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Abstract In this paper, we present some interesting integral transforms involving the ex-
tended Mittag-Leffler, which are given in term of Fox-Wright function. Based on the new result
some integral formula with different special functions established as special cases of our main
results for different values of parameters.

1 Introduction

The Mittag-Laffler function is the generalization of exponential function which occur naturally
in the solution of fractional order and integral equation. Some application of Mittag-Laffler
function is carried out in the study of Kinetic Equation, Study of Lorentz System, Random Walk,
Complex system and also in applied problem such as Fluid flow, Electric network, Probability
and Statistical distribution theory etc.

The Mittag-Leffler function was introduced by the Swedish Mathematician Gosta Mittag-
Leffler [11] and its generalization introduced by Wiman [12] as:

Eα′(z) =
∞∑
k=0

zk

Γ(α′k + 1)
and Eα′,β′(z) =

∞∑
k=0

zk

Γ(α′k + β′)
, (1.1)

where α′, β′, z ∈ C, Re(α′) > 0, Re(β′) > 0 New generalization of Eα′,β′(z) introduced by

Prabhakar [14] and further its generalization investigated by Shukla and Prajapati [15] in the
following form as follows:

Eγα′,β′(z) =
∞∑
k=0

(γ)k zk

Γ(α′k + β′)k!
and Eγ,qα′,β′(z) =

∞∑
k=0

(γ)qk zk

Γ(α′k + β′)k!
, (1.2)

where α′, β′, γ ∈ C, Re(α′) > 0, Re(β′) > 0, q ∈ (0, 1) ∪ N and (γ)k is the Pochhammer
symbol.
Recently, Özarslan and Yilmaz [13] have investigated following an extended Mittag-leffler, is

defined by the series representation given as:

Eδ,cα′,β′(z, p) =
∞∑
n=0

Bp(δ + n, c− δ)(c)nzn

B(δ, c− δ)Γ(α′n+ β′)n!
, (p ≥ 0, Re(c) > 0, Re(δ) > 0), (1.3)

where Bp(x, y) is the extension of Euler’s beta function, which is defined as:

Bp(x, y) =

∫ 1

0
tx−1(1− t)y−1exp

(
−p

t(1− t)

)
dt, (Re(p) > 0, Re(x) > 0, Re(y) > 0).

(1.4)
Further, generalization of extended Mittag-Leffler function which is defined by the series

representation given as:

Eγ,q,cα′,β′(z, p) =
∞∑
n=0

Bp(γ + nq, c− γ) (c)nq
B(γ, c− γ) Γ(α′n+ β′)

zn

n!
, ( p ≥ 0, Re(γ) > 0, Re(c) > 0), (1.5)
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where (c)nq =
Γ(c+nq)

Γ(γ) denote the generalized Pochhammer symbol.

For put some particular values of this parameters we get following special cases given as:
If β′ is replaced by β′ + 1and z by −z , we get

Eγ,q,cα′,β′+1(z) = Jλ,γ,cα,q (−z), (1.6)

which is an extended Wright-Bessel function given by [10].
If we put p=0, q=1, c=1 in (1.5), we get

Eγ,1,1α′,β′(z) = Eγ,α′,β′(z). (1.7)

The Fox-Wright function ([4], [16]) is defined by the series representation given as:

qΨs[z] =q Ψs

[
(α1, A1).............(αq, Aq)

(β1, B1)...........(βs, Bs)
; z

]

=
∞∑
k=0

Γ(α1 +A1k).........Γ(αq +Aqk)

Γ(β1 +B1k)........Γ(βs +Bsk)

zk

k!
(1.8)

α1, .....αq , β1, ........βs ∈ R, such that 1 +
s∑
i=1

Bi −
q∑
r=1

Ar > 0,

where Γ(z) denotes the gamma function and q and s are non negative integer.

