# UNITS IN $\mathbb{Z}\left(C_{n} \times C_{5}\right)$ 

Ömer Küsmüss* and Richard M. Low

Communicated by Ayman Badawi
MSC 2010 Classifications: Primary 16S34; Secondary 16U60.
Keywords and phrases: Unit group, integral group ring, group ring, direct product..


#### Abstract

Let $G$ be a group. Characterization of units in integral group ring $\mathbb{Z} G$ is a classical open problem for various groups explicitly. In this work, we shall introduce a subgroup of unit group in the integral group ring of the direct product which is defined as $$
C_{n} \times C_{5}=\left\langle a, x: a^{n}=x^{5}=1, a x=x a\right\rangle
$$ in terms of the unit group in integral group ring of $C_{n}$.


## 1 Introduction

Let $\mathcal{U}(\mathbb{Z} G)$ denote the unit group of the integral group ring of the group $G$ over integers. For many years, expression of $\mathcal{U}(\mathbb{Z} G)$ as a set of generators of finite index has become a classical hard problem for various types of $G$. In this study, we describe the subgroups of the unit group of integral group ring $\mathbb{Z}\left(C_{n} \times C_{5}\right)$ where

$$
C_{n} \times C_{5}=\left\langle a, x: a^{n}=x^{5}=1, a x=x a\right\rangle
$$

by using the known unit group $\mathcal{U}\left(\mathbb{Z} C_{n}\right)$. One can notice that if $G$ is a finite group, then the center $\mathcal{Z}(\mathcal{U}(\mathbb{Z} G))$ is a finitely generated abelian group of the form $\pm \mathcal{Z}(G) \times F$ where $F$ is a free $\mathbb{Z}$-module with rank $\frac{1}{2}\left(|G|+n_{2}+1-2 l\right)$ [13]. Here, $n_{2}$ is the number of elements of order 2 of $G$ and $l$ is the number of all the distinct cyclic subgroups of $G$. We can achieve a such $F$ for a few cases of the group $G$. $F$ had been determined for the alternating groups $A_{5}$ and $A_{6}$ in [1] and [6]. Aleev also had introduced the unit groups of integral group rings of the cyclic groups $C_{7}$ and $C_{9}$ [8]. Hoechsmann had attained the set of generators of units in group rings for abelian groups [5]. Ferraz displayed that

$$
\mathcal{U}(\mathbb{Z}[\theta])=\left\langle-1, \theta, 1+\theta, \ldots,\left(1+\theta+\ldots+\theta^{\frac{p-1}{2}}\right)\right\rangle
$$

therefore $\mathcal{U}\left(\mathbb{Z} C_{p}\right)= \pm\langle g\rangle \times\langle S\rangle$ such that

$$
S=\left\{\left(1+g^{t}+g^{2 t}+\ldots+g^{t(r-1)}\right)\left(1+g^{t^{i}}+g^{2 t^{i}}+\ldots+g^{(t-1) t^{i}}\right)-k \hat{g}: i=1, \ldots, \frac{p-3}{2}\right\}
$$

where $t$ is a positive integer such that $\mathcal{U}\left(\mathbb{Z}_{p}\right)=\langle t\rangle, r$ is the least positive integer such that $\operatorname{tr} \equiv 1(\bmod p), k=\frac{t r-1}{p}, p$ is a prime between 5 and $67, \theta$ is a $p$ th primitive root of unity [9]. Ferraz and Marcuz also have considered the groups $G=C_{p} \times C_{2}$ and $G=C_{p} \times C_{2} \times C_{2}$ where $p$ is a prime between 5 and 67 . They determined the unit groups of the integral group rings of these groups [10]. Li displayed that $\mathcal{U}\left(\mathbb{Z}\left[G \times C_{2}\right]\right)=K \rtimes D$ such that

$$
K=\left\{u=1+\alpha(1-x): \alpha \in \mathbb{Z} G, u \in \mathcal{U}\left(\mathbb{Z}\left[G \times C_{2}\right]\right)\right\}
$$

and

$$
D=\mathcal{U}(\mathbb{Z} G) \subset \mathcal{U}\left(\mathbb{Z}\left[G \times C_{2}\right]\right)
$$

Moreover, any element which is of the form $1+\alpha(1-x)$ is a unit in $\mathcal{U}\left(\mathbb{Z}\left[G \times C_{2}\right]\right)$ if and only if $1+2 \alpha \in \mathcal{U}(\mathbb{Z} G)$ [7]. Low effectuted the following split exact sequences for $\mathcal{U}\left(\mathbb{Z}\left[G \times C_{p}\right]\right)$ where $p$ is a prime:

and stated that
$\mathcal{U}\left(\mathbb{Z}\left[G \times C_{p}\right]\right)=M \rtimes \mathcal{U}(\mathbb{Z} G)$. Since $M \subset \mathcal{U}(\mathbb{Z}[\zeta] G)$, it should be note that complete characterization of $M$ depends on getting the set of unit generators of finite index in group rings whose coefficients are from complex integral domains [4]. He also had said that $M$ could not be characterized explicitly [4].

