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Ömer Küsmüş∗ and Richard M. Low

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16S34; Secondary 16U60.

Keywords and phrases: Unit group, integral group ring, group ring, direct product..

Abstract Let G be a group. Characterization of units in integral group ring ZG is a classical
open problem for various groups explicitly. In this work, we shall introduce a subgroup of unit
group in the integral group ring of the direct product which is defined as

Cn × C5 =
〈
a, x : an = x5 = 1, ax = xa

〉
in terms of the unit group in integral group ring of Cn.

1 Introduction

Let U(ZG) denote the unit group of the integral group ring of the group G over integers. For
many years, expression of U(ZG) as a set of generators of finite index has become a classical
hard problem for various types of G. In this study, we describe the subgroups of the unit group
of integral group ring Z(Cn × C5) where

Cn × C5 =
〈
a, x : an = x5 = 1, ax = xa

〉
by using the known unit group U(ZCn). One can notice that if G is a finite group, then the
center Z(U(ZG)) is a finitely generated abelian group of the form ±Z(G)×F where F is a free
Z-module with rank 1

2(|G| + n2 + 1 − 2l) [13]. Here, n2 is the number of elements of order 2
of G and l is the number of all the distinct cyclic subgroups of G. We can achieve a such F for
a few cases of the group G. F had been determined for the alternating groups A5 and A6 in [1]
and [6]. Aleev also had introduced the unit groups of integral group rings of the cyclic groups
C7 and C9 [8]. Hoechsmann had attained the set of generators of units in group rings for abelian
groups [5]. Ferraz displayed that

U(Z[θ]) =
〈
−1, θ, 1 + θ, ..., (1 + θ + ...+ θ

p−1
2 )
〉

therefore U(ZCp) = ±〈g〉 × 〈S〉 such that

S = {(1 + gt + g2t + ...+ gt(r−1))(1 + gt
i

+ g2ti + ...+ g(t−1)ti)− kĝ : i = 1, ...,
p− 3

2
}

where t is a positive integer such that U(Zp) = 〈t〉, r is the least positive integer such that
tr ≡ 1(modp), k = tr−1

p , p is a prime between 5 and 67, θ is a pth primitive root of unity [9].
Ferraz and Marcuz also have considered the groups G = Cp ×C2 and G = Cp ×C2 ×C2 where
p is a prime between 5 and 67. They determined the unit groups of the integral group rings of
these groups [10]. Li displayed that U(Z[G× C2]) = K oD such that

K = {u = 1 + α(1− x) : α ∈ ZG, u ∈ U(Z[G× C2])}

and
D = U(ZG) ⊂ U(Z[G× C2])

Moreover, any element which is of the form 1 + α(1− x) is a unit in U(Z[G× C2]) if and only
if 1 + 2α ∈ U(ZG) [7]. Low effectuted the following split exact sequences for U(Z[G × Cp])
where p is a prime:
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K
ι−−−−→ U(Z[G× Cp])

π−−−−→ U(ZG)

∼=
y σ

y ρ

y
M

ι−−−−→ U(Z[ζ]G) ρ−−−−→ U(Z2G).

and stated that
U(Z[G × Cp]) = M o U(ZG). Since M ⊂ U(Z[ζ]G), it should be note that complete

characterization of M depends on getting the set of unit generators of finite index in group rings
whose coefficients are from complex integral domains [4]. He also had said that M could not be
characterized explicitly [4].

Kelebek constructed the normalized unit group of Z[Cn ×K4] for the group

Cn ×K4 =
〈
a, x, y : an = x2 = y2 = 1, ax = xa, ay = ya, xy = yx

〉
as

U1(Z[Cn ×K4]) = U1(ZCn)× U1(1 +Kx)× U1(1 +Ky)× U1(1 +Kxy)

where
U1(1 +Kx) = {1 + P (x− 1) : 1− 2P ∈ U1(ZCn)}
U1(1 +Ky) = {1 + P (y − 1) : 1− 2P ∈ U1(ZCn)}
U1(1 +Kxy) = {1 + P (x− 1)(y − 1) : 1 + 4P ∈ U1(ZCn)}

