9] extended this result to b-metric spaces.

We start by recalling some definitions and properties of b-metric spaces and well known
results.

Definition 1.1. [11] Let X be a non-empty set and s ≥ 1 be a real number. A function
d : X ×X → [0,∞) is called a b-metric on X if it satisfies the following conditions:

(1) d(x, y)=0 if and only if x = y.

(2) d(x, y) = d(y, x) for all x, y ∈ X .

(3) d(x, y) ≤ s[d(x, z) + d(z, y)], for all x, y, z ∈ X.

Then the order pair (X, d) is said to be a b- metric space with s ≥ 1.

Here we note that the class of b-metric spaces is larger class than the class of metric spaces,
since (X, d) is a metric space when s = 1.

In the following we give examples of b-metric which are not metric spaces.

Example 1.2. Let X = R2 and we define d : X ×X → R by d(x, y) = |x1 − y1|2 + |x2 − y2|2
for all x = (x1, x2), y = (y1, y2) ∈ X . Then (X, d) is a b-metric space with s = 3.
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Example 1.3. Let X = {0, 1, 2}. Define d : X × X → R by d(x, x) = 0 for all x ∈ X ,
d(0, 1) = d(1, 0) = 1, d(1, 2) = d(2, 1) = 2, d(0, 2) = d(2, 0) = 6. Then clearly, d is a b-metric
space with s = 2. But, (X, d) is not a metric space. For, let x = 0, y = 2, z = 1 then

d(0, 2) = 6 > d(0, 1) + d(1, 2) = 1 + 2.

Hence (X, d) is not a metric space.

Definition 1.4. [11] Let (X, d) be b-metric space.

(i) A sequence {xn} in X is called b-convergent if there exists x ∈ X such that
limn→∞ d(xn, x) = 0. In this we write limn→∞ xn = x.

(ii) A sequence {xn} in X is called b-Cauchy if limn,m→∞ d(xn, xm) = 0.

(iii) The b-metric space (X, d) is said to be b-complete if every b-Cauchy sequence in X is
b-convergent.

(iv) A set B ⊆ X is said to be b-closed if for any sequence {xn} in B such that {xn}
is b-convergent to z ∈ X , we have z ∈ B.

Proposition 1.5. [11] In a b-metric space (X, d) the following assertions hold:

(i) a b-convergent sequence has a unique limit

(ii) each b-convergent sequence is b-Cauchy

(iii) in general, a b-metric need not be continuous.

Lemma 1.6. [3] Let (X, d) be a b-metric space and limn→∞ xn = x, limn→∞ yn = y. Then

(i) 1
s2 d(x, y) ≤ lim infn→∞ d(xn, yn) ≤ lim supn→∞ d(xn, yn) ≤ s2d(x, y).
In particular, if x = y then limn→∞ d(xn, yn) = 0.

(ii) For each x ∈ X
1
sd(x, z) ≤ lim infn→∞ d(xn, z) ≤ lim supn→∞ d(xn, z) ≤ sd(x, z).

Lemma 1.7. [16] Let (X, d) be a b-metric space with s ≥ 1 and {xn} be a sequence in (X, d).
Then the following are equivalent.

(i) {xn} is a b-Cauchy sequence in (X, d)

(ii) {x2n} is a b-Cacuchy sequence in (X, d) and limn→∞ d(xn, xn+1) = 0.

Definition 1.8. [16] Let A and B be nonempty subsets of X . A mapping f : A ∪B → A ∪B is
said to be cyclic if f(A) ⊂ B and f(B) ⊂ A.

Definition 1.9. [5] Let X be a nonempty set, f be a selfmap of X and α, β : X → [0,∞) be two
mappings. We say that f is a cyclic (α, β)-admissible mapping if

(i) for any x ∈ X with α(x) ≥ 1⇒ β(fx) ≥ 1, and

(ii) for any y ∈ X with β(y) ≥ 1⇒ α(fy) ≥ 1.

In 2016, Hussain , Isik and Abbas[17] extended the definition of cyclic (α, β)-admissible map-
ping two pair of maps as follows.

Definition 1.10. Let f, g, S and T be selfmaps of a nonempty set X and α, β : X → R+. Then
the pair (f, g) is called cyclic (α, β)-admissible with respect to (S, T ) (briefly, (f, g) is cyclic
(α, β) (S,T)-admissible pair) if

(i) α(Sx) ≥ 1 for some x ∈ X implies β(fx) ≥ 1,

(ii) β(Tx) ≥ 1 for some x ∈ X implies α(gx) ≥ 1.

If we take S = T = IX(identity mapping on X) and f = g, then Definition 1.10 reduces to
Definition 1.9.

Recently, Ansari [6] defined the concept of C-class functions in the following.
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Definition 1.11. [6] A mapping F : R+XR+ → R+ is called C-class function if it is continuous
and satisfies following conditions:

(1) F (s, t) ≤ s;

(2) F (s, t) = s implies that either s = 0 or t = 0 for all s, t ∈ R+.

Here we note that F (0, 0) = 0.

We denote the set of C-class functions as C.

Example 1.12. [6] The following functions F : R+XR+ → R+ are elements of C, for all
s, t ∈ R+ :

(1)F (s, t) =


s− t if s ≥ t

0 otherwise

(2) F (s, t) = ks for 0 < k < 1, if F (s, t) = s then s = 0;

(3) F (s, t) = k
r s for 0 < k < 1 and r ∈ (1,∞) if F (s, t) = s then s = 0;

(4) F (s, t) = s
1+t then if F (s, t) = s then either s = 0 or t = 0.

For more literature on C class functions we refer [8, 15].

Notation: Throught this paper we denote:

Ψ = {ψ : [0,∞)→ [0,∞)|ψ is continuous, nondecreasing and ψ−1(0) = 0},

Φ = {φ : [0,∞)→ [0,∞)| limn→∞ φ(tn)→ 0⇒ limn→∞ tn = 0},

Here we observe that if φ ∈ Φ, then t = 0 implies φ(t) = 0

Φ1 = {φ : [0,∞)→ [0,∞)|φ is lower semicontinuous, φ(t) > 0 for all t > 0, φ(0) = 0} ,

C(f, g) : set of all common fixed points of f and g and W = {0, 1, 2, 3, .....}.

The following theorem was proved by Abbas and Doric[1] in complete metric spaces.