Kelebek constructed the normalized unit group of $\mathbb{Z}\left[C_{n} \times K_{4}\right]$ for the group

$$
C_{n} \times K_{4}=\left\langle a, x, y: a^{n}=x^{2}=y^{2}=1, a x=x a, a y=y a, x y=y x\right\rangle
$$

as

$$
\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times K_{4}\right]\right)=\mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right) \times \mathcal{U}_{1}\left(1+K^{x}\right) \times \mathcal{U}_{1}\left(1+K^{y}\right) \times \mathcal{U}_{1}\left(1+K^{x y}\right)
$$

where

$$
\begin{aligned}
& \mathcal{U}_{1}\left(1+K^{x}\right)=\left\{1+P(x-1): 1-2 P \in \mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right)\right\} \\
& \mathcal{U}_{1}\left(1+K^{y}\right)=\left\{1+P(y-1): 1-2 P \in \mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right)\right\} \\
& \mathcal{U}_{1}\left(1+K^{x y}\right)=\left\{1+P(x-1)(y-1): 1+4 P \in \mathcal{U}_{1}\left(\mathbb{Z} C_{n}\right)\right\}
\end{aligned}
$$

## 2 Structure Theorem

Let $C_{n}=\left\langle a: a^{n}=1\right\rangle$ and $C_{5}=\left\langle x: x^{5}=1\right\rangle$ be distinct cyclic groups. We can define the group epimorphism $\varphi: C_{n} \times C_{5} \longrightarrow C_{n}$ by $\varphi(a, x)=a$ or $\varphi(x)=1 . \varphi$ can be extend to the integral group rings as follows

$$
\begin{aligned}
\varphi: \mathbb{Z}\left(C_{n} \times C_{5}\right) & \longrightarrow \mathbb{Z} C_{n} \\
\sum_{j=0}^{4} A_{j} x^{j} & \mapsto \sum_{j=0}^{4} A_{j}
\end{aligned}
$$

Let $\Delta_{\mathbb{Z} C_{n}}\left(C_{5}\right)$ denote the kernel of $\varphi$. Then we can rearrange the form of $\Delta_{\mathbb{Z} C_{n}}\left(C_{5}\right)$ as follows.
Proposition 2.1. $\Delta_{\mathbb{Z} C_{n}}\left(C_{5}\right)=\langle 1-x\rangle \oplus\left\langle 1-x^{2}\right\rangle \oplus\left\langle 1-x^{3}\right\rangle \oplus\left\langle 1-x^{4}\right\rangle$ over $\mathbb{Z} C_{n}$.
Proof.

$$
\begin{aligned}
\Delta_{\mathbb{Z} C_{n}}\left(C_{5}\right) & =\left\{\sum_{j=0}^{4} A_{j} x^{j}: \sum_{j=0}^{4} A_{j}=0, A_{j} \in \mathbb{Z} C_{n}\right\} \\
& =\left\{\sum_{j=0}^{4} A_{j} x^{j}: A_{0}=-A_{1}-A_{2}-A_{3}-A_{4}\right\} \\
& =\left\{-\sum_{j=1}^{4} A_{j}\left(1-x^{j}\right): A_{j} \in \mathbb{Z} C_{n}\right\} \\
& =\langle 1-x\rangle+\left\langle 1-x^{2}\right\rangle+\left\langle 1-x^{3}\right\rangle+\left\langle 1-x^{4}\right\rangle
\end{aligned}
$$

Let us show the sum is direct. Say $\sum_{j=1}^{4} A_{j}\left(1-x^{j}\right)=\sum_{j=1}^{4} B_{j}\left(1-x^{j}\right)$. Then $A_{j}=B_{j}$ for all $j=1,2,3,4$. Hence

$$
\Delta_{\mathbb{Z} C_{n}}\left(C_{5}\right)=\langle 1-x\rangle \oplus\left\langle 1-x^{2}\right\rangle \oplus\left\langle 1-x^{3}\right\rangle \oplus\left\langle 1-x^{4}\right\rangle
$$

Hence we can write a split exact sequence as

$$
\langle 1-x\rangle \oplus\left\langle 1-x^{2}\right\rangle \oplus\left\langle 1-x^{3}\right\rangle \oplus\left\langle 1-x^{4}\right\rangle \xrightarrow{\iota} \mathbb{Z}\left(C_{n} \times C_{5}\right) \xrightarrow{\varphi} \mathbb{Z} C_{n}
$$

Keeping in mind that $\mathbb{Z}\left(C_{n} \times C_{5}\right)=\left(\mathbb{Z} C_{n}\right) C_{5}=\left(\mathbb{Z} C_{5}\right) C_{n}$, we can also define another group epimorphism $\psi: C_{n} \times C_{5} \longrightarrow C_{5}$ by $\psi(a, x)=x$ or $\psi(a)=1$. Then, extending $\psi$ linearly to the integral group rings, we obtain

$$
\begin{aligned}
\psi: \mathbb{Z}\left(C_{n} \times C_{5}\right) & \longrightarrow \mathbb{Z} C_{5} \\
\sum_{j=0}^{n-1} B_{j} a^{j} & \mapsto \sum_{j=0}^{n-1} B_{j}
\end{aligned}
$$

Let $\Delta_{\mathbb{Z} C_{5}}\left(C_{n}\right)$ be the kernel of $\psi$. Then we can introduce the following proposition without giving the proof which is straightforward from the previous one.

