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Abstract. C-Bochner pseudosymmetric LP-Sasakian manifold and LP-Sasakian manifold
satisfying B(¢,X) - B =0, B(¢,U) - R =0and B(§, X) - S = 0 have been studied. Finally an
example of LP Sasakian manifold has been constructed.

1 Introduction

In 1989 Matsumoto [11] introduced the notion of Lorentzian para-Sasakian manifolds. The same
notion was independently introduced by Mihai and Rosca [13] who obtained several results. As
a generalization of spaces of constant curvature, locally symmetric spaces were introduced by
Cartan [3]. Every locally symmetric space satisfies R - R = 0, whereby the first R stands for
the curvature operator which acts as a derivation on the second R which stands for the Riema-
nian curvature tensor. Manifolds satisfying the condition R - R = 0 are called semisymmetric
manifolds and were classified by Szabo [21]. The condition of semisymmetry was weakened by
Deszcz as pseudosymmetry which are characterized by the condition R-R = LQ(g, R), whereby
L is a real function on M and Q(g, R) is the Tachibana tensor of M.
A Riemannian manifold M is said to be pseudosymmetric in the sense of Deszcz [8] if

R(X,Y)-R(U,V)Z = Lr((X NY)-R(U,V)Z), (1.1)
holds on Ur = {X € M|R — i@ #0 at x}, where G is the (0,4) tensor defined by

G(X1, X2, X3, Xy) = g((X1 A X2) X3, X4), Lg is some smooth function on Ui and (X AY) is
an endomorphism defined by

(XAY)Z =9(Y,2)X —g(X, 2)Y. (1.2)
A Riemannian manifold M is said to be C-Bochner pseudosymmetric [5] if
R(X,Y) -B(U,V)Z=Lg((XANY)-B(U,V)Z), (1.3)

holdsontheset Ug = {x € M : B# 0 at x}, where Lp is some function on Up and B is the
C-Bochner curvature tensor [5].

Pseudosymmetric LP-Sasakian manifold was studied by De and De [4]. In their article
they mainly studied pseudosymmetric, Weyl-pseudosymmetric and Ricci-pseudosymmetric LP-
Sasakian manifolds and obtained some interesting results.

Motivated by the above studies we made an attempt to study LP-Sasakian manifold with C-
Bochner curvature tensor. The paper is organized as follows: After the preliminaries, in section
3 we studied C-Bochner pseudosymmetric LP-Sasakian manifolds and proved that a (2n + 1)-
dimensional C-Bochner Pseudosymmetric LP-Sasakian manifold is locally isometric to a sphere.
In sections 4 and 5 we have proved that LP-Sasakian manifold satisfying B(§, X) - B = 0 and
B(¢, X)- R = 0 are isometric to sphere and hyperbolic space respectively. Section 6 is concerned
with LP-Sasakian manifold satisfying B(£, X) - S = 0. Finally, in the last section we construct
an example of LP-Sasakian manifold.
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2 Preliminaries

A (2n + 1)-dimensional differentiable manifold M>"*! is said to be Lorentzian para-Sasakian
(shortly, LP-Sasakian) manifold, if it admits a (1, 1)-tensor field ¢, a contravariant vector field £,
a 1-form 7 and a Lorentzian metric g which satisfies [11, 12].

P =X+nX)E nE)=-1, ¢£=0, n(g)=0, g(X,&=nX), @1

9(¢X,0Y) = g(X,Y) +n(X)n(Y), (2.2)
Vx§=o¢X, (2.3)
(Vx9)Y = g(X,Y)E+n(X)Y +2n(X)n(Y)E, (2.4)

for all vector fields X,Y,Z € T,,M. Here V denotes the operator of covariant differentiation
with respect to Lorentzian metric g.
Also in LP-Sasakian manifold, the following relations hold [11, 12]:

9(R(X,Y)Z, &) =n(R(X.Y)Z) = g(Y, Z)n(X) — 9(X, Z)n(Y), (2.5)

R X)Y = g(X,Y)§ —n(Y)X, (2.6)
R(X,Y){=n(X)Y —n(Y)X, 2.7
R(§, X)6 = X +n(X)E, (2.8)
S(X,€) = 2nn(X). 2.9)

for all vector fields X,Y, Z, where S is the Ricci tensor and R is the Riemannian curvature
tensor.