2 Structure Theorem

Let Cn = 〈a : an = 1〉 and C5 =
〈
x : x5 = 1

〉
be distinct cyclic groups. We can define the group

epimorphism ϕ : Cn × C5 −→ Cn by ϕ(a, x) = a or ϕ(x) = 1. ϕ can be extend to the integral
group rings as follows

ϕ : Z(Cn × C5) −→ ZCn∑4
j=0 Ajx

j 7→
∑4
j=0 Aj

Let ∆ZCn
(C5) denote the kernel of ϕ. Then we can rearrange the form of ∆ZCn

(C5) as follows.

Proposition 2.1. ∆ZCn
(C5) = 〈1− x〉 ⊕

〈
1− x2

〉
⊕
〈
1− x3

〉
⊕
〈
1− x4

〉
over ZCn.

Proof.
∆ZCn

(C5) = {
∑4
j=0 Ajx

j :
∑4
j=0 Aj = 0, Aj ∈ ZCn}

= {
∑4
j=0 Ajx

j : A0 = −A1 −A2 −A3 −A4}

= {−
∑4
j=1 Aj(1− xj) : Aj ∈ ZCn}

= 〈1− x〉+
〈
1− x2

〉
+
〈
1− x3

〉
+
〈
1− x4

〉
Let us show the sum is direct. Say

∑4
j=1 Aj(1− xj) =

∑4
j=1 Bj(1− xj). Then Aj = Bj for all

j = 1, 2, 3, 4. Hence

∆ZCn
(C5) = 〈1− x〉 ⊕

〈
1− x2〉⊕ 〈1− x3〉⊕ 〈1− x4〉

Hence we can write a split exact sequence as

〈1− x〉 ⊕
〈
1− x2

〉
⊕
〈
1− x3

〉
⊕
〈
1− x4

〉 ι−−−−→ Z(Cn × C5)
ϕ−−−−→ ZCn

Keeping in mind that Z(Cn×C5) = (ZCn)C5 = (ZC5)Cn, we can also define another group
epimorphism ψ : Cn × C5 −→ C5 by ψ(a, x) = x or ψ(a) = 1. Then, extending ψ linearly to
the integral group rings, we obtain

ψ : Z(Cn × C5) −→ ZC5∑n−1
j=0 Bja

j 7→
∑n−1
j=0 Bj
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Let ∆ZC5(Cn) be the kernel of ψ. Then we can introduce the following proposition without
giving the proof which is straightforward from the previous one.

Proposition 2.2. ∆ZC5(Cn) = 〈1− a〉 ⊕ . . .⊕
〈
1− an−1

〉
over ZC5.

Since

ψ(∆ZCn
(C5)) = ∆Z(C5) = 〈1− x〉Z ⊕

〈
1− x2〉

Z ⊕
〈
1− x3〉

Z ⊕
〈
1− x4〉

Z

and
ϕ(∆ZC5(Cn)) = ∆Z(Cn) = 〈1− a〉Z ⊕ . . .⊕

〈
1− an−1〉

Z

it can be written that

K
ι−−−−→ ∆ZC5(Cn)

ϕ−−−−→ ∆Z(Cn)

ι

y ι

y ι

y
∆ZCn

(C5)
ι−−−−→ Z(Cn × C5)

ϕ−−−−→ ZCn

ψ

y ψ

y ψ

y
∆Z(C5)

ι−−−−→ ZC5
ϕ−−−−→ Z

Let us determine the ideal K. As

ϕ(
n−1∑
j=1

Aj(1− aj)) =
n−1∑
j=1

ϕ(Aj)(1− aj)

Then for all Aj ∈ ZCn,

ϕ(Aj) = 0⇐⇒ Aj ∈ 〈1− x〉Z ⊕
〈
1− x2〉

Z ⊕
〈
1− x3〉

Z ⊕
〈
1− x4〉

Z

Hence,

Ker(ϕ)|∆ZC5 (Cn) = {
∑n−1
j=0 Aj(1− aj) : ϕ(Ai) = 0, Ai ∈ ZCn}

= {
∑n−1
j=0 Aj(1− aj) : Ai ∈ Ker(ϕ)}

= {
∑n−1
j=0

∑4
k=0 αjk(1− aj)(1− xk) : αjk ∈ Z}

=
〈
(1− aj)(1− xk) : j = 1, ..., n− 1; k = 1, ..., 4

〉
Z

If we move all the split exact sequences to unit level, we get the following sequences.