Proposition 2.2. $\Delta_{\mathbb{Z} C_{5}}\left(C_{n}\right)=\langle 1-a\rangle \oplus \ldots \oplus\left\langle 1-a^{n-1}\right\rangle$ over $\mathbb{Z} C_{5}$.
Since

$$
\psi\left(\Delta_{\mathbb{Z} C_{n}}\left(C_{5}\right)\right)=\Delta_{\mathbb{Z}}\left(C_{5}\right)=\langle 1-x\rangle_{\mathbb{Z}} \oplus\left\langle 1-x^{2}\right\rangle_{\mathbb{Z}} \oplus\left\langle 1-x^{3}\right\rangle_{\mathbb{Z}} \oplus\left\langle 1-x^{4}\right\rangle_{\mathbb{Z}}
$$

and

$$
\varphi\left(\Delta_{\mathbb{Z} C_{5}}\left(C_{n}\right)\right)=\Delta_{\mathbb{Z}}\left(C_{n}\right)=\langle 1-a\rangle_{\mathbb{Z}} \oplus \ldots \oplus\left\langle 1-a^{n-1}\right\rangle_{\mathbb{Z}}
$$

it can be written that


Let us determine the ideal $K$. As

$$
\varphi\left(\sum_{j=1}^{n-1} A_{j}\left(1-a^{j}\right)\right)=\sum_{j=1}^{n-1} \varphi\left(A_{j}\right)\left(1-a^{j}\right)
$$

Then for all $A_{j} \in \mathbb{Z} C_{n}$,

$$
\varphi\left(A_{j}\right)=0 \Longleftrightarrow A_{j} \in\langle 1-x\rangle_{\mathbb{Z}} \oplus\left\langle 1-x^{2}\right\rangle_{\mathbb{Z}} \oplus\left\langle 1-x^{3}\right\rangle_{\mathbb{Z}} \oplus\left\langle 1-x^{4}\right\rangle_{\mathbb{Z}}
$$

Hence,

$$
\begin{aligned}
\left.\operatorname{Ker}(\varphi)\right|_{\Delta_{\mathbb{Z} C_{5}}\left(C_{n}\right)} & =\left\{\sum_{j=0}^{n-1} A_{j}\left(1-a^{j}\right): \varphi\left(A_{i}\right)=0, A_{i} \in \mathbb{Z} C_{n}\right\} \\
& =\left\{\sum_{j=0}^{n-1} A_{j}\left(1-a^{j}\right): A_{i} \in \operatorname{Ker}(\varphi)\right\} \\
& =\left\{\sum_{j=0}^{n-1} \sum_{k=0}^{4} \alpha_{j k}\left(1-a^{j}\right)\left(1-x^{k}\right): \alpha_{j k} \in \mathbb{Z}\right\} \\
& =\left\langle\left(1-a^{j}\right)\left(1-x^{k}\right): j=1, \ldots, n-1 ; k=1, \ldots, 4\right\rangle_{\mathbb{Z}}
\end{aligned}
$$

If we move all the split exact sequences to unit level, we get the following sequences.


As the embedding functions can be regarded as the reverse directions of $\varphi$ and $\psi$, all these sequences split. This gives us the way on which we can state the unit group of $\mathbb{Z}\left(C_{n} \times C_{5}\right)$ as follows:

## Corollary 2.3.

$$
\mathcal{U}\left(\mathbb{Z}\left(C_{n} \times C_{5}\right)\right)=\mathcal{U}\left(\mathbb{Z} C_{5}\right) \times \mathcal{U}\left(1+\Delta_{\mathbb{Z} C_{5}}\left(C_{n}\right)\right)=\mathcal{U}\left(\mathbb{Z} C_{n}\right) \times \mathcal{U}\left(1+\Delta_{\mathbb{Z} C_{n}}\left(C_{5}\right)\right)
$$

Let $F(G)$ denote the torsion-free part of the unit group of the integral group ring $\mathbb{Z} G$. Since $\mathcal{U}(\mathbb{Z})=\{ \pm 1\}$, we obtain the following corollary:

## Corollary 2.4.

$$
F\left(C_{n}\right) \subseteq \mathcal{U}\left(1+\Delta_{\mathbb{Z}}\left(C_{n}\right)\right)
$$

and

$$
F\left(C_{5}\right) \subseteq \mathcal{U}\left(1+\Delta_{\mathbb{Z}}\left(C_{5}\right)\right)
$$

## Corollary 2.5.

$$
\mathcal{U}\left(\mathbb{Z}\left(C_{n} \times C_{5}\right)\right)=\left(C_{n} \times C_{5}\right) \times F\left(C_{n}\right) \times F\left(C_{5}\right) \times \mathcal{U}(1+K)
$$

By splitting $\mathcal{U}\left(\mathbb{Z}\left(C_{n} \times C_{5}\right)\right)$ into its subgroups, it is clear that the complete characterization of the unit group $\mathcal{U}\left(\mathbb{Z}\left(C_{n} \times C_{5}\right)\right)$ depends on determining the subgroup $\mathcal{U}(1+K)=\mathcal{U}(1+$ $\left.\left\langle\left(1-a^{j}\right)\left(1-x^{k}\right)\right\rangle_{\mathbb{Z}}\right)$. For some orders $n$, the rank of $\mathcal{U}(1+K)$ can be calculated however we now need to give a very useful result of Tóth [12].