C-Bochner curvature tensor on an almost contact metric manifold was defined by Matsumoto
and Chuman [10] and is given by

B(X,Y)Z = R(X,Y)Z+ {S(X,2)Y — S(Y, 2)X + g(X, Z)QY

1
2(n+2)
— 9V, 2)QX + S(¢X, Z)¢Y — S(¢Y, Z)pX + g(6X, Z)QpY
— 9(8Y, 2)QdX +25(X,Y)pZ + 29(¢X,Y)Q0Z — S(X, Z)n(Y )¢
+ S, Z)n(X)E —n(X)n(Z2)QY +n(Y)n(2)QX}

S alOX, Z)6Y — g(6Y. 2)0X + 20(6X.Y)o2)
S g9 2)Y — gV 2)X) + 5l o 2)n()e
— 9, Z2)n(X) +n(X)n(2)Y —n(Y)n(Z) X}, (2.10)
where 7 = T:ig Q is the Ricci operator i.e. g(QX,Y) = S(X,Y) and r is the scalar curvature
of the manlfold
Using (2.5)-(2.8), one can get

B(X,§)z = H{n(Z2)X —g(X,Z)¢}, (2.11)
BX,Y)¢ = H{n(Y)X —n(X)Y}, (2.12)
B¢ Y)Z = H{g(Y,Z2)§-n(Z2)Y}, (2.13)
n(B(X,Y)Z) = H{g(Y,Z)n(X)-g(X,Z)n(Y)}, (2.14)

where H is a constanti.e., H = {1 — ;—fz + 2&142) + 5

3 C-Bochner Pseudosymmetric LP-Sasakian manifold
A (2n+1)-dimensional LP-Sasakian manifold M?"*! is said to be C-Bochner pseudosymmetric
if
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holds on the set Ug = {z € M : B # 0} at «, where L is some function on Up.
Let M?"*! be a C-Bochner pseudosymmetric LP-Sasakian manifold. Then from (3.1) we
have
(R(X,€) - B)(U, V)W = Lp[((X Ay §) - B)(U,V)W]. (3.2)

Using (2.6), the left-hand side of equation (3.2) becomes
{9(&, BU,V)W)E = g(X, B(U,V)W)§ —n(U)B(X, V)W
+ g(X,U)BE V)W —p(V)B(U, X)W + g(X,V)B(U, &)W
- n(W)B(U,V)X + g(X,W)B(U,V )&} = 0. (3.3)
Using (1.2), the right hand side of equation (3.2) turns into
Lp{g(§, BU,V)W)E —g(X, B(U,V)W)§ —n(U)B(X, V)W
+ g(X,U)B(E V)W —n(V)B(U, X)W + g(X,V)B(U, &)W
— n(W)B(U,V)X + g(X,W)B(U,V)¢} = 0. 34
By virtue of (3.3) and (3.4), (3.2) give rise to
(1= Lp){g(&, BU V)W) — g(X, B(U, V)W) = n(U)B(X, V)W
+ g(X,U)BEVIW —n(V)B(U, X)W + g(X, V) B(U, )W
— n(W)B(U,V)X + g(X,W)B(U,V)§} =0, (3.5)
which implies Ly = 1 or
{9(&, BU,V)W)E = g(X, B(U,V)W)§ —n(U)B(X, V)W
+ 9(X,U)B(EV)Z —n(V)BU, X)W + g(X, V)B(U, )W
— n(W)B(U, V)X + g(X,W)B(U,V)¢} = 0. (3.6)
Putting W = £ in the above equation and simplifying we get
BU V)X ={g(X,V)U —g(X,U)V}. (3.7
Thus, we have the following assertion;

Theorem 3.1. Ifa (2n+1)-dimensional LP-Sasakian manifold M*"*! is C-Bochner Pseudosym-
metric then M* 1 is locally isometric to a sphere or Lg = 1.

4 LP-Sasakian manifold satisfying B(£, X) - B =0

Let us consider an LP-Sasakian manifold satisfying B(¢, X) - B = 0.
Then we have,

— B(U,B(,X)V)W — B(U,V)B(¢, X)W = 0. 4.1)
In view of (2.13), (4.1) gives
Hlg(X, BU,V)W)§ —n(B(U,V)W)X — g(X,U)B(, V)W
+ nU)B(X, VW — g(X,V)B(U, )W +n(V)B(U, X)W
— g(X,W)B(U, V)¢ +n(W)B(U,V)X] = 0. 4.2)
Setting V' = £ in (4.2) and making use of (2.11), we get
BU, X)W = —-H{g(X, W)U — g(U,W)X}. (4.3)
Hence, we can state the following:

Theorem 4.1. [f a (2n + 1)-dimensional LP-Sasakian manifold M*"*" satisfies B(¢, X)-B =0
then M*"*! is isometric to a hyperbolic space.