U(1 +K)
ι−−−−→ U(1 + ∆ZC5(Cn))

ϕ−−−−→ U(1 + ∆Z(Cn))

ι

y ι

y ι

y
U(1 + ∆ZCn

(C5))
ι−−−−→ U(Z(Cn × C5))

ϕ−−−−→ U(ZCn)

ψ

y ψ

y ψ

y
U(1 + ∆Z(C5))

ι−−−−→ U(ZC5)
ϕ−−−−→ U(Z)

As the embedding functions can be regarded as the reverse directions of ϕ and ψ, all these
sequences split. This gives us the way on which we can state the unit group of Z(Cn × C5) as
follows:

Corollary 2.3.

U(Z(Cn × C5)) = U(ZC5)× U(1 + ∆ZC5(Cn)) = U(ZCn)× U(1 + ∆ZCn
(C5))
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Let F (G) denote the torsion-free part of the unit group of the integral group ring ZG. Since
U(Z) = {±1}, we obtain the following corollary:

Corollary 2.4.
F (Cn) ⊆ U(1 + ∆Z(Cn))

and
F (C5) ⊆ U(1 + ∆Z(C5))

Corollary 2.5.

U(Z(Cn × C5)) = (Cn × C5)× F (Cn)× F (C5)× U(1 +K)

By splitting U(Z(Cn × C5)) into its subgroups, it is clear that the complete characterization
of the unit group U(Z(Cn × C5)) depends on determining the subgroup U(1 + K) = U(1 +〈
(1− aj)(1− xk)

〉
Z). For some orders n, the rank of U(1 +K) can be calculated however we

now need to give a very useful result of Tóth [12].

Proposition 2.6. Let Cn1 and Cn2 be two cyclic groups have orders n1 and n2 respectively and
φ be Euler’s totient function. Then for every n1, n2 ≥ 1 the number of cyclic subgroups of
Cn1 × Cn2 is

c(n1, n2) =
∑

d1|n1,d2|n2

φ(gcd(d1, d2))

Theorem 2.7. Let n = 5pk where p(6= 5) is prime. Then, the rank of torsion-free part of the unit
subgroup U(1 +K) is determined by the following formula:

s(p, k) := 10pk − 4k − 5.

Proof. We explain the proof with two cases:
Case 1. Let p = 2. Then, the rank of torsion-free part of the unit group U(Z(Cn × C5)) can
easily be calculated by Ayoub and Ayoub [14]. It is trivial that the order of Cn ×C5 is 25pk. We
also need the number n2 and l to complete the proof. These numbers can be seen at the table
below:

|g| 1 5 p p2 . . . pk 5p 5p2 . . . 5pk

aj 1 ap
k

a5pk−1
a5pk−2

. . . a5 ap
k−1

ap
k−2

. . . a

xaj − x, xap
k − − − − xap

k−1
xap

k−2
. . . xa

x2aj − x2, x2ap
k − − − − x2ap

k−1
x2ap

k−2
. . . x2a

x3aj − x3, x3ap
k − − − − x3ap

k−1
x3ap

k−2
. . . x3a

x4aj − x4, x4ap
k − − − − x4ap

k−1
x4ap

k−2
. . . x4a

This table show us that n2 = 1. We also have 6k + 10 elements which satisfy 〈x〉 =
〈
x4
〉
,〈

x2
〉
=
〈
x3
〉
,
〈
xap

k−1
〉
=
〈
x4ap

k−1
〉

,
〈
x2ap

k−1
〉
=
〈
x3ap

k−1
〉

. This means there are 6k + 6
distinct cyclic subgroups of the group Cn × C5. Actually, we can also calculate the number of
cyclic subgroups of Cn × C5 from [12] since i = 0, 1 as follows

c(5pk, 5) =
∑

d1|5pk,d2|5

φ(gcd(d1, d2)) =
k∑
j=1

φ(gcd(5ipj , 1)) + φ(gcd(5ipj , 5)).