Proposition 2.6. Let $C_{n_{1}}$ and $C_{n_{2}}$ be two cyclic groups have orders $n_{1}$ and $n_{2}$ respectively and $\phi$ be Euler's totient function. Then for every $n_{1}, n_{2} \geq 1$ the number of cyclic subgroups of $C_{n_{1}} \times C_{n_{2}}$ is

$$
c\left(n_{1}, n_{2}\right)=\sum_{d_{1}\left|n_{1}, d_{2}\right| n_{2}} \phi\left(g c d\left(d_{1}, d_{2}\right)\right)
$$

Theorem 2.7. Let $n=5 p^{k}$ where $p(\neq 5)$ is prime. Then, the rank of torsion-free part of the unit subgroup $\mathcal{U}(1+K)$ is determined by the following formula:

$$
s(p, k):=10 p^{k}-4 k-5 .
$$

Proof. We explain the proof with two cases:
Case 1. Let $p=2$. Then, the rank of torsion-free part of the unit group $\mathcal{U}\left(\mathbb{Z}\left(C_{n} \times C_{5}\right)\right)$ can easily be calculated by Ayoub and Ayoub [14]. It is trivial that the order of $C_{n} \times C_{5}$ is $25 p^{k}$. We also need the number $n_{2}$ and $l$ to complete the proof. These numbers can be seen at the table below:

| $\|g\|$ | 1 | 5 | $p$ | $p^{2}$ | $\ldots$ | $p^{k}$ | $5 p$ | $5 p^{2}$ | $\ldots$ | $5 p^{k}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a^{j}$ | 1 | $a^{p^{k}}$ | $a^{5 p^{k-1}}$ | $a^{5 p^{k-2}}$ | $\ldots$ | $a^{5}$ | $a^{p^{k-1}}$ | $a^{p^{k-2}}$ | $\ldots$ | $a$ |
| $x a^{j}$ | - | $x, x a^{p^{k}}$ | - | - | - | - | $x a^{p^{k-1}}$ | $x a^{p^{k-2}}$ | $\ldots$ | $x a$ |
| $x^{2} a^{j}$ | - | $x^{2}, x^{2} a^{p^{k}}$ | - | - | - | - | $x^{2} a^{p^{k-1}}$ | $x^{2} a^{p^{k-2}}$ | $\ldots$ | $x^{2} a$ |
| $x^{3} a^{j}$ | - | $x^{3}, x^{3} a^{p^{k}}$ | - | - | - | - | $x^{3} a^{p^{k-1}}$ | $x^{3} a^{p^{k-2}}$ | $\ldots$ | $x^{3} a$ |
| $x^{4} a^{j}$ | - | $x^{4}, x^{4} a^{p^{k}}$ | - | - | - | - | $x^{4} a^{p^{k-1}}$ | $x^{4} a^{p^{k-2}}$ | $\ldots$ | $x^{4} a$ |

This table show us that $n_{2}=1$. We also have $6 k+10$ elements which satisfy $\langle x\rangle=\left\langle x^{4}\right\rangle$, $\left\langle x^{2}\right\rangle=\left\langle x^{3}\right\rangle,\left\langle x a^{p^{k-1}}\right\rangle=\left\langle x^{4} a^{p^{k-1}}\right\rangle,\left\langle x^{2} a^{p^{k-1}}\right\rangle=\left\langle x^{3} a^{p^{k-1}}\right\rangle$. This means there are $6 k+6$ distinct cyclic subgroups of the group $C_{n} \times C_{5}$. Actually, we can also calculate the number of cyclic subgroups of $C_{n} \times C_{5}$ from [12] since $i=0,1$ as follows

$$
c\left(5 p^{k}, 5\right)=\sum_{d_{1}\left|5 p^{k}, d_{2}\right| 5} \phi\left(g c d\left(d_{1}, d_{2}\right)\right)=\sum_{j=1}^{k} \phi\left(g c d\left(5^{i} p^{j}, 1\right)\right)+\phi\left(\operatorname{gcd}\left(5^{i} p^{j}, 5\right)\right) .
$$

Thus, we confirm that $c\left(5 p^{k}, 5\right)=(2 k+2) \phi(1)+(k+1) \phi(5)=6 k+6$. Hence, the rank of torsion-free part of the unit group $\mathcal{U}\left(\mathbb{Z}\left(C_{n} \times C_{5}\right)\right)$ is obtained as $25 p^{k-1}-6 k-5$. Besides, it can be easily computed that the rank of the unit group $\mathcal{U}\left(\mathbb{Z} C_{n}\right)$ as $5 p^{k-1}-2 k-1$ and Karpilovsky displayed that the unit group $\mathcal{U}\left(\mathbb{Z} C_{5}\right)$ has a single generator. All the these parameters give us from Corollary 2.5. that the rank of $\mathcal{U}(1+K)$ is $10 p^{k}-4 k-5$.
Case 2. Let $p \neq 2$. Then since the order of $C_{n} \times C_{5}$ is odd, the parameter $n_{2}$ is 0 . We know also
that there are $6 k+6$ distinct cyclic subgroups of $C_{n} \times C_{5}$. Hence, the rank of $\mathcal{U}\left(\mathbb{Z}\left(C_{n} \times C_{5}\right)\right)$ is $\frac{25 p^{k}-12 k-11}{2}$ and then the rank of $\mathcal{U}(1+K)$ is obtained as $10 p^{k}-4 k-5$.

