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Abstract. In this note we show that the set of operators, S = {I, T, P, T ◦ P} that consists
of the identity I , the usual transpose T , the per-transpose P and their product T ◦ P , forms
a Klein Four-Group with the composition. With the introduced framework, we study in detail
the properties of bisymmetric, centrosymmetric matrices and other algebraic structures, and we
provide new definitions and results concerning these structures. In particular, we show that the
per-tansposition allows to define a degenerate inner product of vectors, a cross product and a
dyadic product of vectors with some interesting properties. In the last part of the work, we
provide another realization of the Klein Group involving the tensorial product of some 2 × 2
matrices.

1 Introduction and background

Definition 1.1. Let A ∈ Rn×m. If A = [aij ] for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, then P (A) is the
per-transpose of A, and operation defined by

P
(
[aij ]

)
= [am−j+1,n−i+1] (1.1)

Consequently, P (A) ∈ Rm×n. Here, we list some properties:

(i) P ◦ P (A) = A

(ii) P (A±B) = P (A)± P (B) if A, B ∈ Rn×m

(iii) P (αA) = αP (A) if α ∈ R

(iv) P (AB) = P (B)P (A) if A ∈ Rm×n, B ∈ Rn×p

(v) P ◦ T (A) = T ◦ P (A) where T (A) is the transpose of A

(vi) det(P (A)) = det(A)

(vii) P (A)−1 = P (A−1) if det(A) 6= 0

The proofs of these properties follow directly from the definition. For instance, let us prove
property 5. Indeed, if A ∈ Rn×m, then T (A), P (A) ∈ Rm×n and the operators T, P act over the
element [aij ] as T ([aij ]) = [aji], P ([aij ]) = [am−i+1,n−j+1] , then we have

P ◦ T ([aij ]) = P ([aji]) = [an−i+1,m−j+1]

= T ([am−j+1,n−i+1]) = T ◦ P ([aij ]) (1.2)

Proposition 1.2. The set of operators S = {I, T, P,E} that consists of the identity I , the trans-
pose T , the per-transpose P , and E ≡ P ◦ T , forms a Klein Four-Group, {S, ◦} with the compo-
sition

The group structure of {S, ◦} can be easily shown taking into account that each operator is
their own inverse, i.e. T ◦ T = I , P ◦ P = I , and (P ◦ T )−1 = T−1 ◦ P−1 = T ◦ P , which
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implies E ◦ E = I , and that the binary operation defined in such a way satisfies the associative
property. On the other hand, by virtue of property 5, T ◦ P = P ◦ T = E. The closure property
of the group under the composition can be shown by means of the Cayley table [1, 2]:

I T P E

I I T P E

T T I E P

P P E I T

E E P T I

1.1 Examples

To illustrate the differences with respect to the standard transpose, we can say that the per-
transpose is an operation that converts columns into files with a rotation in the clockwise sense

x1

x2

x3
...

xn−1

xn



T

=
[
x1 x2 x3 . . . xn−1 xn

]
(1.3)



x1

x2

x3
...

xn−1

xn



P

=
[
xn xn−1 . . . x3 x2 x1

]
(1.4)

In general, let X be a n × 1 matrix (column vector) their transpose and per-transpose are
different file vectors related by the equation,

XP = XTJn (1.5)

Where Jn ∈ Rn×n is known in the literature[4] as exchange matrix or permutation matrix. Their
elements Jij are given by

Jij =

{
1, j = n− i+ 1
0, j 6= n− i+ 1

(1.6)

Making explicit the matrix representation

Jn =



0 0 · · · 0 0 1
0 0 · · · 0 1 0
0 0 · · · 1 0 0
...

...
...

...
...

0 1 · · · 0 0 0
1 0 · · · 0 0 0


(1.7)

Note that Jn satisfies an involutive property, i.e. J2
n=1. It is easy to see that multiplying Eq.(1.5)

on the right by Jn we obtain the relation,

XT = XPJn (1.8)



404 Ginés R Pérez Teruel

On the other hand, for square matrices the per-transpose is obtained reflecting terms with respect
to the northeast-to-southwest diagonala11 a12 a13

a21 a22 a23

a31 a32 a33


P

=

a33 a23 a13

a32 a22 a12

a31 a21 a11

 (1.9)

1.2 Persymmetric matrices

There are some important classes of matrices that can be defined concisely in terms of the per-
transpose operation. We begin giving a pair of definitions