Theorem 1.13. [1] Let f, g, S and T be selfmaps of a complete metric space (X, d) . Suppose
that f(X) ⊆ T (X), g(X) ⊆ S(X) and the pairs {f, S} and {g, T} are weakly compatible. If

ψ(d(fx, gy)) ≤ ψ(M(x, y))− φ(M(x, y)) (1.13.1)

for all x, y ∈ X , where ψ ∈ Ψ, φ ∈ Φ1 and

M(x, y) = max{d(Sx, Ty), d(fx, Sx), d(gy, Ty), d(Sx,gy)+d(fx,Ty)2 }

then f, g, S and T have a unique fixed point in X provided one of the ranges f(X), g(X), S(X)
and T (X) is closed.

The following TAC type contractive definition is due to Chandok and Ansari[12].

Definition 1.14. [12] Let (X, d) be a metric space and let α, β : X → [0,∞) be two given
mappings. We say that T : X → X is a TAC-contractive mapping if for all x, y ∈ X with

α(x)β(y) ≥ 1⇒ ψ(d(Tx, Ty)) ≤ F (ψ(d(x, y), φ(d(x, y))) (1.14.1)

where ψ ∈ Ψ, φ ∈ Φ and F ∈ C.

Recently, Babu and Dula [9] introduced the notion of generalized TAC-contractive map in
b-metric space setting and proved fixed point theorems.
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Definition 1.15. [9] Let (X, d) be a b- metric space and let α, β : X → [0,∞) be two mappings.
We say that T : X → X is a generalized TAC-contractive map if there exist ψ ∈ Ψ, φ ∈ Φ and
F ∈ C such that for all x, y ∈ X with

α(x)β(y) ≥ 1⇒ ψ(s3d(Tx, Ty)) ≤ F (ψ(Ms(x, y), φ(Ms(x, y)), (1.15.1)

where Ms(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Tx)+d(y,Ty)2s }.

Babu and Dula[9] established the following result.

Theorem 1.16. [9] Let (X, d) be a complete b-metric space with coefficient s ≥ 1. Let T : X →
X be a seflmap of X . Assume that there exist two mappings α, β : X → [0,∞), ψ ∈ Ψ, φ ∈ Φ

and F ∈ C such that T is a generalized TAC-contractive mapping. Further, suppose that there
exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1, T is a cyclic (α, β)- admissible mapping and
either of the following conditions hold:

(i) T is continuous,

(ii) if {xn} is a sequence in X such that xn → z α(xn) > 1 and β(xn) > 1
for all n, then α(z) ≥ 1 and β(z) ≥ 1.

Then T has a fixed point in X . Moreover, if α(u) ≥ 1 and β(u) ≥ 1 whenever Tu = u. Then
T has a unique fixed point in X .

The following theorem was proved by Roshan, Shobkolaei, Sedghi and Abbas[20].

Theorem 1.17. [20] Suppose that f , g, S and T are self mappings on a complete b-metric space
(X, d) with s ≥ 1 such that:

(i) f(X) ⊆ T (X), g(X) ⊆ S(X).

(ii) d(fx, gy) ≤ q

s4max{d(Sx, Ty), d(fx, Sx), d(gy, Ty),
1
2
(d(Sx, gy) + d(fx, Ty))},

(1.17.1)
holds for each x, y ∈ X with 0 < q < 1. Then f, g, S and T have a unique common fixed point
in X provided that S and T are continuous and pairs (f, S) and (g, T ) are compatible.

The aim of the paper is to extend Theorem 1.16 to four mappings and generalize Theorem
1.13 and Theorem 1.17. To support our results examples are also furnished.

2 Fixed point theorems for generalized TAC-contractive map for four
selfmaps

In this section, first we define a generalized TAC-contractive map for four selfmaps.

Definition 2.1. Let (X, d) be a b- metric space with coefficient s ≥ 1. Let α, β : X → [0,∞) be
two given maps and f, g, S and T be four seflmaps on X . Suppose there exist ψ ∈ Ψ, φ ∈ Φ and
F ∈ C such that for all x, y ∈ X with

α(Sx)β(Ty) ≥ 1⇒ ψ(s3d(fx, gy)) ≤ F (ψ(Ms(x, y)), φ(Ms(x, y))), (2.1.1)

where Ms(x, y) = max{d(Sx, Ty), d(fx, Sx), d(Ty, gy), d(Sx,gy)+d(fx,Ty)2s }.

Then the pair (f, g) is said to be generalized TAC-(S, T ) contractive map in b- metric spaces.

Here we note that if we choose f = g and S = T = I , the identity map on X then Definition
2.1 reduces to Definition 1.15.

Theorem 2.2. Let (X, d) be a complete b- metric space with coefficient s ≥ 1 and f, g, S and T
be four seflmaps on X . Assume that there exist two mappings α, β : X → [0,∞), ψ ∈ Ψ, φ ∈ Φ

and F ∈ C such that (f, g) is a generalized TAC-(S, T ) contractive mapping with respect to F .
Assume that:
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(i) fX ⊆ TX and gX ⊆ SX

(ii) there exists x0 ∈ X such that α(Sx0) ≥ 1 and β(Tx0) ≥ 1.

(iii) If {xn} is a sequence in X such that xn → x, α(xn) ≥ 1 and β(xn) ≥ 1 for all n,
then α(x) ≥ 1, β(x) ≥ 1.

(iv) one of the ranges fX, gX, TX, SX is b-closed .

Then C(f, S) 6= φ and C(g, T ) 6= φ.

Proof. Let x0 ∈ X as in (ii). By condition (i), we define a sequence {yn} ∈ X by

y2n = fx2n = Tx2n+1 and y2n+1 = Sx2n+2 = gx2n+1. (2.2.1)

First we show that {yn} is a Cauchy sequence in X .

Since α(Sx0) ≥ 1 and (f, g) is cyclic (α, β) -admissible with respect to (S, T ), we have
β(fx0) ≥ 1⇒ β(Tx1) ≥ 1 , α(gx1) ≥ 1 and β(Sx2) ≥ 1.

On continuing this process, we have

α(Sx2n) ≥ 1 and β(Tx2n+1) ≥ 1 for all n ∈W. (2.2.2)

Similarly, β(Tx0) ≥ 1, we have

β(Tx2n) ≥ 1 and α(Sx2n+1) ≥ 1 for all n ∈W. (2.2.3)

Thus from (2.2.2) and (2.2.3), we have

α(Sxn) ≥ 1 and β(Txn) ≥ 1 for all n ∈W. (2.2.4)

.