Integral transform (Fourier Transform, Hankel Transform, Hermite Transform, Melin Trans-
form etc...) have been widely used in various problem of mathematical physics and applied
mathematics. Integral transform involving a verity of special function have been established by
many authors ([1], [3],[5], [6], [7]). The key motivation for pursuing theories for integral trans-
form is that it gives a simple tool which is represented by an algebraic problem in the process of
solving differential equation. In the most theories of integral transform , the kernel is doing the
important role which transform one space to the other space in order to solve the solution. The
main reason to transform is because it is not easy to solve the equation in the given space, or it
is easy to find a characterestic for the special purpose.

• Edward established the following result [2]∫ 1

0

∫ 1

0
uρ(1− v)ρ−1(1− u)σ−1(1− uv)1−ρ−σdudv =

Γ(ρ)Γ(σ)

Γ(ρ+ σ)
. (1.9)

provided R(ρ) > 0 and R(σ) > 0

• We recall the following intresting and useful integral is given by MacRobert [8] forRe(α) >
0, Re(β) > 0, a and b are non zero constant∫ 1

0
uα−1(1− u)β−1[au+ b(1− u)]−α−β =

Γ(α)Γ(β)

(a)α(b)βΓ(α+ β)
. (1.10)

2 Main results

In this section, we compute new integral formula involving extended Mittag Laffler function.These
integral formula are expressed in term of Fox -Wright function as given in Theorem 2.1, Theorem
2.6 and Theorem 2.11.

Theorem 2.1. For Re(α + β) > 0, Re(γ) > 0 , α′, β′, γ ∈ C, p ≥ 0. a and b are non zero
constant, then following integral formula holds true:∫ 1

0
uα−1(1− u)β−1[au+ b(1− u)]−α−βEγ,q,cα′,β′

(
(1− u)

[au+ b(1− u)]
, p

)
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=
1

(a)α(b)βΓ(α)
2Ψ3

[
(γ , 1) , (c , q), (γ , 1)
(α+ β, 1), (β′, α′) (c, 1)

; (
z

b
, p)

]
. (2.1)

Proof. First we indicate the L.H.S of (2.1) by I and using (1.5), then interchanging the order
of integration and summation, we get

I =
∞∑
n=0

Bp(γ + nq, c− γ)Γ(c+ nq)(z/b)n

Γ(c− γ)Γ(α′n+ β′)Γ(α+ β + n)n!

×
∫ 1

0
uα−1(1− u)(β+n)−1 (au+ b(1− u))−α−(β+n) (2.2)

now we apply the integral formula (1.10) to the integral of (2.2) under the condition given in
Theorem (2.1), we get

I =
1

(a)α(b)βΓ(γ)

∞∑
n=0

Bp(γ + nq, c− γ)Γ(c+ nq)(z/b)n

Γ(c− γ)Γ(α′n+ β′)Γ(α+ β + n)n!
(2.3)

after solving the above equation with the help of (1.8), we get the require result. This completes
the proof. 2

Remark 2.2. If we put q = 1 in Theorem 2.1, we get following integral formula.∫ 1

0
uα−1(1− u)β−1[au+ b(1− u)]−α−βEγ,cα′,β′

(
(1− u)

[au+ b(1− u)]
, p

)

=
1

(a)α(b)βΓ(α)
1Ψ2

[
(γ , 1)

(α+ β, 1), (β′, α′)
; (
z

b
, p)

]
. (2.4)

Corollary 2.3. If we put β = β′ + 1, z = −z in Theorem (2.1) and using (1.6) , then following
integral formula holds true:∫ 1

0
uα−1(1− u)β−1[au+ b(1− u)]−α−βJγ,q,cα′,β′+1

(
(1− u)

[au+ b(1− u)]
, p

)

=
1

(a)α(b)βΓ(α)
2Ψ3

[
(γ , 1) , (c, q)
(α+ β, 1), (β′, α′), (c, 1)

; (
z

b
, p)

]
. (2.5)

Corollary 2.4. If we put p = 0, q = 0 in Theorem (2.1) , then following integral formula holds
true: ∫ 1