LP-Sasakian Manifold Admitting C-Bochner Curvature Tensor 399

5 LP-Sasakian manifold Satisfying B((,U) - R =0
Suppose M2"*! satisfies B(¢,U) - R = 0. The condition B(¢,U) - R = 0 implies that
B, U)R(X,Y)Z — R(B(,,U)X,Y)Z
— R(X,B(.&,U)Y)Z — R(X,Y)B(¢,U)Z = 0. (5.1)
By virtue of (2.12), (5.1) turns into
Hlg(U, R(X,Y)Z)§ —n(R(X,Y)Z)U — g(U, X)R(¢,Y)Z
+ n(X)RU,Y)Z —g(UY)R(X,6)Z +n(Y)R(X,U)Z
- g(U,Z2)R(X,Y)+n(Z)R(X,Y)U] =0. (5.2)
Plugging Z = ¢ in (5.2) and using (2.7), one can get
H{—g(U,X)Y + g(UY)X — R(X,Y)U} = 0. (5.3)
which yields, either H = 0 i.e. 7 = 2n,
or
R(X,Y)U = [g(Y,U)X — g(X,U)Y]. (5.4)
Thus, we can state the following theorem;

Theorem 5.1. An (2n + 1)-dimensional LP-Sasakian manifold satisfying the condition B(¢,X ) -
R = 0is locally isometric to a sphere or T = 2n.

6 LP-Sasakian manifolds satisfying B(£, X) - S =0

Consider a LP-Sasakian manifold satisfying B(¢, X) - S = 0. Then we have

S(B(§, X)Y,§) + S(Y,B(§, X)§) = 0. (6.1)
Using (2.12) and (2.13) in (6.1), we get
S(X,Y) =2ng(X,Y). (6.2)

Thus we can state the following;

Theorem 6.1. A (2n + 1)-dimensional LP-Sasakian manifold satisfying B(¢,X) - S = 0 is an
Einstein manifold.

7 Example

We consider seven dimensional manifold M = {z,y, z,u,v,w,t € R'}, where z,y, z,u, v, w, t
are the standard coordinates in R’. We choose linearly independent global frame fields {e1, e, e3,
€4, €5, €6, €7} on M as

;0 ;0 ;0 ;0 ;0 0
ep=c¢—, ez3=e'—, ea=¢€e'—, es=¢€e—, eg=€—, e7=—

Oz’ dy 0z ow ot
Let g be the Lorentzian metric defined by

elzet

gler,er) = g(ez, €2) = g(es, e3) = glea, e4) = gles, es) = gles,e6) = 1, g(e7,e7) = —1,
gleie;) =0 for 1<i,j<17.

Let 7 be the 1-form defined by n(Z) = g(Z, e7), for any Z € x(M). We define a (1, 1)-tensor
field ¢ as

pler) = —e1, ¢(e2) = —ea, P(e3) = —es, (7.1
d(ea) = —es, ¢(es) = —es, ¢(es) = —es, d(e7) = 0.
The linearity of ¢ and g yields that
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n(e7) = —1,
$*(Z) = Z+n(2)E,
9(8U,0Z) = g(U, Z) + n(U)n(Z).

For any U, Z € x(M), let V be the Levi Civita connection with respect to the Lorentzian metric
g and R be the curvature tensor of g, then we have

le1, 2] = [e1, €3] = [e1, ea] = [e1,e5] = [e1,e6] = 0, [e1,e7] = —ey, (7.2)
[e2,e3] = [e2, ea] = [e2,€5] = [€2,e6] =0, [e2,€7] = —e,
[e3,€4] = [e3,€5] = [e3, e6] = 0, [e3, 7] = —e3,
les, es] = lea,e6] =0, [es, €7] = —eq,
[es,ec) = 0, [es, e7] = —es,
[e6, e7] = —es

The Koszul's formula is defined by

ZQ(VXYv Z) = Xg(Y, Z) + Yg(Z,X) - Zg(X, Y) - Q(Xv [Yv Z]) - g(Y, [Xv Z]) + 9(27 [Xa Y])

By using the Koszul's formula, we can get the followings

Velel = e7, Ve|€2 == 07 Veleg == 07 Ve|€4 == 07 Veles == 07 Ve|€6 == 07 Ve]67 —eq,
Vezel = 0, Vezez = €7, V5263 = 0, V5264 = 0, V6265 = 0, V62€6 = 0, v6267 = —€y,
V53€1 = 07 V63€2 = 07 Ve3€3 = e7, Ve3€4 = 07 Ve3€5 = 07 V€3€6 = 07 Ve3e7 = —e3,
V@4€1 = 0, V@462 = 0, V@463 = 0, ve4€4 = €7, v@465 = 0, v@466 = 0, VG467 = —¢€4,
Veer =0, Veer=0, Vges=0, Vges=0, Vees=e;, Vges=0, Ve =—es,
V%B] = 0, V6662 = 07 V8663 = 07 V36€4 = 07 Veées = 07 V%e(, = €7, V8667 = —€p,
Ve,e1 =0, Veer =0, Vg,es=0, V.,es=0, V.,es=0, Ve =0, Ve,e7=0
From the above calculation it can be easily seen that in M7(¢,&,7,9), n(€) = —1 and Vx& =

oX.

Hence the manifold is an LP-Sasakian manifold.
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