If y2n = y2n+1 for some n ∈W then we have

Ms(x2n+2, x2n+1) = max{d(Sx2n+2, Tx2n+1), d(fx2n+2, Sx2n+2), d(Tx2n+1, gx2n+1),

1
2s [d(Sx2n+2, gx2n+1) + d(fx2n+2, Tx2n+1)]}

= max{d(y2n+1, y2n), d(y2n+2, y2n+1), d(y2n+1, y2n),
1

2sd(y2n+2, y2n)}

≤ max {d(y2n+1, y2n), d(y2n+2, y2n),

s
2s [d(y2n+1, y2n) + d(y2n+1, y2n+2)]}

≤ max{d(y2n+1, y2n), d(y2n+1, y2n+2)} .

Therefore Ms(x2n+2, x2n+1) = d(y2n+1, y2n+2).

Now from (2.1.1) and (2.2.4), we have

ψ(d(y2n+1, y2n+2)) ≤ ψ(s3d(y2n+1, y2n+2)) = ψ(s3d(fx2n+2, gx2n+1))

≤ F (ψ(Ms(x2n+2, x2n+1)), φ(Ms(x2n+2, x2n+1)))

≤ F (ψ(d(y2n+2, y2n+1)), φ(d(y2n+2, y2n+1)))

= ψ(d(y2n+2, y2n+1))

which implies F (ψ(d(y2n+2, y2n+1)), φ(d(y2n+2, y2n+1))) = ψ(d(y2n+2, y2n+1)).

Due to the property of F , we have ψ(d(y2n+2, y2n+1)) = 0 or
φ(d(y2n+2, y2n+1)) = 0, in any case d(y2n+1, y2n+2) = 0 this implies y2n+1 = y2n = y2n+2. On
continuing this process we can prove that
y2n = y2n+1 = y2n+2 = y2n+3 = .... . Thus y2n+1 = y2n for all n ∈ W . Thus {yk}k≥2n
is a constant sequence hence it is convergent. Hence without loss of generality, assume that
y2n 6= y2n+1 for all n ∈W . First, we show that limn→∞ d(yn, yn+1) = 0.

In view of condition (2.2.4), we have α(Sx2n) ≥ 1 and β(Tx2n+1) ≥ 1 implies
α(Sx2n)β(Tx2n+1) ≥ 1 for all n ∈W .
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Now on using inequality (2.1.1) with x = x2n, y = x2n+1, we have

ψ((d(y2n, y2n+1)) ≤ ψ(s3d(fx2n, gx2n+1)) ≤ F (ψ(Ms(x2n, x2n+1)), φ(Ms(x2n, x2n+1))). (2.2.5)

Now, Ms(x2n, x2n+1) = max{d(Sx2n, Tx2n+1), d(fx2n, Sx2n), d(Tx2n+1, gx2n+1),
1

2s [d(Sx2n, gx2n+1) + d(fx2n, Tx2n+1)]}

= max{d(y2n, y2n−1), d(y2n, y2n+1),
1

2sd(y2n−1, y2n+1)}

≤ max{d(y2n, y2n−1), d(y2n, y2n+1)}. (2.2.6)

If d(y2n, y2n+1) > d(y2n, y2n−1) then from (2.2.6), we have

ψ((d(y2n, y2n+1)) ≤ F (ψ(d(y2n, y2n+1), φ(d(y2n, y2n+1)) ≤ ψ((d(y2n, y2n+1)). (2.2.7)

Hence F (ψ(d(y2n, y2n+1), φ(d(y2n, y2n+1)) = ψ((d(y2n, y2n+1)).

Owing to the property of F , we have ψ(d(y2n, y2n+1)) = 0 or φ(d(y2n, y2n+1)) = 0. In any
case we have y2n = y2n+1, a contradiction to our assumption. Hence

d(y2n, y2n+1) < d(y2n, y2n−1) for all n ∈W. (2.2.8)

Therefore {d(y2n, y2n+1)} is a decreasing sequence of reals and hence it converges to r ≥ 0.
Suppose that r > 0. From (2.2.7), we have

ψ(d(y2n, y2n+1)) ≤ F (ψ(d(y2n, y2n+1)), φ(d(y2n, y2n+1))).

On letting n→∞, using continuity of ψ and F , we have

ψ(r) ≤ F (ψ(r), limn→∞φ(d(y2n, y2n+1)) ≤ ψ(r)

which implies F (ψ(r), limn→∞φ((d(y2n, y2n+1)) = ψ(r). Thus, by the property of F , we have
ψ(r) = 0 or limn→∞φ(d(y2n, y2n+1)) = 0, this implies r = 0. Hence

limn→∞d(yn, yn+1) = 0. (2.2.9)

We now show that {y2n} is a b-Cauchy sequence . If {y2n} is not a b-Cauchy sequence then
by lemma 1.7 , there exist ε > 0, and subsequences {y2m(k)}, {y2n(k)} of {y2n} where m(k) is
smallest integer such that m(k) > n(k) ≥ k and

d(y2m(k), y2n(k)) ≥ ε and d(y2m(k)−2, y2n(k)) < ε. (2.2.10)

Now from (2.2.10), we have

ε ≤ d(y2m(k), y2n(k))

≤ sd(y2m(k), y2m(k)−2) + sd(y2m(k)−2, y2n(k))

< s2d(y2m(k), y2m(k)−1) + s2d(y2m(k)−1, y2m(k)−2) + sε.

Taking upper limit as k →∞, using (2.2.9), we get

ε ≤ lim sup
k→∞

d(y2m(k), y2n(k)) ≤ sε. (2.2.11)

Again,

d(y2m(k), y2n(k)+1) ≤ sd(y2m(k), y2n(k)) + sd(y2n(k)+1, y2n(k)).

Taking upper limit as k →∞, using (2.2.9) and (2.2.11), we get

lim sup
k→∞

d(y2m(k), y2n(k)+1) ≤ s2ε. (2.2.12)

Also, we have

ε ≤ d(y2m(k), y2n(k)) ≤ sd(y2m(k), y2n(k)+1) + sd(y2n(k)+1, y2n(k)).