0
uα−1(1− u)β−1[au+ b(1− u)]−α−β Wα′,β′

(
(1− u)z

[au+ b(1− u)]

)

=
1

(a)α(b)βΓ(α)
0Ψ2

[
(α+ β; 1), (β′;α′)

; z/b

]
. (2.6)

Corollary 2.5. If we put p = 0, q = c = 1, α′, β′ ∈ C in Theorem(2.1), we get following integral
formula holds good:∫ 1

0
uα−1(1− u)β−1[au+ b(1− u)]−α−βEγα′,β′

(
(1− u)z

[au+ b(1− u)]

)

=
1

(a)α(b)βΓ(α)
1Ψ2

[
(γ, 1)
(α+ β, 1), (β′, α′)

;
z

b

]
. (2.7)
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Theorem 2.6. For Re(α) > 0, Re(β) > 0, Re(α+ β) > 0, α′, β′ ∈ C such that and a and b are
non negative integers then following integral formula holds good:∫ 1

0
uα−1(1− u)β−1[au+ b(1− u)]−α−βEγ,q,cα′,β′

(
u(1− u)

[au+ b(1− u)]2
, p

)

=
1

(a)α(b)βΓ(α)
2Ψ2

[
(γ, 1) , (c, q)
(β′, α′), (c, 1)

; (
z

ab
, p)

]
. (2.8)

Proof. First we indicate the L.H.S of (2.8) by I and using (1.5) then interchanging the order
of integration and summation, we get

I =
∞∑
n=0

βp(γ + nq; c− γ)(c)nq
β( γ; c− γ)Γ(α′n+ β′)

(z)n

n!

×
∫ 1

0
u(α+n)−1(1− u)(β+n)−1[au+ b(1− u)]−(α+n)−(β+n) (2.9)

now we apply the integral formula (1.10) to the integral of (2.9) under the condition given in
Theorem(2.6), we get

I =
1

(a)α(b)βΓ(γ)

∞∑
n=0

Bp(γ + nq, c− γ)Γ(c+ nq)(z/ab)n

Γ(c− γ)Γ(α′n+ β′)Γ(α+ β + n)n!
(2.10)

after solving the above equation with the help of (1.8) we get the require result (2.8) of Theo-
rem (2.1).

Remark 2.7. For Re(α) > 0, Re(β) > 0, α′, β′, γ ∈ C and q = 1 in Theorem (2.6), we get the
following integral formula:∫ 1

0
uα−1(1− u)β−1[au+ b(1− u)]−α−βEγ,cα′,β′

(
u(1− u)

[au+ b(1− u)]2
, p

)

=
Γ(α)

(a)α(b)β
1Ψ1

[
(γ, 1)
(β′, α′)

; (
z

ab
, p)

]
. (2.11)

Corollary 2.8. If we put β = β′ + 1, z = −z in Theorem (2.6), then following integral formula
holds true: ∫ 1

0
uα−1(1− u)β−1[au+ b(1− u)]−α−β Jγ,q,cα′,β′+1

(
(1− u)

[au+ b(1− u)]
, p

)

=
1

(a)α(b)βΓ(α)
2Ψ3

[
(γ , 1) , (c, q)
(α+ β, 2), (β′ + 1, α′), (c, 1)

; (
−z
ab
, p)

]
. (2.12)

Corollary 2.9. If we put p = 0, q = 0 in Theorem (2.6) , then following integral formula holds
true: ∫ 1

0
uα−1(1− u)β−1[au+ b(1− u)]−α−β Wα′,β′

(
(1− u)

[au+ b(1− u)]
, p

)

=
1

(a)α(b)β
0Ψ2

[
(α+ β, 2), (β′, α′)

;
z

ab

]
. (2.13)

Corollary 2.10. If we put p = 0, q = c = 1, α′, β′, γ ∈ C, p ≥ 0 in (2.6), we get following result∫ 1