## Example.

| $p$ | $k$ | $n$ | Group | Rank of $\mathcal{U}\left(\mathbb{Z}\left(C_{n} \times C_{5}\right)\right)$ | $s(p, k)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | 10 | $C_{10} \times C_{5}$ | 14 | 11 |
| 2 | 2 | 20 | $C_{20} \times C_{5}$ | 33 | 27 |
| 3 | 1 | 15 | $C_{15} \times C_{5}$ | 26 | 21 |
| 3 | 2 | 45 | $C_{45} \times C_{5}$ | 95 | 77 |
| 5 | 1 | 25 | $C_{25} \times C_{5}$ | 51 | 41 |
| 5 | 2 | 125 | $C_{125} \times C_{5}$ | 295 | 237 |
| 7 | 1 | 35 | $C_{35} \times C_{5}$ | 83 | 61 |
| 7 | 2 | 245 | $C_{245} \times C_{5}$ | 595 | 477 |

As we stated before, an explicit characterization of the unit group $\mathcal{U}\left(\mathbb{Z}\left(C_{n} \times C_{5}\right)\right)$ can be introduced if $\mathcal{U}(1+K), \mathcal{U}\left(1+\Delta_{\mathbb{Z} C_{5}}\left(C_{n}\right)\right)$ or $\mathcal{U}\left(1+\Delta_{\mathbb{Z} C_{n}}\left(C_{5}\right)\right)$ can be expressed clearly. Now, let us state and prove our main result as follows:

Theorem 2.8. Let $C_{n} \times C_{5}=\left\langle a, x: a^{n}=x^{5}=1, a x=x a\right\rangle$. Then

$$
\mathcal{U}\left(\mathbb{Z}\left(C_{n} \times C_{5}\right)\right)=\mathcal{U}\left(\mathbb{Z} C_{n}\right) \times\left\{1+\sum_{i=1}^{4} A_{i}\left(1-x^{i}\right): A_{i} \in \mathbb{Z} C_{n}\right\}
$$

if and only if the matrix

$$
\left[\begin{array}{cccc}
1+A_{1}+\sum A_{i} & A_{1}-A_{4} & A_{1}-A_{3} & A_{1}-A_{2} \\
-A_{1}+A_{2} & 1+A_{2}+\sum A_{i} & A_{2}-A_{4} & A_{2}-A_{3} \\
-A_{2}+A_{3} & -A_{1}+A_{3} & 1+A_{3}+\sum A_{i} & A_{3}-A_{4} \\
-A_{3}+A_{4} & -A_{2}+A_{4} & -A_{1}+A_{4} & 1+A_{4}+\sum A_{i}
\end{array}\right]
$$

is invertible in $\mathcal{M}_{4}\left(\mathbb{Z} C_{n}\right)$.

Proof. Let $v_{i}:=1-x^{i}$. Then

$$
\Delta_{\mathbb{Z} C_{n}}\left(C_{5}\right)=\left\langle v_{1}\right\rangle \oplus\left\langle v_{2}\right\rangle \oplus\left\langle v_{3}\right\rangle \oplus\left\langle v_{4}\right\rangle
$$

is a $\mathbb{Z} C_{n}$-algebra of the following multiplication:

| $\cdot$ | $v_{1}$ | $v_{2}$ | $v_{3}$ | $v_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $v_{1}$ | $2 v_{1}-v_{2}$ | $v_{1}+v_{2}-v_{3}$ | $v_{1}+v_{3}-v_{4}$ | $v_{1}+v_{4}$ |
| $v_{2}$ | $v_{1}+v_{2}-v_{3}$ | $2 v_{2}-v_{4}$ | $v_{2}+v_{3}$ | $-v_{1}+v_{2}+v_{4}$ |
| $v_{3}$ | $v_{1}+v_{3}-v_{4}$ | $v_{2}+v_{3}$ | $-v_{1}+2 v_{3}$ | $-v_{2}+v_{3}+v_{4}$ |
| $v_{4}$ | $v_{1}+v_{4}$ | $-v_{1}+v_{2}+v_{4}$ | $-v_{2}+v_{3}+v_{4}$ | $-v_{3}+2 v_{4}$ |

One can clearly see that $\Delta_{\mathbb{Z} C_{n}}\left(C_{5}\right)$ is also closed under addition and scalar multiplication. As

$$
\mathcal{U}\left(1+\Delta_{\mathbb{Z} C_{n}}\left(C_{5}\right)\right)=\left[1+\Delta_{\mathbb{Z} C_{n}}\left(C_{5}\right)\right] \cap \mathcal{U}\left(\mathbb{Z} C_{n}\right)
$$

we must investigate the units of the form $u=1+\sum_{i=1}^{4} A_{i} v_{i}$. An element of the form $u=$ $1+\sum_{i=1}^{4} A_{i} v_{i}$ is a unit if and only if $\exists u^{-1}=1+\sum_{i=1}^{4} B_{i} v_{i}$ such that $A_{i}, B_{i} \in \mathbb{Z} C_{n}$ and
$u u^{-1}=1$. By the above multiplication table, we can get