Taking the upper limit as k →∞ and using (2.2.9), we have

ε

s
≤ lim sup

k→∞
d(y2m(k), y2n(k)+1). (2.2.13)
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Hence, from (2.2.12) and (2.2.13), it follows that

ε

s
≤ lim sup

k→∞
d(y2m(k), y2n(k)+1) ≤ s2ε. (2.2.14)

We also have

d(y2m(k)−1, y2n(k)) ≤ sd(y2m(k)−1, y2m(k)) + sd(y2m(k), y2n(k)).

On taking upper limit as k →∞ using (2.2.9) and (2.2.11), we get

lim supk→∞ d(y2m(k), y2n(k)−1) ≤ s2ε. (2.2.15)

Also, we have

ε ≤ d(y2m(k), y2n(k)) ≤ sd(y2m(k), y2m(k)−1) + sd(y2m(k)−1, y2n(k)).

On taking the upper limit as k →∞ and using (2.2.9), we have

ε

s
≤ lim sup

k→∞
d(y2m(k)−1, y2n(k)). (2.2.16)

Now, on combining (2.2.15) and (2.2.16), we have

ε

s
≤ lim sup

k→∞
d(y2m(k)−1, y2n(k)) ≤ s2ε. (2.2.17)

In view of triangle inequality, we have

d(y2n(k)+1, y2m(k)−1) ≤ s[d(y2n(k)+1, y2n(k)) + d(y2n(k), y2m(k)−1)]

≤ s[d(y2n(k)+1, y2n(k)) + sd(y2n(k), y2m(k)) + sd(y2m(k), y2m(k)−1)].

Letting upper limit as k →∞, using (2.2.9) and (2.2.11), we get

lim sup
k→∞

d(y2n(k)+1, y2m(k)−1) ≤ s3ε. (2.2.18)

Again,
ε ≤ d(y2m(k), y2n(k)) ≤ sd(y2m(k), y2m(k)−1) + sd(y2m(k)−1, y2n(k))

≤ sd(y2m(k), y2m(k)−1) + s2d(y2m(k)−1, y2n(k)+1) + s2d(y2n(k)+1, y2n(k)).

Taking the upper limit as k →∞ and using (2.2.9) and (2.2.13), we get

ε

s2 ≤ lim sup
k→∞

d(y2m(k)−1, y2n(k)+1). (2.2.19)

Thus, from (2.2.20) and (2.2.21), we get

ε

s2 ≤ lim sup
k→∞

d(y2m(k)−1, y2n(k)+1) ≤ s3ε. (2.2.20)

From the condition (2.2.4),we have α(Sx2m(k)) ≥ 1 and β(Tx2n(k)+1) ≥ 1, thus

α(Sx2m(k))β(Tx2n(k)+1) ≥ 1, therefore from (2.1.1) , we have

ψ(s3d(y2m(k), y2n(k)+1)) = ψ(s3d(fx2m(k), gx2n(k)+1))

≤ F (ψ(Ms(x2m(k), x2n(k)+1)), φ(Ms(x2m(k), x2n(k)+1))), (2.2.21)
where
Ms(x2m(k), x2n(k)+1) = max{d(y2m(k)−1, y2n(k)), d(y2m(k)−1, y2m(k)),

d(y2n(k), y2n(k)+1),
1

2s [d(y2m(k)−1, y2n(k)+1) + d(y2m(k), y2n(k))]}. (2.2.22)

Letting limit supremum as k →∞ and using (2.2.11), (2.2.17) and (2.2.20), we have

lim sup
k→∞

Ms(x2m(k), x2n(k)+1) ≤ max{s2ε,
1
2s

(s3ε+ sε)} = s2ε. (2.2.23)
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Now from in (2.2.21), using (2.2.14) and (2.2.23), we have

ψ(s2ε) = ψ(s3 ε
s) ≤ ψ(s

3limsupk→∞d(y2m(k), y2n(k)+1))

≤ F (ψ(lim supk→∞Ms(x2m(k), x2n(k)+1)), φ(lim supk→∞Ms(x2m(k), x2n(k)+1)))

≤ F (ψ(s2ε), lim supk→∞ φ(Ms(x2m(k), x2n(k)+1)) ≤ ψ(s2ε)

this implies that F (ψ(s2ε), lim supk→∞ φ(Ms(x2m(k), x2n(k)+1)) = ψ(s2ε).

Hence by the property of F , we have either ψ(s2ε) = 0 or
lim supk→∞ φ(Ms(x2m(k), x2n(k)+1)) = 0, this implies s2ε = 0 or
lim supn→∞Ms(x2m(k), x2n(k)+1) = 0. In both the cases we have ε = 0 which is a contrac-
tion.Hence {y2n} is a b-Cauchy sequence in X . Thus by Lemma 1.7, we conclude that {yn} is a
b-Cauchy sequence inX . Since (X, d) is b-complete, there exists z ∈ X such that limn→∞ y2n =
z. Therefore

lim
n→∞

fx2n = lim
n→∞

Tx2n+1 = lim
n→∞

Sx2n+2 = lim
n→∞

gx2n+1 = z. (2.2.24)

Case(i): Suppose SX is closed.

In view of (2.2.24), we have z ∈ SX , there exists u ∈ X such that z = Su. From our
assumption (iii) and (2.2.4), we have α(Su) ≥ 1 and β(Tx2n+1) ≥ 1. Now on using inequality
(2.1.1), we have

d(fu, z) ≤ s[d(fu, gx2n+1) + d(gx2n+1, z)].

On taking upper limit as n→∞ in the above inequality and using (2.2.24), we have
1
sd(fu, z) ≤ lim supn→∞ d(fu, gx2n+1).

Also, d(fu, gx2n+1) ≤ s[d(fu, z) + d(z, gx2n+1)].

Taking limit supremum as n→∞ and again using (2.2.24), we get

lim supn→∞ d(fu, gx2n+1) ≤ s2d(fu, z).

Therefore

ψ(d(fu, z)) ≤ ψ(s2d(fu, z)) = ψ(s3( 1
sd(fu, z))

≤ ψ(s3 lim supn→∞ d(fu, gx2n+1)

≤ F (lim supn→∞ ψ(Ms(u, x2n+1)), lim supn→∞ φ(Ms(u, x2n+1)). (2.2.25)
Now,

Ms(u, x2n+1) = max{d(Su, Tx2n+1), d(fu, Su), d(Tx2n+1, gux2n+1),

1
2s [d(Su, gx2n+1) + d(fu, Tx2n+1)]}.