Thus, we confirm that c(5pk, 5) = (2k + 2)φ(1) + (k + 1)φ(5) = 6k + 6. Hence, the rank of
torsion-free part of the unit group U(Z(Cn×C5)) is obtained as 25pk−1−6k−5. Besides, it can
be easily computed that the rank of the unit group U(ZCn) as 5pk−1 − 2k − 1 and Karpilovsky
displayed that the unit group U(ZC5) has a single generator. All the these parameters give us
from Corollary 2.5. that the rank of U(1 +K) is 10pk − 4k − 5.
Case 2. Let p 6= 2. Then since the order of Cn ×C5 is odd, the parameter n2 is 0. We know also
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that there are 6k+ 6 distinct cyclic subgroups of Cn×C5. Hence, the rank of U(Z(Cn×C5)) is
25pk−12k−11

2 and then the rank of U(1 +K) is obtained as 10pk − 4k − 5. �
Example.

p k n Group Rank of U(Z(Cn × C5)) s(p, k)

2 1 10 C10 × C5 14 11
2 2 20 C20 × C5 33 27
3 1 15 C15 × C5 26 21
3 2 45 C45 × C5 95 77
5 1 25 C25 × C5 51 41
5 2 125 C125 × C5 295 237
7 1 35 C35 × C5 83 61
7 2 245 C245 × C5 595 477

As we stated before, an explicit characterization of the unit group U(Z(Cn × C5)) can be intro-
duced if U(1+K), U(1+∆ZC5(Cn)) or U(1+∆ZCn

(C5)) can be expressed clearly. Now, let us
state and prove our main result as follows:

Theorem 2.8. Let Cn × C5 =
〈
a, x : an = x5 = 1, ax = xa

〉
. Then

U(Z(Cn × C5)) = U(ZCn)× {1 +
4∑
i=1

Ai(1− xi) : Ai ∈ ZCn}

if and only if the matrix


1 +A1 +

∑
Ai A1 −A4 A1 −A3 A1 −A2

−A1 +A2 1 +A2 +
∑
Ai A2 −A4 A2 −A3

−A2 +A3 −A1 +A3 1 +A3 +
∑
Ai A3 −A4

−A3 +A4 −A2 +A4 −A1 +A4 1 +A4 +
∑
Ai


is invertible inM4(ZCn).

Proof. Let vi := 1− xi. Then

∆ZCn
(C5) = 〈v1〉 ⊕ 〈v2〉 ⊕ 〈v3〉 ⊕ 〈v4〉

is a ZCn-algebra of the following multiplication:

. v1 v2 v3 v4

v1 2v1 − v2 v1 + v2 − v3 v1 + v3 − v4 v1 + v4

v2 v1 + v2 − v3 2v2 − v4 v2 + v3 −v1 + v2 + v4

v3 v1 + v3 − v4 v2 + v3 −v1 + 2v3 −v2 + v3 + v4

v4 v1 + v4 −v1 + v2 + v4 −v2 + v3 + v4 −v3 + 2v4

One can clearly see that ∆ZCn
(C5) is also closed under addition and scalar multiplication. As

U(1 + ∆ZCn
(C5)) = [1 + ∆ZCn

(C5)] ∩ U(ZCn)

we must investigate the units of the form u = 1 +
∑4
i=1 Aivi. An element of the form u =

1 +
∑4
i=1 Aivi is a unit if and only if ∃u−1 = 1 +

∑4
i=1 Bivi such that Ai, Bi ∈ ZCn and
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uu−1 = 1. By the above multiplication table, we can get

uu−1 = 1 + v1[A1 +B1 + 2A1B1 +A2B1 +A3B1

+A4B1 +A1B2 −A4B2 +A1B3 −A3B3 +A1B4 −A2B4]