$$
\begin{aligned}
u u^{-1}=1+ & v_{1}\left[A_{1}+B_{1}+2 A_{1} B_{1}+A_{2} B_{1}+A_{3} B_{1}\right. \\
& \left.+A_{4} B_{1}+A_{1} B_{2}-A_{4} B_{2}+A_{1} B_{3}-A_{3} B_{3}+A_{1} B_{4}-A_{2} B_{4}\right] \\
+ & v_{2}\left[A_{2}+B_{2}-A_{1} B_{1}+A_{2} B_{1}+A_{1} B_{2}+2 A_{2} B_{2}+A_{3} B_{2}\right. \\
& \left.+A_{4} B_{2}+A_{2} B_{3}-A_{4} B_{3}+A_{2} B_{4}-A_{3} B_{4}\right] \\
+ & v_{3}\left[A_{3}+B_{3}-A_{2} B_{1}+A_{3} B_{1}-A_{1} B_{2}+A_{3} B_{2}+A_{1} B_{3}\right. \\
& \left.+A_{2} B_{3}+2 A_{3} B_{3}+A_{4} B_{3}+A_{3} B_{4}-A_{4} B_{4}\right] \\
+ & v_{4}\left[A_{4}+B_{4}-A_{3} B_{1}+A_{4} B_{1}-A_{2} B_{2}+A_{4} B_{2}-A_{1} B_{3}+A_{4} B_{3}\right. \\
& \left.+A_{1} B_{4}+A_{2} B_{4}+A_{3} B_{4}+2 A_{4} B_{4}\right]=1
\end{aligned}
$$

It is clear that this equation is hold if and only if
i)

$$
\begin{aligned}
& A_{1}+B_{1}+2 A_{1} B_{1}+A_{2} B_{1}+A_{3} B_{1}+A_{4} B_{1}+A_{1} B_{2} \\
& -A_{4} B_{2}+A_{1} B_{3}-A_{3} B_{3}+A_{1} B_{4}-A_{2} B_{4}=0
\end{aligned}
$$

ii)
$A_{2}+B_{2}-A_{1} B_{1}+A_{2} B_{1}+A_{1} B_{2}+2 A_{2} B_{2}+A_{3} B_{2}$
$+A_{4} B_{2}+A_{2} B_{3}-A_{4} B_{3}+A_{2} B_{4}-A_{3} B_{4}=0$
iii) $A_{3}+B_{3}-A_{2} B_{1}+A_{3} B_{1}-A_{1} B_{2}+A_{3} B_{2}+A_{1} B_{3}$ $+A_{2} B_{3}+2 A_{3} B_{3}+A_{4} B_{3}+A_{3} B_{4}-A_{4} B_{4}=0$
iv) $\begin{aligned} & A_{4}+B_{4}-A_{3} B_{1}+A_{4} B_{1}-A_{2} B_{2}+A_{4} B_{2}-A_{1} B_{3} \\ & +A_{4} B_{3}+A_{1} B_{4}+A_{2} B_{4}+A_{3} B_{4}+2 A_{4} B_{4}=0\end{aligned}$

Therefore, since

$$
\vec{X}:=\left[A_{1}, A_{2}, A_{3}, A_{4}\right]^{T}, \vec{Y}:=\left[B_{1}, B_{2}, B_{3}, B_{4}\right]^{T}
$$

and

$$
A:=\left[\begin{array}{cccc}
1+A_{1}+\sum A_{i} & A_{1}-A_{4} & A_{1}-A_{3} & A_{1}-A_{2} \\
-A_{1}+A_{2} & 1+A_{2}+\sum A_{i} & A_{2}-A_{4} & A_{2}-A_{3} \\
-A_{2}+A_{3} & -A_{1}+A_{3} & 1+A_{3}+\sum A_{i} & A_{3}-A_{4} \\
-A_{3}+A_{4} & -A_{2}+A_{4} & -A_{1}+A_{4} & 1+A_{4}+\sum A_{i}
\end{array}\right]
$$

we conclude from the uniqueness of the inverse of a unit that $A \vec{Y}=-\vec{X}$ has a unique solution in integral group ring $\mathbb{Z} C_{n}$. That is $A \in G L\left(4, \mathbb{Z} C_{n}\right)$.
The relation between the units in $\mathbb{Z}\left(C_{n} \times C_{5}\right)$ and the units in $\mathbb{Z} C_{n}$ comes from the determinant of this matrix which is very complicated. Hence, we consider some restrictions on the parameters $A_{j}^{\prime} s$.

## Lemma 2.9.

$$
S:=\left\{\sum_{j=1}^{4} A_{j} v_{j}: A_{1}=A_{4}, A_{2}=A_{3}, \forall A_{j} \in \mathbb{Z} C_{n}\right\}
$$

is a $\mathbb{Z} C_{n}$-subalgebra of $\Delta_{\mathbb{Z} C_{n}}\left(C_{5}\right)$.
Proof. Let $A_{1}=A_{4}$ and $A_{2}=A_{3}$ in $\Delta_{\mathbb{Z} C_{n}}\left(C_{5}\right)$. Then,

$$
S=\left\langle v_{1}+v_{4}\right\rangle \oplus\left\langle v_{2}+v_{3}\right\rangle
$$

and we attain the following multiplications:

$$
\begin{array}{c|c|c}
\cdot & v_{1}+v_{4} & v_{2}+v_{3} \\
\hline v_{1}+v_{4} & 4\left(v_{1}+v_{4}\right)-\left(v_{2}+v_{3}\right) & \left(v_{1}+v_{4}\right)+\left(v_{2}+v_{3}\right) \\
\hline v_{2}+v_{3} & \left(v_{1}+v_{4}\right)+\left(v_{2}+v_{3}\right) & 4\left(v_{2}+v_{3}\right)-\left(v_{1}+v_{4}\right)
\end{array}
$$