On taking upper limits as n→∞ and using (2.2.24) we have

lim supn→∞Ms(x2n+1, u)

= lim supn→∞max{d(Su, Tx2n+1), d(fu, Su), d(Tx2n+1, gux2n+1),

1
2s [d(Su, gx2n+1) + d(fu, Tx2n+1)]}

= d(fu, Su). (2.2.26)

Thus from (2.2.25) and (2.2.26), we get

ψ(d(fu, z)) ≤ F (ψ(d(fu, z)), lim supn→∞ φ(Ms(u, x2n+1)) ≤ ψ(d(fu, z))).

This implies ψ(d(fu, z))) = 0 or lim supn→∞ φ(Ms(u, x2n+1) = 0, thus, fu = z. Hence

z = Su = fu. (2.2.27)

Since z = fu ∈ fX ⊆ TX , We have z ∈ TX , there exists v ∈ X such that

Tv = z. (2.2.28)
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We now show that gv = Tv.

Owing to the assumption (iii) and (2.2.4), we have

α(Sx2n) ≥ 1 and β(Tv) ≥ 1. (2.2.29)

By triangle inequality, we have

d(z, gv) ≤ s[d(z, fx2n) + d(fx2n, gv)]

Taking limit supremum as n→∞, we have

1
s
d(z, gv) ≤ limsupn→∞d(fx2n, gv). (2.2.30)

Also,

d(fx2n, gv) ≤ s[d(fx2n, z) + d(z, gv)].

Taking limit supremum as n→∞, we have

lim supn→∞ d(fx2n, gv) ≤ sd(z, gv). (2.2.31 )

Thus, from (2.1.1), (2. 2.29) and (2.2.30), it follows that

ψ(d(z, gv)) ≤ ψ(s2d(z, gv)) ≤ ψ(s3( 1
sd(z, gv))

≤ ψ(s3 lim supn→∞ d(fx2n, gv))

≤ lim supn→∞ F (ψ(Msd(x2n, v)), φ(Msd(x2n, v)) (2.2.32)

Now,

Ms(x2n, v) = max{d(Sx2n, T v), d(Sx2n, fx2n), d(Tv, gv),
1

2s [d((Sx2n, gv) + d(fx2n, T v)]}.
(2.2.33)

Taking limit supremum as n→∞, using (2.2.24) and (2.2.28), we have

lim supn→∞Ms(x2n, v) = max{d(z, Tv), 0, d(z, gv), 1
2s [d(z, gv) + d(z, gv)]}

= d(z, gv). (2.2.34)

Hence from (2.2.33) and (2.2.34), we have

ψ(d(z, gv)) ≤ F (lim supn→∞ ψ(Ms(x2n, v)), lim supn→∞ φ(Ms(x2n, v)))

≤ F (ψ(d(z, gv)), lim supn→∞ φ(Ms(x2n, v)))

≤ ψ(d(z, gv))

which implies that ψ(d(z, gv)) = 0 or lim supn→∞ φ(Ms(x2n, v))) = 0.
In both cases we have d(z, gv) = 0 Hence z = gv. (2.2.35)
Thus, from (2.2.27) and (2.2.35), it follows that

fu = Su = gv = Tv = z. (2.2.36)

Hence

C(f, S) 6= φ and C(g, T ) 6= φ.

Case (ii): Suppose that gX is closed. In this case z ∈ gX , since gX ⊆ SX , we have z ∈ SX
and hence we can choose u ∈ X such that z = Su. Hence the proof follows. For the cases TX
and fX closed, the proof runs in the same lines of case (i) and case (ii).

Theorem 2.3. In addition to the hypotheses of Theorem 2.2, suppose

(i) (f, S) and (g, T ) are weakly compatible and

(ii) α(Su) ≥ 1 and β(Tv) ≥ 1 whenever u and v are coincident points of
(f, S) and (g, T ) respectively.

Then f, g, T and S have a unique common fixed point in X .
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Proof. In the light of Theorem 2.1, we have z = fu = Su = Tv = gv. Since the pair (f, S) is
weakly compatible, we have fz = fSu = Sfu = Sz. z is a coincidence point of (f, S). In view
of hypotheses (ii), we have α(Sz) ≥ 1 and β(Tv) ≥ 1 this implies α(Sz)β(Tv) ≥ 1. Now on
using the inequality with x = z and y = v , we have

ψ(d(fz, gv)) ≤ ψ(s3d(fz, gv)) ≤ F (ψ(Ms(z, v)), φ(Ms(z, v))). (2.3.1)

Now

Ms(z, v) = max{d(Sz, Tv), d(fz, Sz), d(Tv, gv), 1
2s [d(Sz, gv) + d(fz, Tv)]}

= max{d(fz, gv), 0, 0, 1
2s [d(Sz, gv) + d(fz, gv)]}

= d(fz, gv). (2.3.2)

Therefore from (2.3.1) and (2.3.2), we have

ψ(d(fz, gv)) ≤ F (ψ(d(fz, gv)), φ(d(fz, gv))) ≤ ψ(d(fz, gv)),
this implies

F (ψ(d(fz, gv)), φ(d(fz, gv))) = ψ(d(fz, gv)),

which in turn implies ψ(d(fz, gv)) = 0 or φ(d(fz, gv)) = 0, in either case we have d(fz, gv) =
0. Hence

fz = Sz = z. (2.3.3)

Thus, z is a common fixed point of f and S.

Since (g, T ) is weakly compatible, we have Tz = Tgv = gTv = gz. z is a coincidence
point of (T, g). Again by our hypotheses (ii) we have, α(Su) ≥ 1 and β(Tz) ≥ 1 this implies
α(Su)β(Tz) ≥ 1. Now on using the inequality (2.1.1) with x = u and y = z , we have

ψ(d(fu, gz)) ≤ ψ(s3d(fu, gz)) ≤ F (ψ(Ms(u, z)), φ(Ms(u, z))). (2.3.4)

Now

Ms(u, z) = max{d(Su, Tz), d(fu, Su), d(Tz, gz), 1
2s [d(Su, gz) + d(fu, Tz)]}

= max{d(z, gz), 0, 0, 1
2s [d(Su, gz) + d(z, gz)]}

= d(z, gz).