0
uα−1(1− u)β−1[au+ b(1− u)]−α−βEγα′,β′

(
u(1− u)z

[au+ b(1− u)]2

)

=
1

(a)α(b)βΓ(α)
1Ψ2

[
(γ, 1)
(α+ β, 2), (β′, α′)

;
z

ab

]
. (2.14)
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Theorem 2.11. For α′, β′, γ ∈ C, p ≥ 0, Re(α) > 0, Re(β > 0), Re(α + β) > 0, then
following integral formula holds good:∫ 1

0

∫ 1

0
yα(1− x)α−1(1− y)β−1(1− xy)1−α−β E

γ,q,c

α′,β′ [ty(1− x)(1− xy), p] dxdy

=
Γ(β)

Γ(γ)
3Ψ3

[
(α , 1) , (c, q), (γ, 1)
(α+ β, 1), (β′, α′), (c, 1)

; t

]
. (2.15)

Proof. First we denote the L.H.S of (2.15) by I and using (1.5) and interchanging the order
of integration and summation, we get

I =
∞∑
n=0

βp(γ + nq; c− γ)
β( γ, c− γ)

(c)nq tn

Γ(α′n+ β′) n!

×
∫ 1

0

∫ 1

0
y(α+n)(1− x)(α+n)−1(1− y)β−1(1− xy)1−(α+n)−β (2.16)

now we apply the integral formula (1.10) to the integral of (2.16) under the condition given in
Theorem (2.6), we get

I = Γ(β)
∞∑
n=0

βp(γ + nq; c− γ)Γ(c+ nq)

Γ(γ)Γ(c− γ)
Γ(α+ n)

Γ(γ + β + n)

Γ(c+ nq)

Γ(α′n+ β′)

tn

n!
(2.17)

after solving the above equation with the help of (1.8) we get the required result. This completes
the proof. 2

Remark 2.12. For α′, β′, γ ∈ C, p ≥ 0, Re(α+ β) > 0, Re(γ) > 0 and q = 1 in Theorem
(2.11), we get following integral formula:∫ 1

0

∫ 1

0
yα(1− x)α−1(1− y)β−1(1− xy)1−α−β E

γ,c

α′,β′ [ty(1− x)(1− xy), p] dxdy

=
Γ(β)

Γ(γ)
2Ψ2

[
(α , 1), (γ, 1)
(α+ β , 1), (β′, α′),

; t

]
. (2.18)

Corollary 2.13. If we put β′ = β′ + 1, z is replaced by -z in Theorem (2.6), then following
integral formula hold good:∫ 1

0

∫ 1

0
yα(1− x)α−1(1− y)β−1(1− xy)1−α−β E

γ,q,c

α′,β′ [ty(1− x)(1− xy), p] dxdy

=
Γ(β)

Γ(γ)
3Ψ3

[
(α , 1) , (c, q), (γ, 1)
(α+ β, 1), (β′ + 1, α′), (c, 1)

; t

]
. (2.19)

Corollary 2.14. If we put p = 0, q = 0 in Theorem (2.11), then following integral formula hold
good:∫ 1

0

∫ 1

0
yα(1− x)α−1(1− y)β−1(1− xy)1− α− β Wα′,β′ [ty(1− x)(1− xy)] dxdy

= Γ(β) 1Ψ2

[
(α, 1)
(α+ β, 1), (β′, α′)

; t

]
. (2.20)
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Corollary 2.15. If we put p = 0, q = c = 1 in Theorem (2.11), then following integral formula
holds good:∫ 1

0

∫ 1

0
yα(1− x)α−1(1− y)β−1(1− xy)1−α−β Eγα′,β′ [ty(1− x)(1− xy)] dxdy

=
Γ(β)

Γ(γ)
2Ψ2

[
(α , 1) (γ, 1)
(α+ β, 1), (β′, α′)

; t

]
. (2.21)

Theorem 2.16. For p ≥ 0, Re(c) > 0, Re(β) > 0, Re(γ) > 0, Re(α + β) > 0, then following
integral formula hold true:∫ 1