It is clear that addition and scalar multiplication are also closed in $S$.
Since

$$
\mathcal{U}(1+S)=(1+S) \cap \mathcal{U}\left(1+\Delta_{Z C_{n}}\left(C_{5}\right)\right)
$$

we need to get units of the form

$$
1+A_{1}\left(v_{1}+v_{4}\right)+A_{2}\left(v_{2}+v_{3}\right)
$$

Then $u=1+A_{1}\left(v_{1}+v_{4}\right)+A_{2}\left(v_{2}+v_{3}\right)$ is a unit in $\mathcal{U}(1+S)$ if and only if there is an element $u^{-1}=1+B_{1}\left(v_{1}+v_{4}\right)+B_{2}\left(v_{2}+v_{3}\right)$ such that $u u^{-1}=1$. Therefore,

$$
\begin{aligned}
u u^{-1}=1 & +\left(v_{1}+v_{4}\right)\left[A_{1}+B_{1}+4 A_{1} B_{1}+A_{1} B_{2}+A_{2} B_{1}-A_{2} B_{2}\right] \\
& +\left(v_{2}+v_{3}\right)\left[A_{2}+B_{2}-A_{1} B_{1}+A_{1} B_{2}+A_{2} B_{1}+4 A_{2} B_{2}\right]=1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& A_{1}+B_{1}+4 A_{1} B_{1}+A_{1} B_{2}+A_{2} B_{1}-A_{2} B_{2}=0 \\
& A_{2}+B_{2}-A_{1} B_{1}+A_{1} B_{2}+A_{2} B_{1}+4 A_{2} B_{2}=0
\end{aligned}
$$

and

$$
\left[\begin{array}{cc}
1+4 A_{1}+A_{2} & A_{1}-A_{2} \\
-A_{1}+A_{2} & 1+A_{1}+4 A_{2}
\end{array}\right]\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]=\left[\begin{array}{l}
-A_{1} \\
-A_{2}
\end{array}\right]
$$

has a unique solution in $\mathbb{Z} C_{n}$. Thus,

$$
1+5\left(A_{1}^{2}+A_{2}^{2}+3 A_{1} A_{2}+A_{1}+A_{2}\right) \in \mathcal{U}\left(\mathbb{Z} C_{n}\right)
$$

If we also consider the conditions $A_{1}=A_{4}$ and $A_{2}=A_{3}$ in the matrix $A$, we get the LU decomposition of $A$ by using a computer software as

$$
L=\left(l_{i j}\right)_{4 \times 4}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-\frac{A_{1}-A_{2}}{1+3 A_{1}+2 A_{2}} & 1 & 0 & 0 \\
0 & -\frac{A_{1}-A_{2}}{1+3 A_{2}+2 A_{1}} & 1 & 0 \\
\frac{A_{1}-A_{2}}{1+3 A_{1}+2 A_{2}} & \frac{A_{1}-A_{2}}{1+3 A_{2}+2 A_{1}} & 0 & 1
\end{array}\right]
$$

and

$-\frac{5 A_{1}^{3}+10 A_{1}^{2} A_{2}-10 A_{1} A_{2}^{2}-5 A_{2}^{3}+5 A_{1}^{2}-5 A_{2}^{2}+A_{1}-A_{2}}{\left(1+3 A_{1}+2 A_{2}\right)\left(1+3 A_{2}+2 A_{1}\right)}$
$-\frac{5 A_{1}^{2}+15 A_{1} A_{2}+5 A_{2}^{2}+5 A_{1}+5 A_{2}}{1+3 A_{2}+2 A_{1}}$
$A_{1}-A_{2}$
$-\frac{2 A_{1}^{2}+A_{1} A_{2}-3 A_{2}^{2}+A_{1}-A_{2}}{1+3 A_{1}+2 A_{2}}$
$-\frac{5 A_{1}^{2}+15 A_{1} A_{2}+5 A_{2}^{2}+5 A_{1}+5 A_{2}}{1+3 A_{1}+2 A_{2}}$
0



Since the entries $l_{i j}$ and $u_{i j}$ are elements in $\mathbb{Z} C_{n}$ for all $i, j \in\{1,2,3,4\}$, we conclude that $1+3 A_{1}+2 A_{2}$ and $1+3 A_{2}+2 A_{1}$ must be units.

Corollary 2.10. Let $A_{1}, A_{2} \in \mathbb{Z} C_{n}$ such that
i) $1+5\left(A_{1}^{2}+A_{2}^{2}+3 A_{1} A_{2}+A_{1}+A_{2}\right) \in \mathcal{U}\left(\mathbb{Z} C_{n}\right)$
ii) $1+3 A_{1}+2 A_{2} \in \mathcal{U}\left(\mathbb{Z} C_{n}\right)$
iii) $1+3 A_{2}+2 A_{1} \in \mathcal{U}\left(\mathbb{Z} C_{n}\right)$. Then

$$
\mathcal{U}\left(1+\Delta_{\mathbb{Z} C_{n}}\left(C_{5}\right)\right) \supset \mathcal{U}(1+S)=\left\{1+A_{1}\left(v_{1}+v_{4}\right)+A_{2}\left(v_{2}+v_{3}\right): v_{j}=1-x^{j}\right\}
$$