Therefore

ψ(d(fu, gz)) ≤ F (ψ(d(fu, gz)), φ(d(fu, gz))) ≤ ψ(d(fu, gz)), this implies
F (ψ(d(fu, gz)), φ(d(fu, gz))) = ψ(d(fu, gz)), which in turn implies ψ(d(fu, gz)) = 0 or
φ(d(fu, gz)) = 0, in either case we have d(fu, gz) = 0. Hence

gz = T = z. (2.3.5)

Thus, z is a common fixed point of T and g.

We now show that f , g, S and T have a unique common fixed point in X . Suppose that u and
z are two fixed points of S, f , g and T . Hence

fz = Tz = Sz = gz = z. (2.3.6)

and
fu = Tu = gu = Su = u. (2.3.7)

By the hypotheses, we have α(Su) ≥ 1 and β(Tz) ≥ 1 this implies

ψ(d(fu, gz)) ≤ ψ(s3d(fu, gz)) ≤ F (ψ(Ms(u, z), φ(Ms(u, z))).

Now,

Ms(u, z) = max{d(Su, Tz), d(fz, Sz), d(Tz, gz), 1
2s [d(Su, gz) + d(fu, Tz)]}
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= max{d(u, z), 0, 0, 1
2s [d(u, z) + d(u, z)]} = d(u, z).

Therefore ψ(d(fu, gz)) ≤ F (ψ(d(fu, gz)), φ(d(fu, gz)) ≤ ψ(d(fu, gz)),
this implies F (ψ(d(fu, gz)), φ(d(fu, gz))) = ψ(d(fu, gz)), which implies ψ(d(fu, gz)) = 0 or
φ(d(fu, gz)) = 0.

Hence u = z. Thus f, g, S, T have a unique common fixed point in X .

Theorem 2.4. Let A and B be two nonempty closed subsets of a b-metric space (X, d) such that
A ∩B 6= φ and let f, g : A ∪B → A ∪B be mappings with fA ⊂ B and gB ⊂ A. Assume that
thereexist ψ ∈ Ψ, φ ∈ Φ, F ∈ C such that

ψ(s3d(fx, gy)) ≤ F (ψ(Ms(x, y), φ(Ms(x, y))) for all x ∈ A and y ∈ B (2.4.1)

where Ms(x, y) = max{d(x, y), d(fx, x), d(y, gy), 1
sd(x, gy),

1
sd(fx, y)}.

Then f and g have a unique common fixed point u ∈ A ∩B.

Proof. Let us define α, β : A ∪B → R+ by

α(x) =


1 if x ∈ A

0 otherwise,

and β(x) =


1 if x ∈ B

0 otherwise,

For any x, y ∈ A∪B with α(x)β(y) ≥ 1, we have α(x) = 1 β(y) = 1 and x ∈ A, y ∈ B. Hence,
from (2.4.1), we have

ψ(d(fx, gy)) ≤ F (ψ(Ms(x, y)), φ(Ms(x, y))

for all x ∈ A and y ∈ B. Suppose x ∈ A ∪B with α(x) ≥ 1. Then x ∈ A and fx ∈ fA ⊂ B so
that β(fx) ≥ 1. Suppose that y ∈ A ∪ B with β(y) ≥ 1. Then y ∈ B, so that gy ∈ gB ⊂ A so
that α(gy) ≥ 1. Therefore (f, g) is cyclic (α, β) admissible map. Since A ∩ B 6= φ, thereexist
x0 ∈ A ∩B such that α(x0) ≥ 1 and β(x0) ≥ 1.

If {xn} is a sequence in A ∪ B such that xn → x and α(xn) ≥ 1, β(xn) ≥ 1 for all n, then
xn ∈ A and xn ∈ B. Since A and B are closed, x ∈ A and x ∈ B implies α(x) ≥ 1 and
β(x) ≥ 1. By choosing S = T = I on X in Theorem 2.3, f and g satisfy the hypotheses of
Theorem 2.3. Hence f and g have a unique common fixed point say u and clearly, u ∈ A∩B.

3 Corollaries

Corollary 3.1. Let (X, d) be a complete b-metric space with s ≥ 1. Suppose that α, β : X →
[0,∞) are two mappings. Let f, g, S and T be four seflmaps on X satisfying

(i) the pair (f, g) is cyclic (α, β) admissible mapping with respect to (S, T )

(ii) α(Sx)β(Ty) ≥ 1⇒ ψ(s3d(fx, gy)) ≤ ψ(M(x, y))− φ(M(x, y))
for all x, y ∈ X , where ψ ∈ Ψ, φ ∈ Φ and

M(x, y) = max{d(Sx, Ty), d(fx, Sx), d(gy, Ty), d(Sx,gy)+d(fx,Ty)2 }.

(iii) fX ⊆ TX , gX ⊆ SX

(iv) there exists x0 ∈ X such that α(Sx0) ≥ 1 and β(Tx0) ≥ 1.

(v) If {xn} is a sequence in X such that xn → x and α(xn) ≥ 1 and β(xn) ≥ 1 for all n, then
α(x) ≥ 1, β(x) ≥ 1.

(vi) one of the ranges fX, gX, TX, SX is b-closed .

(vii) α(Su) ≥ 1 and β(Tv) ≥ 1 whenever u and v are coincidence points of (f, S) and (g, T )
respectively.

Then f, g, T and S have a unique common fixed point in X provided (f, S) and (g, T ) are
weakly compatible on X .
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Proof. Proof follows from Theorem 2.3 by choosing

F (s, t) =


s− t if s ≥ t

0 otherwise.

Corollary 3.2. Let (X, d) be a complete b- metric space with s ≥ 1. Suppose that f, g, S and T
be four seflmaps on X satisfying

(i) fX ⊆ TX , gX ⊆ SX

(ii) ψ(s3d(fx, gy)) ≤ F (ψ(Ms(x, y)), φ(Ms(x, y)))
for all x, y ∈ X , where ψ ∈ Ψ, φ ∈ Φ , F ∈ C and

Ms(x, y) = max{d(Sx, Ty), d(fx, Sx), d(gy, Ty), d(Sx,gy)+d(fx,Ty)2s }.

(iii) one of the ranges fX, gX, TX, SX is b-closed.

Then f, g, T and S have a unique common fixed point in X provided (f, S) and (g, T ) are
weakly compatible on X .

Proof. Proof follows by choosing α(x) = 1 and β(x) = 1 for all x ∈ X in Theorem 2.3.