Definition 1.3. (Persymmetric matrix) A real matrix A is said to be persymmetric if P (A) = A.
In other words, if A ∈ Rn×n, then [aij ] = [an−j+1,n−i+1] ∀1 ≤ i ≤ n, 1 ≤ j ≤ n

Definition 1.4. (Skew-persymmetric matrix) A real matrix A is said to be skew-persymmetric if
P (A) = −A. In other words, if A ∈ Rn×n, then [aij ] = −[an−j+1,n−i+1] ∀1 ≤ i ≤ n, 1 ≤ j ≤ n

For instance, the general form of a 2 × 2 persymmetric matrix A and skew-persymmetric
matrix B will be, respectively

A =

(
α β

γ α

)
B =

(
α 0
0 −α

)
(1.10)

Proposition 1.5. Any square matrix A ∈ Rn×n can be decomposed as A = B + C, where B is
persymmetric and C is skew-persymmetric.

Proof. Simply define B ≡ 1
2

(
A + P (A)

)
, and C ≡ 1

2

(
A − P (A)

)
. From the definition it

automatically follows that, P (B) = B, P (C) = −C

For example, the form of this decomposition for a general 2× 2 square real matrix will be

A ≡

(
α β

γ δ

)
=

1
2

(
α+ δ 2β

2γ δ + α

)
+

1
2

(
α− δ 0

0 δ − α

)
(1.11)

Proposition 1.6. Let A ∈ Rn×n. Then, the composition T ◦ P (A), turns out to be equal to,
T ◦ P (A) = JnAJn

Proof. [(
JnAJn

)
ij

]
=

n∑
k=1

n∑
l=1

Jik[akl]Jlj =
n∑

k=1

Jik[ak,n−j+1]

= [an−i+1,n−j+1] = T ◦ P ([aij ]) (1.12)

Prop.1.6 allows one to study the properties of persymmetric matrices. Indeed, let us suppose
that a square matrix turns out to be equal to their per-transpose, then P (A) = A. In that case the
general relation T ◦ P (A) = JnAJn acquires the form

T (A) = JnAJn (1.13)

Where T (A) = AT is the transpose. Now, if we multiply Eq.(1.13) on the left by the exchange
matrix J we get the result

JnA
T = AJn (1.14)

Which is a well known property that satisfy any persymmetric matrix [5, 6]. Therefore, we have
shown that a persymmetric matrix is only a square matrix that turns out to be equal to their
per-transpose.
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On the other hand, Prop.1.6 allows as well to give as a corollary a compact expression for the
per-transpose operation when square matrices are involved. Indeed, since JT

n = Jn, with a bit of
algebra we find

P (A) = JnT (A)Jn (1.15)

Or in a more familiar notation, AP = JnA
TJn. From this relation, Eq.(1.14) can be more

directly obtained when AP = A. For skew-persymmetric matrices (AP = −A), the substitution
in Eq.(1.15) provides, JnAT = −AJn. It is easy to generalize Eq.(1.15) for non-square matrices.
Indeed, if A ∈ Rn×m, then

P (A) = JmT (A)Jn (1.16)

1.3 Bisymmetric and centrosymmetric matrices

The per-transpose operation will also allow us to give an alternative definition of bisymmetric
and centrosymmetric matrices and to prove a well known definition property in the literature
of these matrices, namely, if A is bisymmetric or centrosymmetric, then satisfies the equation,
JnA = AJn, a property that can be derived as a particular case from Prop.1.6, or even more
directly from Eq.(1.15)

Definition 1.7. (Bisymmetric matrix) A real matrix A is said to be bisymmetric if P (A) =
T (A) = A. In other words, if A ∈ Rn×n, then [aij ] = [an−j+1,n−i+1] = [aji] for all 1 ≤ i ≤ n,
1 ≤ j ≤ n

Definition 1.8. (Skew-bisymmetric matrix) A real matrix A is said to be skew-bisymmetric if
P (A) = T (A) = −A. In other words, if A ∈ Rn×n, then [aij ] = −[an−j+1,n−i+1] = −[aji] for
all 1 ≤ i ≤ n, 1 ≤ j ≤ n

Note that if a square matrix A is bisymmetric, namely, it turns out to be equal to their trans-
pose and per-transpose simultaneously, then by virtue of Eq.(1.15) we have

P (A) = A = JnAJn (1.17)

Which automatically implies that, AJn = JnA. Such relation is also satisfied by any centrosym-
metric matrix, as we will show. In fact, these properties, usually accepted in the literature as part
of the definitions of these matrices, are derived in this work as a consequence of the novel and
more fundamental definitions introduced.