Remark. One can notice that if $u_{1}=1+3 A_{1}+2 A_{2}, u_{2}=1+3 A_{2}+2 A_{1}$ and $v=$ $1+5\left(A_{1}^{2}+A_{2}^{2}+3 A_{1} A_{2}+A_{1}+A_{2}\right)$ are units in $\mathbb{Z} C_{n}$,

$$
u_{1} u_{2}-\left(A_{1}-A_{2}\right)^{2}=v
$$

Here, the term $-\left(A_{1}-A_{2}\right)^{2}$ may not be a special element in $\mathbb{Z} C_{n}$. However, if we especially consider $-\left(A_{1}-A_{2}\right)^{2}$ as a nilpotent element in $\mathbb{Z} C_{n}$, this last equality is satisfied since the sum of a unit and a nilpotent element is also a unit. Besides, we can say the nilpotent element is only 0 in $\mathbb{Z} C_{n}$ from Proposition 4 in [11]. Thus, if $-\left(A_{1}-A_{2}\right)^{2}$ is a nilpotent element in $\mathbb{Z} C_{n}$, then $A_{1}=A_{2}=\alpha$. Let us define

$$
\mathcal{U}(1+S)_{0}=\left\{1+A_{1}\left(v_{1}+v_{4}\right)+A_{2}\left(v_{2}+v_{3}\right): v_{j}=1-x^{j}, A_{1}=A_{2}\right\}
$$

Therefore we can illustrate to find generators of $\mathcal{U}(1+S)_{0} \subset \mathcal{U}(1+S)$ satisfy the condition $1+5 \alpha \in \mathcal{U}\left(\mathbb{Z} C_{n}\right)$ for some $n \in \mathbb{N}$.

Example Let $n=8$. Then we know from [13] that $\mathcal{U}\left(\mathbb{Z} C_{8}\right)= \pm C_{8} \times\langle u\rangle$ where $u=$ $2+a-a^{3}-a^{4}-a^{5}+a^{7}$. A straightforward computation gives us that

$$
u^{7}=1+5\left(1960+1386 a-1386 a^{3}-1960 a^{4}-1386 a^{5}+1386 a^{7}\right)
$$

Hence, by taking

$$
\alpha=1960+1386 a-1386 a^{3}-1960 a^{4}-1386 a^{5}+1386 a^{7}
$$

we can say that $\mathcal{U}(1+S)_{0}$ is generated by $1+\alpha\left(v_{1}+v_{2}+v_{3}+v_{4}\right)$.
More examples can be introduced for $n \in \mathbb{N}$ for which the generators of $\mathcal{U}\left(\mathbb{Z} C_{n}\right)$ are obvious explicitly.

## References

[1] R. Zh. Aleev, Higman's Central Unit Theory, Units of Integral Group Rings of Finite Cyclic Groups and Fibonacci Numbers, Int. J. Algebra Comput., 4, 309-358 (1994).
[2] Ö. Küsmüş, On the Units of Integral Group Ring of $C_{n} \times C_{6}$, Algebra Discrete Math., 1, 142-151 (2015).
[3] I. G. Kelebek and T. Bilgin, Characterization of $\mathcal{U}_{1}\left(\mathbb{Z}\left[C_{n} \times K_{4}\right]\right)$, Eur. J. Pure Appl. Math., 4, 462-471 (2014).
[4] R. M. Low, On the Units of the Integral Group Ring $\mathbb{Z}\left[G \times C_{p}\right]$, J. Algebra Appl., 3, 369-396 (2008).
[5] K. Hoechsmann, Unit Bases in Small Cyclic Group Rings, Lecture Notes in Pure and Appl. Math., 198, 107-119 (1997).
[6] Y. Li and M. M. Parmenter, Central Units of the Integral Group Ring $\mathbb{Z} A_{5}$, Proc. Amer. Math. Soc., 125, 61-65 (1997).
[7] Y. Li, Units of $\mathbb{Z}\left(G \times C_{2}\right)$, Quaest. Math., 3-4, 201-218 (1998).
[8] R. Zh. Aleev and G. A. Panina, The Units of Cyclic Groups of Order 7 and 9, Russian Math.(Iz. VUZ), 43, 80-83 (2000).
[9] R. A. Ferraz, Units of $\mathbb{Z} C_{p}$, Contemp. Math., 499, 107-119 (2009).
[10] R. A. Ferraz and R. Marcuz, Units of $\mathbb{Z}\left(C_{p} \times C_{2}\right)$ and $\mathbb{Z}\left(C_{p} \times C_{2} \times C_{2}\right)$, Comm. Algebra, 44, 851-872 (2016).
[11] P Danchev, Idempotent Units of Commutative Group Rings, Comm. Algebra, 38, 4649-4654 (2010).
[12] L. Tóth, On the Number of Cyclic Subgroups of A Finite Abelian Group, Bull. Math. Soc. Sci. Math. Roumanie, 55, 423-428 (2012).
[13] C. P. Milies, S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publisher (2002).
[14] R. G. Ayoub and C. Ayoub, On the Group Ring of A Finite Abelian Group, Bull. Aust. Math. Soc, 1, 245-261 (1969).

## Author information

Ömer Küsmüş*, Department of Mathematics, Van Yüzüncü Yıl University, Van, TURKEY.
E-mail: omerkusmus@yyu.edu.tr
Richard M. Low, Department of Mathematics, San Jose State University, California, USA.
E-mail: richard.low@sjsu.edu
Received: December 29, 2018.
Accepted: March 2, 2019.