0

∫ 1

0
yα(1− x)α−1(1− y)β−1(1− xy)1−α−β E

γ,q,c

α′,β′ [t(1− y)(1− xy)−1, p] dxdy

=
Γ(α)

Γ(γ) Γ(c− γ) 3Ψ3

[
(β , 1) , (c, q), (γ, 1)
(α+ β, 1), (β′, α′), (c, 1)

; t

]
. (2.22)

Proof. First we denote the L.H.S of (2.22) by I and using (1.5) then interchanging the order
of integration and summation, we get

I =
∞∑
n=0

βp(γ + nq, c− γ)(c)nq
β( γ, c− γ)(Γα′n+ β′)

tn

n!

×
∫ 1

0

∫ 1

0
yα(1− x)α−1(1− y)β−1(1− xy)1−α−(β+n) dxdy (2.23)

now we apply the integral formula (1.9) to the integral of (2.23) under the condition given in
Theorem(2.16), we get

I = Γ(α)
∞∑
n=0

βp(γ + nq; c− γ)
Γ(α+ β + n)

Γ(β + n)

Γ(γ + β + n)

Γ(c+ nq)

Γ(α′n+ β′) Γ(c− γ)Γ(γ)
tn

n!
(2.24)

after solving the above equation with the help of (1.8) we get the required result. This completes
the proof. 2

Remark 2.17. If we put q=1 in Theorem (2.16), we get the following integral formula∫ 1

0

∫ 1

0
yα(1− x)α−1(1− y)β−1(1− xy)1−α−β E

γ,c

α′,β′ [t(1− y)(1− xy)−1, p] dxdy

=
Γ(α)

Γ(γ) Γ(c− γ) 2Ψ2

[
(β , 1) , (γ , 1)
(α+ β , 1), (β′ , α′)

; t

]
. (2.25)

Corollary 2.18. If we put β′ = β′ + 1 , z is replaced by -z in Theorem (2.16), then following
integral formula hold true:∫ 1

0

∫ 1

0
yα(1− x)α−1(1− y)β−1(1− xy)1−α−β J

γ,q,c

α′,β′+1[t(1− y)(1− xy)−1, p] dxdy

=
Γ(α)

Γ(γ) Γ(c− γ) 3Ψ3

[
(β ; 1) , (c; q), (γ; 1)
(α+ β; 1), (β′;α′), (c; 1)

; t

]
. (2.26)
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Corollary 2.19. If we put p = 0, q = 0 in Theorem (2.16), we get the following integral formula∫ 1

0

∫ 1

0
yα(1− x)α−1(1− y)β−1(1− xy)1−α−β Wα′,β′

(
ty(1− x)
(1− xy)

)
dxdy

= Γ(β) 1Ψ2

[
(α , 1)
(α+ β, 1), (β′ + 1, α′)

; t

]
. (2.27)

Corollary 2.20. If we put p = 0, q = c = 1 in Theorem (2.16), then following integral formula
holds good:∫ 1

0

∫ 1

0
yα(1− x)α−1(1− y)β−1(1− xy)1−α−β Eγα′,β′

(
ty(1− x)
(1− xy)

)
dxdy

=
Γ(β)

Γ(γ)
1Ψ2

[
(α , 1) , (γ, 1)
(α+ β, 1) , (β′, α′)

; t

]
. (2.28)

3 Concluding Remark

The outcome in the present paper is the computation of some integral transforms involving gen-
eralized extended Mittag-Leffler function in terms of Fox-Wright function. We observe that the
generalized Bessel-Maitland function has a close relationship with some known special functions
such as Mittag-Leffler function, Bessel function, etc. As a consequence, we have attempted to
compute the integrals in form of different types of special functions by suitable replacement of
parameters. Further, a lot of work can be put in the literature by writing the Fox-Wright func-
tion in terms of Fox H-function, Meijer G-function, etc. The results obtained here seems to be
interesting and may potentially be useful in various applied problems.
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