Proposition 1.9. Let A ∈ R2×2. The matrix B ∈ R2×2 defined as, B ≡ T (A) + P (A) is bisym-
metric

Proof. If B ≡ T (A) + P (A), then their per-transpose P (B) will be equal to

P (B) = P ◦ T (A) +A (1.18)

where by virtue of the Caley table of Prop. 1.2 for the composition we have that, P ◦ P = I ,
where I is the identity, and therefore P ◦P (A) = A. On the other hand, the transpose T (B) will
be

T (B) = A+ T ◦ P (A) (1.19)

where have used the involutive property of the transpose, namely, T ◦ T = I , and therefore,
T ◦T (A) = A. Since, T ◦P = P ◦T , as we proved in Eq.(1.2) (the Klein Group is commutative),
then we can conclude that T (B) = P (B). On the other hand, let us consider a 2 × 2 general

square matrix A given by, A ≡

(
α β

γ δ

)
. Therefore, the matrix B defined above will be

B ≡ T (A) + P (A) =

(
α+ δ β + γ

γ + β α+ δ

)
(1.20)

Which is bisymmetric, i.e. it turns out to be equal to their transpose and per-transpose simulta-
neously.
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It is worth noting that given an arbitrary matrix A ∈ Rn×n, the construction B ≡ T (A) +
P (A) will not be bisymmetric in the general case. For example, let us consider the case of a
general matrix A ∈ R3×3 given by,

A ≡

α β γ

δ ε ζ

η θ ι

 (1.21)

The construction B = T (A) + P (A) for this example gives the result

B =

α+ ι δ + ζ γ + η

β + θ 2ε β + θ

γ + η δ + ζ α+ ι

 (1.22)

This matrix is centrosymmetric (symmetric about its centre, in this case the element 2ε) but it
is not a bisymmetric matrix. Then, given an arbitrary square matrix A, the construction B ≡
T (A)+P (A), will only provide a bisymmetric matrix in the 2×2 case. Nevertheless, there exist
a method to build a bisymmetric matrix from a general square matrix of arbitrary dimension.
This is achieved by adding to the transpose and per-transpose two additional pieces, where the
two other operators of the Klein 4-Group {I, T, P,E} play a role.

Proposition 1.10. Let A ∈ Rn×n. Then, the matrix B ∈ Rn×n defined as, B ≡ P
(
A+ T (A)

)
+

A+ T (A) is bisymmetric

Proof. First, let us develop the parenthesis,

B ≡ P
(
A+ T (A)

)
+A+ T (A) = P (A) + P ◦ T (A) +A+ T (A) (1.23)

The per-transpose P (B) and transpose T (B) are identical and also agree with the own B matrix,
since

P (B) = P ◦ P (A) + P ◦ P ◦ T (A) + P (A) + P ◦ T (A)
= A+ I ◦ T (A) + P (A) + P ◦ T (A) = B
= T ◦ T (A) + T (A) + T ◦ T ◦ P (A) + T ◦ P (A)
= T (B) (1.24)

Remark 1.11. The construction, C ≡ T
(
A+ P (A)

)
+A+ P (A) is also a bisymmetric matrix.

Furthermore, since T ◦ P = P ◦ T , it is easy to see that, B = C.

Note that in the bisymmetric matrix B above, appear all the four operators of the Klein 4-
Group defined by Prop. 1.2. Indeed, B can be rewritten in the form B = (T + P + I + E)(A),
where E = T ◦ P .

Definition 1.12. (Centrosymmetric matrix) A real matrix A is said to be centrosymmetric if
P (A) = T (A) 6= A. In other words, if A ∈ Rn×n with elements, [aij ], then [an−j+1,n−i+1] =
[aji] for all 1 ≤ i ≤ n, 1 ≤ j ≤ n

Proposition 1.13. If a real square matrix A ∈ Rn×n is centrosymmetric, then it satisfies the
property, JnA = AJn

Proof. By virtue of Prop .1.6, if P (A) = T (A) we have

T ◦ P (A) = T ◦ T (A) = A = JnAJn (1.25)
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Proposition 1.14. Let A ∈ Rn×n. The pair of matrices defined as, R ≡ P (A) + T (A), and
S ≡ P (A)T (A) + T (A)P (A) are both centrosymmetric