Corollary 3.3. . Let (X, d) be a complete b-metric space. Suppose that α, β : X → [0,∞) are
two mappings. Let f, g, S and T be four seflmaps on X satisfying:

(i) fX ⊆ TX , gX ⊆ SX

(ii) the pair (f, g) is cyclic (α, β) admissible mapping with respect to (S, T )

(iii) α(Sx)β(Ty)ψ(s3d(fx, gy)) ≤ F (ψ(Ms(x, y)), φ(Ms(x, y))) (3.3.1)
for all x, y ∈ X , where ψ ∈ Ψ, φ ∈ Φ, F ∈ C and

Ms(x, y) = max{d(Sx, Ty), d(fx, Sx), d(gy, Ty), d(Sx,gy)+d(fx,Ty)2 }.

(iv) there exists x0 ∈ X such that α(Sx0) ≥ 1 and β(Tx0) ≥ 1.

(v) If {xn} is a sequence in X such that xn → x and α(xn) ≥ 1
and β(xn) ≥ 1 for all n, then α(x) ≥ 1, β(x) ≥ 1.

(vi) one of the ranges fX, gX, TX, SX is b-closed .

(vii) α(Su) ≥ 1 and β(Tv) ≥ 1 whenever u and v are coincident points of (f, S) and (g, T )
respectively.

Then f, g, T and S have a unique common fixed point in X provided (f, S) and (g, T ) are
weakly compatible on X .

Proof. Let x, y ∈ X with α(Sx)β(Ty) ≥ 1. Then

ψ(s3d(fx, gy)) ≤ α(Sx)β(Ty)ψ(s3d(fx, gy)) ≤ F (ψ(Ms(x, y)), φ(Ms(x, y))).

Hence the conclusion this theorem follows from Theorem 2.3.

Corollary 3.4. Let f, g, S and T be selfmaps of a complete metric space (X, d). Suppose that
f(X) ⊆ T (X), g(X) ⊆ S(X) and the pairs (f, S) and (g, T ) are weakly compatible. If

ψ(d(fx, gy)) ≤ ψ(M(x, y))− φ(M(x, y)) (3.4.1)

for all x, y ∈ X , where ψ ∈ Ψ, φ ∈ Φ and

M(x, y) = max{d(Sx, Ty), d(fx, Sx), d(gy, Ty), d(Sx,gy)+d(fx,Ty)2 }

then f, g, S and T have a unique fixed point in X provided one of the ranges f(X), g(X), S(X)
and T (X) is closed.
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Proof. The proof of this corollary follows from Corollary 3.2 by choosing s = 1 and

F (s, t) =


s− t if s ≥ t

0 otherwise.

.

Remark 3.5. By choosing f = g = T and S = T = I , where I is the identity map on R+,
Theorem 1.15 follows as a Corollary to Theorem 2.3.

Corollary 3.6. Suppose that f , g, S and T are self mappings on a complete b-metric space (X, d)
with s ≥ 1 such that:

(i) f(X) ⊆ T (X), g(X) ⊆ S(X).

(ii) s4d(fx, gy) ≤ qmax{d(Sx, Ty), d(fx, Sx), d(gy, Ty), 1
2s(d(Sx, gy)+d(fx, Ty))}, (3.6.1)

holds for each x, y ∈ X with 0 < q < 1, then f, g, S and T have a unique common fixed point in
X provided that S and T are continuous and and pairs f, S and g, T are compatible.

Proof. Proof follows by choosing α(x) = 1 ,β(x) = 1 for all x ∈ X , ψ(t) = t, φ(t) = 1, and
F (r, t) = q

sr, where s ∈ [0,∞) and 0 < k < 1 in Theorem 2.3.

4 Examples

Example 4.1. Let X = [0, 1] and we define d : X × X → [0,∞) by d(x, y) = |x − y|2 for all
x, y ∈ X . Then (X, d) is a complete b metric space with s = 2. We define f, g, S and T on X by

f(x) =


x8

28 if x ∈ [0, 1
2 ]

1
32 ifx ∈ ( 1

2 , 1],
and g(x) =


x4

24 if x ∈ [0, 1
2 ]

1
16 ifx ∈ ( 1

2 , 1],

S(x) =


x2

4 if x ∈ [0, 1
2 ]

1
6 ifx ∈ ( 1

2 , 1],
T (x) = x4

24 for all x ∈ [0, 1].

Clearly, fX = [0, 1
28×28 ]∪ { 1

32} ⊆ TX = [0, 1
24 ] and gX = [0, 1

24×24 ]∪ { 1
16} ⊆ [0, 1

24 ] = SX.
Clearly, TX is closed.

Also, the pairs (f, S) and (g, T ) are weakly compatible. We now define α, β on X by

α(x) =


x+5

4 if x ∈ [0, 1
2 ]

0 otherwise,

and β(x) =


e if x ∈ [0, 1

2 ]

0 otherwise,

We now prove that (f, g) is cyclic (α, β) admissible mapping with respect to (S, T ), indeed
if

α(Sx) ≥ 1⇒ x ∈ [0, 1
2 ]⇒ β(fx) = x8

28 = e ≥ 1.

Similarly, if

β(Tx) ≥ 1⇒ x ∈ [0, 1
2 ]⇒ α(gx) = α(x

4

24 ) =
x4

26 + 5
4 ≥ 1.

Hence (f, g) is cyclic (α, β) admissible mapping with respect to (S, T ). Also, at x0 = 0,
α(Sx0) = α(0) = 5

4 ≥ 1 and β(x0) = β(0) = e ≥ 1. Next we will show that, (f, g) is a gener-
alized TAC-(S, T ) contractive map with ψ(t) = t, φ(t) = 20

32 t and f(s, t) = s
1+t , for all s, t ∈

[0,∞). Clearly, φ ∈ Φ and ψ ∈ Ψ. Now, if {xn} is a sequence in X such that xn → x ,
α(xn) ≥ 1 and β(xn) ≥ 1 for all n ∈ W then by the definition of α and β we have xn ∈ [0, 1

2 ],
therefore α(x) ≥ 1, β(x) ≥ 1, hence we have

ψ(s3d(fx, gy)) = (23[(x
8

28 )− (y
4

24 )]
2) = (23[(x

4

24 )
2 − (y

2

22 )
2]2]
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= (23[(x
4

24 )
2 + (y

2

22 )
2]2[(x

4

24 )
2 − ((y

2

22 )
2]2)

≤ (23[ 1
24 +

1
22 ]

2d(Sx, Ty))

= 5
24 d(Sx, Ty)

≤ d(Sx,Ty)

1+ 20
32d(Sx,Ty)

≤ Ms(x,y)

1+ 20
32Ms(x,y)

= ψ(Ms(x,y))
1+φ(Ms(x,y))

= f(ψ(Ms(x, y)), φ(Ms(x, y)).