+ v2[A2 +B2 −A1B1 +A2B1 +A1B2 + 2A2B2 +A3B2

+A4B2 +A2B3 −A4B3 +A2B4 −A3B4]

+ v3[A3 +B3 −A2B1 +A3B1 −A1B2 +A3B2 +A1B3

+A2B3 + 2A3B3 +A4B3 +A3B4 −A4B4]

+ v4[A4 +B4 −A3B1 +A4B1 −A2B2 +A4B2 −A1B3 +A4B3

+A1B4 +A2B4 +A3B4 + 2A4B4] = 1

It is clear that this equation is hold if and only if

i)
A1 +B1 + 2A1B1 +A2B1 +A3B1 +A4B1 +A1B2

−A4B2 +A1B3 −A3B3 +A1B4 −A2B4 = 0

ii)
A2 +B2 −A1B1 +A2B1 +A1B2 + 2A2B2 +A3B2

+A4B2 +A2B3 −A4B3 +A2B4 −A3B4 = 0

iii)
A3 +B3 −A2B1 +A3B1 −A1B2 +A3B2 +A1B3

+A2B3 + 2A3B3 +A4B3 +A3B4 −A4B4 = 0

iv)
A4 +B4 −A3B1 +A4B1 −A2B2 +A4B2 −A1B3

+A4B3 +A1B4 +A2B4 +A3B4 + 2A4B4 = 0

Therefore, since
~X := [A1, A2, A3, A4]

T , ~Y := [B1, B2, B3, B4]
T

and

A :=


1 +A1 +

∑
Ai A1 −A4 A1 −A3 A1 −A2

−A1 +A2 1 +A2 +
∑
Ai A2 −A4 A2 −A3

−A2 +A3 −A1 +A3 1 +A3 +
∑
Ai A3 −A4

−A3 +A4 −A2 +A4 −A1 +A4 1 +A4 +
∑
Ai


we conclude from the uniqueness of the inverse of a unit that A~Y = − ~X has a unique solution
in integral group ring ZCn. That is A ∈ GL(4,ZCn). �
The relation between the units in Z(Cn×C5) and the units in ZCn comes from the determinant of
this matrix which is very complicated. Hence, we consider some restrictions on the parameters
A′js.

Lemma 2.9.

S := {
4∑
j=1

Ajvj : A1 = A4, A2 = A3,∀Aj ∈ ZCn}

is a ZCn-subalgebra of ∆ZCn
(C5).

Proof. Let A1 = A4 and A2 = A3 in ∆ZCn
(C5). Then,

S = 〈v1 + v4〉 ⊕ 〈v2 + v3〉

and we attain the following multiplications:

. v1 + v4 v2 + v3

v1 + v4 4(v1 + v4)− (v2 + v3) (v1 + v4) + (v2 + v3)

v2 + v3 (v1 + v4) + (v2 + v3) 4(v2 + v3)− (v1 + v4)
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It is clear that addition and scalar multiplication are also closed in S. �
Since

U(1 + S) = (1 + S) ∩ U(1 + ∆ZCn(C5))

we need to get units of the form

1 +A1(v1 + v4) +A2(v2 + v3)

Then u = 1 +A1(v1 + v4) +A2(v2 + v3) is a unit in U(1 + S) if and only if there is an element
u−1 = 1 +B1(v1 + v4) +B2(v2 + v3) such that uu−1 = 1. Therefore,

uu−1 = 1 + (v1 + v4)[A1 +B1 + 4A1B1 +A1B2 +A2B1 −A2B2]

+ (v2 + v3)[A2 +B2 −A1B1 +A1B2 +A2B1 + 4A2B2] = 1

Hence,
A1 +B1 + 4A1B1 +A1B2 +A2B1 −A2B2 = 0
A2 +B2 −A1B1 +A1B2 +A2B1 + 4A2B2 = 0

and [
1 + 4A1 +A2 A1 −A2

−A1 +A2 1 +A1 + 4A2

][
B1

B2

]
=

[
−A1

−A2

]
has a unique solution in ZCn. Thus,

1 + 5(A2
1 +A2

2 + 3A1A2 +A1 +A2) ∈ U(ZCn)