Proof. Since P ◦ T = T ◦ P , it is direct to verify that P (R) = T (R). On the other hand, by
virtue of property 4 of the per-transpose, P (S) will be equal to

P (S) = P ◦
(
P (A)T (A)

)
+ P ◦

(
T (A)P (A)

)
= P ◦ T (A)P ◦ P (A) + P ◦ P (A)P ◦ T (A)

=
(
T ◦ P (A)

)
A+A

(
T ◦ P (A)

)
= T ◦ P (A)T ◦ T (A) + T ◦ T (A)T ◦ P (A)

= T ◦
(
T (A)P (A)

)
+ T ◦

(
P (A)T (A)

)
= T (S) (1.26)

As an example of the later constructions, let us consider a random 3 × 3 real matrix, for
instance

A =

1 −2 3
4 5 −2
0 6 −1

 (1.27)

Their transpose and per-transpose will be

T (A) =

 1 4 0
−2 5 6
3 −2 −1

 P (A) =

−1 −2 3
6 5 −2
0 4 1

 (1.28)

Therefore, the two centrosymmetric matricesR ≡ P (A)+T (A), S ≡ T (A)P (A)+P (A)T (A),
and the bisymmetric B ≡ P

(
A+ T (A)

)
+A+ T (A), for this example are given by

R =

0 2 3
4 10 4
3 2 0

 S =

 55 −2 −20
22 106 22
−20 −2 55

 B =

0 6 6
6 20 6
6 6 0

 (1.29)

1.4 Degenerate scalar product, dyadic product and cross product of vectors.

The per-transpose operation will allow us to define an alternative (degenerate) scalar product
of vectors which share some properties with the ordinary one. In addition, by means of the
per-transpose we can also define an alternative dyadic product of vectors, which takes a pair of
vectors and returns a square matrix, and finally another operation that converts two vectors into
another vector, an operation similar to the ordinary vector product.

Definition 1.15. Let x,y ∈ Rn, we define the following inner product < x,y >∗≡ xPy, where
xP is the per-transpose of x

By virtue of Eq.(1.4) if x is a column vector, then xP =
[
xn xn−1 . . . x3 x2 x1

]
,
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therefore, the scalar product xPy will be

< x,y >∗≡xPy =
[
xn xn−1 . . . x3 x2 x1

]


y1

y2

y3
...

yn−1

yn


= xny1 + xn−1y2 + . . . x2yn−1 + x1yn =

n∑
i=1

xi · yn−i+1 (1.30)

Making use of Eq.(1.5) we can see that the exchange matrix Jn appears in this scalar product in
a natural way:

xPy = xTJny =
[
x1 x2 x3 . . . xn−1 xn

]


0 0 · · · 0 0 1
0 0 · · · 0 1 0
0 0 · · · 1 0 0
...

...
...

...
...

0 1 · · · 0 0 0
1 0 · · · 0 0 0





y1

y2

y3

...
yn−1

yn


(1.31)

Then, if the elements δij of the identity matrix can be interpreted as the standard scalar products
ei · ej of the elements of the canonical basis, the elements of the exchange matrix Jij can also
be interpreted in the same way, namely

ei · ej = δij ePi · ej = Jij (1.32)

where ePi stands for the per-transpose of ei. It is therefore clear that such scalar product should
be degenerate, since ePi ·ei = Jii = 0. In other words, < x,x >∗= 0 does not necessarily imply
that x = 0. We list now some algebraic properties that follow from the definition.

(i) xPy = yPx ∀ x,y ∈ Rn

(ii) xP(αy+ βy) = αxPy+ βxPy ∀ α, β ∈ R

(iii) (αx)P(βy) = αβxPy

These properties can be easily proved from the definition. Furthermore, there exists certain
interesting property that deserves to be treated separately:

(xT)P × (y × z) = y(xPz)− z(xPy) (1.33)

Where, x,y, z ∈ R3. This property is the analogue to the Lagrange triple product property
that involves a cross product of three-dimensional vectors defined by

(aT)P × b = det

 i j k

a3 a2 a1

b1 b2 b3

 (1.34)

And attending to their components(
(aT)P × b

)
i
=
∑
j

∑
k

εijka4−jbk (1.35)

It is obvious from the definition that, such as the standard cross product, this product is not
commutative i.e. (aT)P × b 6= (bT)P × a. Notice that if a is certain file vector given by
a =