Hence (f, g) is a generalized TAC-(S, T ) contractive map. Hence f, g, S and T satisfy all
the conditions of Theorem 2.3 and 0 is the unique common fixed point of S, T, f and g. Here
we note that the with the usual distance, the condition (1.13.1) fails to hold when x ∈ ( 1

2 , 1] and
y = 1, for any φ ∈ Φ and ψ ∈ Ψ, since

ψ(d(fx, gy)) = ψ(
1
16

) 6= ψ(Ms(x, y))− φ(Ms(x, y)) = ψ(
1
16

)− φ( 1
16

).

Hence Theorem 1.13 is not applicable.

Also, we observe that the inequality (1.17.1) fails to hold for any q ∈ [0, 1) since

d(fx, gy) = 1
256 = q

24
1

256

= q
s4max{d(Sx, Ty), d(fx, Sx), d(gy, Ty), 1

2(d(Sx, gy) + d(fx, Ty))}.
Hence Theorem 1.17 is not applicable.

Example 4.2. Let X = {1, 2, 3, 4} . We write

S1 = {(1, 1), (2, 2), (3, 3), (4, 4)}
S2 = {(1, 3), (3, 1)} and S3 = {(2, 3), (3, 2), (4, 3), (3, 4)}.

We define d : X ×X → R by

d(x, y) =



0 if (x, y) ∈ S1

1 if (x, y) ∈ S2

32 if (x, y) ∈ S3

16 otherwise

Then (X, d) is a complete b-metric space with s = 2. Let A = {1, 2, 3} and B = {1, 2, 3, 4}.
We define f, g : A ∪ B → R+ by f1 = 1, f2 = 3, f3 = 1, f4 = 2 g1 = 1, g2 = 3, g3 =
1, g4 = 3. Clearly, fA = f({1, 2, 3}) = {1, 2, 3} ⊆ B and gB = ({1, 2, 3, 4}) = {1, 3} ⊆ A,
A ∩ B = {1, 2, 3} 6= φ. We define ψ, φ : [0,∞) → [0,∞) by ψ(t) = t , φ(t) = t

16 , t ≥ 0 and
F : [0,∞)2 → R by F (a, t) = a

1+t . Now we verify the inequality (2.4.1).

Case(i): If (x, y) ∈ {(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3)}. Then

ψ(8d(fx, gy)) = 0 ≤ F (ψ(Ms(x, y)), φ(Ms(x, y)))

Case(ii): If (x, y) = {(1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 4)}. Then

ψ(8d(fx, gy)) = 8 ≤ 32
3

= F (ψ(Ms(x, y)), φ(Ms(x, y))).

Also, 1 is the unique fixed point of f and g.

Example 4.3. Let X = {1, 2, 3, 4} . We write A= {(1, 3), (3, 1)}, B = {(1, 2), (2, 1)} , C =
{(2, 3), (3, 2)} D = {(1, 4), (4, 1)} and
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E = {(3, 4), (4, 3), (2, 4), (4, 2)}. We define d : X ×X → R by

d(x, y) =



0 if x = y

1 if (x, y) ∈ A

5 if (x, y) ∈ B

11 if(x, y) ∈ C

48 if (x, y) ∈ D

96 if (x, y) ∈ E.

Then (X, d) is a complete b-metric space with s = 2.We now define f, g, S and T on X by

f1 = 1, f2 = 1, f3 = 1, f4 = 2, g1 = 1, g2 = 3, g3 = 1, g4 = 3,

S1 = 1, S2 = 3, S3 = 2, S4 = 4 and T1 = 1, T2 = 2, T3 = 4, T4 = 4. Clearly, fX = {1, 2} ⊆
TX = {1, 2, 4} gX = {1, 3} ⊆ SX = {1, 2, 3, 4}.

We define α, β : [0,∞) → [0,∞) by α(x) = 1 and β(x) = 1, ψ : [0,∞) → [0,∞) by
ψ(t) = t φ : [0,∞)→ [0,∞) by φ(t) = t

16 , t ≥ 0 and F : [0,∞)2 → R by

F (s, t) =


s− t if s ≥ t

0 ifotherwise.

Now we verify the inequality (2.1.1)

Case(i): If (x, y) ∈ {(1, 1), (1, 3), (2, 1), (2, 3), (3, 1), (3, 3)}. Then

ψ(s3d(fx, gy)) = 0 ≤ F (ψ(Ms(x, y)), φ(Ms(x, y)))

Case(ii): If (x, y) = {(1, 2), (2, 2), (3, 2)}. Then

ψ(s3d(fx, gy)) = 8 ≤ 11− 11
16

= 10.3 = F (ψ(Ms(x, y)), φ(Ms(x, y))).

Case(iii): If (x, y) = {(2, 4), (1, 4), (3, 4)}. Then

ψ(s3d(fx, gy)) = 8 ≤ 96− 96
16

= 90 = f(ψ(Ms(x, y)), φ(Ms(x, y))).

Case(iv): If (x, y) = {(4, 2), (4, 4)}. Then

ψ(s3d(fx, gy)) = 88 ≤ 96− 96
16

= 90 = F (ψ(Ms(x, y)), φ(Ms(x, y))).

Case(v): If (x, y) = {(4, 1), (4, 3)}. Then

ψ(s3d(fx, gy)) = 40 ≤ 96− 96
16

= 90 = F (ψ(Ms(x, y)), φ(Ms(x, y))).

Here we observe that with the usual distance the inequality (1.13.1) fails to hold at x = 3 and
y = 2 for any φ ∈ Φ and ψ ∈ Ψ since

d(fx, gy) = 2 6= ψ(Ms(x, y))− φ(Ms(x, y)) = 1.

Hence Theorem 1.13 is not applicable.
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Also, the inequality (1.17.1) fails to hold at x = 3 and y = 2 for any q < 1 since

d(fx, gy) = 1 >
q

24 (Ms(x, y)) =
11
16
.

Hence Theorem 1.17 is not applicable.
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