If we also consider the conditions A1 = A4 and A2 = A3 in the matrix A, we get the LU
decomposition of A by using a computer software as

L = (lij)4×4 =



1 0 0 0

− A1−A2
1+3A1+2A2

1 0 0

0 − A1−A2
1+3A2+2A1

1 0

A1−A2
1+3A1+2A2

A1−A2
1+3A2+2A1

0 1


and
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U
=

(u
ij
) 4
×

4
=

            1
+

3A
1
+

2A
2

0
A

1
−
A

2
A

1
−
A

2

0
1
+

3A
2
+

2A
1

−
2A

2 1+
A

1A
2−

3A
2 2+
A

1−
A

2
1+

3A
1+

2A
2

(A
1−
A

2)
2

1+
3A

1+
2A

2

0
0

−
5A

2 1+
15
A

1A
2+

5A
2 2+

5A
1+

5A
2

1+
3A

1+
2A

2
−

5A
3 1+

10
A

2 1A
2−

10
A

1A
2 2−

5A
3 2+

5A
2 1−

5A
2 2+
A

1−
A

2
(1
+

3A
1+

2A
2)
(1
+

3A
2+

2A
1)

0
0

0
−

5A
2 1+

15
A

1A
2+

5A
2 2+

5A
1+

5A
2

1+
3A

2+
2A

1
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Since the entries lij and uij are elements in ZCn for all i, j ∈ {1, 2, 3, 4}, we conclude that
1 + 3A1 + 2A2 and 1 + 3A2 + 2A1 must be units.

Corollary 2.10. Let A1, A2 ∈ ZCn such that

i)1 + 5(A2
1 +A2

2 + 3A1A2 +A1 +A2) ∈ U(ZCn)

ii)1 + 3A1 + 2A2 ∈ U(ZCn)

iii)1 + 3A2 + 2A1 ∈ U(ZCn). Then

U(1 + ∆ZCn
(C5)) ⊃ U(1 + S) = {1 +A1(v1 + v4) +A2(v2 + v3) : vj = 1− xj}

Remark. One can notice that if u1 = 1 + 3A1 + 2A2, u2 = 1 + 3A2 + 2A1 and v =
1 + 5(A2

1 +A2
2 + 3A1A2 +A1 +A2) are units in ZCn,

u1u2 − (A1 −A2)
2 = v

Here, the term −(A1 − A2)2 may not be a special element in ZCn. However, if we especially
consider −(A1 −A2)2 as a nilpotent element in ZCn, this last equality is satisfied since the sum
of a unit and a nilpotent element is also a unit. Besides, we can say the nilpotent element is only
0 in ZCn from Proposition 4 in [11]. Thus, if −(A1 − A2)2 is a nilpotent element in ZCn, then
A1 = A2 = α. Let us define

U(1 + S)0 = {1 +A1(v1 + v4) +A2(v2 + v3) : vj = 1− xj , A1 = A2}

Therefore we can illustrate to find generators of U(1 + S)0 ⊂ U(1 + S) satisfy the condition
1 + 5α ∈ U(ZCn) for some n ∈ N.

Example Let n = 8. Then we know from [13] that U(ZC8) = ±C8 × 〈u〉 where u =
2 + a− a3 − a4 − a5 + a7. A straightforward computation gives us that

u7 = 1 + 5(1960 + 1386a− 1386a3 − 1960a4 − 1386a5 + 1386a7)

Hence, by taking

α = 1960 + 1386a− 1386a3 − 1960a4 − 1386a5 + 1386a7

we can say that U(1 + S)0 is generated by 1 + α(v1 + v2 + v3 + v4). �
More examples can be introduced for n ∈ N for which the generators of U(ZCn) are obvious
explicitly.
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