[
a1 a2 a3

]
, then the operation (aT)P ≡ P ◦ T (a) provides another file vector formed
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by the permutation among the first and third elements, i.e. (aT)P =
[
a3 a2 a1

]
. The exact

algebraic relation among the vector product (aT)P × b and their symmetric is given by

(aT)P × b =
[(

(bT)P × a
)T]P

(1.36)

On the other hand, given a pair of column vectors x,y ∈ Rn, we can define a dyadic product
different from the standard xyT, which returns another n × n square matrix. Indeed, notice
that the product xyP provides a different matrix from xyT, where yP ≡ P (y) is as usual the
per-transpose of y.
Making explicit the matrix representation we have

xyP =



x1

x2

x3

...
xn−1

xn


[
yn yn−1 . . . y3 y2 y1

]
=


x1yn x1yn−1 · · · x1y1

x2yn x2yn−1 · · · x2y1

...
...

. . .
...

xnyn xnyn−1 · · · xny1

 (1.37)

The trace of this matrix allows to find a relation among the dyadic product and the scalar product
defined before:

tr(xyP) = xPy (1.38)

1.5 The exchange matrix and the Klein-Group

In the literature, there exists several realizations of the Klein Group[7] involving square matrices.
In this last part of the note we give another realization of the Klein Group which involves the
exchange matrix and the Kronecker product. Our building blocks are the two matrices:

J2 =

[
0 1
1 0

]
I2 =

[
1 0
0 1

]
(1.39)

Now, let us define the 4× 4 matrices: J4 ≡ J2 ⊗ J2, I4 ≡ I2 ⊗ I2, K4 ≡ J2 ⊗ I2, L4 ≡ I2 ⊗ J2,
where ⊗ stands for the Kronecker product. Making explicit the matrix representation, these
matrices are constructed by the blocks

J4 ≡ J2 ⊗ J2 =

[
0 J2

J2 0

]
I4 ≡ I2 ⊗ I2 =

[
I2 0
0 I2

]
(1.40)

K4 ≡ J2 ⊗ I2 =

[
0 I2

I2 0

]
L4 ≡ I2 ⊗ J2 =

[
J2 0
0 J2

]
(1.41)

It is not difficult to see that the set S = {I4, J4,K4, L4} forms a group with the standard matrix
multiplication. Indeed, note that each element is their own inverse i.e. J4J4 = I4 = K4K4 =
L4L4, and also J4K4 = L4, K4L4 = J4, L4J4 = K4. Note that the group is commutative. The
Cayley table of the group is given by

J4 I4 L4 K4

J4 I4 J4 K4 L4

I4 J4 I4 L4 K4

L4 K4 L4 I4 J4

K4 L4 K4 J4 I4

References
[1] Cayley, A. "On the theory of groups, as depending on the symbolic equation θn = 1", Philosophical

Magazine, Vol. 7 (1854), pp. 40-47



410 Ginés R Pérez Teruel

[2] Cayley, A. "On the Theory of Groups", American Journal of Mathematics, Vol. 11, No. 2 (Jan 1889), pp.
139-157.

[3] Cayley, A. "A Memoir on the Theory of Matrices" Philosophical Transactions of the Royal Society of
London, Vol. 148 (1858), pp. 17-37

[4] Horn, Roger A.; Johnson, Charles R. (2012), Matrix Analysis (2nd ed.), Cambridge University Press, p.
33, ISBN 9781139788885.

[5] Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations (3rd ed.), Baltimore: Johns Hopkins,
ISBN 978-0-8018-5414-9. See page 193.

[6] Muir, Thomas (1960), Treatise on the Theory of Determinants, Dover Press.

[7] Klein, F. Vorlesungen ueber das Ikosaeder und die Aufloesung der Gleichungen vom fuenften Grade. 1884.
Reprinted as Klein, F. Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, 2nd
rev. ed. New York: Dover, 1956.

Author information
Ginés R Pérez Teruel, Departamento de Matemáticas, IES Canónigo Manchón, Crevillent-03330, Alicante,
Spain.
E-mail: gines.landau@gmail.com

Received: December 29, 2017.

Accepted: March 24, 2018.


	1 Introduction and background
	1.1 Examples
	1.2 Persymmetric matrices
	1.3 Bisymmetric and centrosymmetric matrices
	1.4 Degenerate scalar product, dyadic product and cross product of vectors.
	1.5 The exchange matrix and the Klein-Group


