A DOUBLE-SEQUENCE HYBRID S-ITERATION SCHEME FOR FIXED POINT OF LIPSCHITZ PSEUDOCONTRACTIONS IN BANACH SPACE

S. Gopinath, J. Gnanaraj and S. Lalithambigai
Communicated by Jose Luis Lopez-Bonilla

MSC 2010 Classifications: $47 \mathrm{H} 09,47 \mathrm{H} 10,47 \mathrm{H} 17$.
Keywords and phrases: Lipschitz pseudocontraction, Double sequence Hybrid S- Iteration, Banach space, Nonexpansive, Strong convergence.

Abstract

For any closed convex non-empty subset C of a real Banach space E, we proved that a double sequence Hybrid S-Iteration scheme converges to a fixed point of Lipschitz pseudocontractive map T which maps C into C.

1 Introduction

In this article, we only consider a real Banach space. For a Banach space E, the normalized duality map from E to $2^{E^{*}}$ is denoted by J and is defined by

$$
J(x)=\left\{f^{*} \in E^{*}:\left\langle x, f^{*}\right\rangle=\|x\|^{2},\left\|f^{*}\right\|=\|x\|\right\}, \text { for all } x \in E \text {, }
$$

where E^{*} denotes the dual space of E and $\langle.,$.$\rangle denotes the generalized duality pairing. We will$ denote single-valued duality map by j.

The following definitions have been studied widely and deeply by many authors; see, e.g., [1-12] for more details.

Definition 1.1. Let C be non-empty closed convex subset of a Banach space E and let $T: C \rightarrow C$ be a mapping. Then
(i) The mapping T is said to be nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \text { for all } x, y \in C
$$

(ii) The mapping T is said to be Lipschitzian if there exists a constant $\mathrm{L}>1$ such that

$$
\|T x-T y\| \leq L\|x-y\|, \text { for all } x, y \in C
$$

Now let us recall pseudocontractive and strongly pseudocontractive mapping.
Definition 1.2. The mapping $T: C \rightarrow C$ is said to be pseudocontractive if there exists $j(x-y) \in$ $J(x-y)$ such that

$$
\langle T x-T y, j(x-y)\rangle \leq\|x-y\|^{2} \quad \text { for all } x, y \in C .
$$

Definition 1.3. The mapping T is said to be strongly pseudocontractive if there exists $0<k<1$ such that

$$
\langle T x-T y, j(x-y)\rangle \leq k\|x-y\|^{2} \quad \text { for all } x, y \in C .
$$

In [11], C. Moore introduced the concept of double sequence iteration process in fixed point theory. Let \mathcal{N} denote the set of all the non-negative integers and let E be a normed linear space. By a double sequence in E is meant a function $f: \mathcal{N} \times \mathcal{N} \rightarrow E$ defined by $f(n, m)=x_{n, m}$ which is in E.

Definition 1.4. The double sequence $\left\{x_{n, m}\right\}$ is said to converge strongly to x^{*} if given any $\epsilon>0$ there exist integer $N, M>0$ such that $\forall n \geq N, m \geq M$, we have that $\left\|x_{n, m}-x^{*}\right\|<\epsilon$. If $\forall n, r \geq N$ and if $m, t \geq M$, we have that $\left\|x_{n, r}-x_{m, t}\right\|<\epsilon$, then the double sequence is said to be Cauchy. Furthermore, if for each fixed $n, x_{n, m} \rightarrow x_{n}^{*}$ as $m \rightarrow \infty$ and then $x_{n}^{*} \rightarrow x^{*}$ as $n \rightarrow \infty$ then $x_{n, m} \rightarrow x^{*}$ as $n, m \rightarrow \infty$.

Many types of iteration process have been established for the constructive approximation of the solution to a family of nonlinear operator equations and several convergence results built using these iterative processes in the last few years (see, e.g [1-12] and the reference cited therein). Especially the iteration process of Mann, Ishikawa and Hybrid S- types have been used to find most of the convergence result as the iterative solution for the approximation of fixed point of nonlinear maps.

The concept of Mann-type double sequence iteration process introduced by C. Moore and he proved that it converges strongly to a fixed point of a continuous pseudocontraction map which maps a bounded closed convex non-empty subset of a real Hilbert space into itself.

2 Main Results

In this section, we mainly prove that the strong convergence of double sequence of Hybrid Siterative scheme to a fixed point of a Lipschitz pseudocontraction map which maps a bounded closed convex non-empty subset of a real Banach space into itself. To prove our main result, we need the following two lemmas.
Lemma 2.1. (see [2]). Let $J: E \rightarrow 2^{E^{*}}$ be the normalized duality mapping. Then for any $x, y \in E$, one has

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle, \quad \forall j(x+y) \in J(x+y)
$$

Lemma 2.2. (see [12]). Let $\left\{\rho_{n}\right\}$ and $\left\{\theta_{n}\right\}$ be non-negative sequences satisfying

$$
\rho_{n+1} \leq\left(1-\theta_{n}\right) \rho_{n}+\omega_{n}
$$

where $\theta_{n} \in[0,1], \sum_{n \geq 1} \theta_{n}=\infty$, and $\omega_{n}=o\left(\theta_{n}\right)$. Then $\lim _{n \rightarrow \infty} \rho_{n}=0$.
Now our main result states that
Theorem 2.3. For any non-empty bounded closed convex subset C of a real Banach space E, let $S: C \rightarrow C$ be nonexpansive mapping satisfying $\|x-S y\| \leq\|S x-S y\| \forall x, y \in C$ and let $T: C \rightarrow C$ be a Lipschitz pseudocontractive map. If $\left\{\beta_{n}\right\}_{n \geq 0},\left\{a_{k}\right\}_{k \geq 0} \subseteq(0,1)$ are real sequences satisfying the following conditions
(i) $\sum_{n=1}^{\infty} \beta_{n}=\infty$,
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$,
(iii) $\lim _{k \rightarrow \infty} a_{k}=0$.

For any arbitrary but fixed $\mu \in C$ and for each $k \geq 0$, define $T_{k}: C \rightarrow C$ by $T_{k} x=\left(1-a_{k}\right) \mu+$ $a_{k} T x$, and satisfying condition that $\left\|x-T_{k} y\right\| \leq\left\|T_{k} x-T_{k} y\right\| \quad \forall x, y \in C$. Then, the double sequence $\left\{x_{k, n}\right\}_{k \geq 0, n \geq 0}$ generated from an arbitrary $x_{0,0} \in C$ by

$$
\begin{align*}
x_{k, n+1} & =S y_{k, n} \\
y_{k, n} & =\left(1-\beta_{n}\right) x_{k, n}+\beta_{n} T_{k} x_{k, n}, \quad k, n \geq 0 \tag{2.1}
\end{align*}
$$

converges strongly to fixed point x_{∞}^{*} of T in C.
Proof.Since T is Lipschitz pseudocontractive, so

$$
\begin{equation*}
\left\|T_{k} x-T_{k} y\right\|=a_{k}\|T x-T y\| \leq L a_{k}\|x-y\| \tag{2.2}
\end{equation*}
$$

where L is Lipschitz constant of T.

$$
\begin{equation*}
\left\langle T_{k} x-T_{k} y, j(x-y)\right\rangle=a_{k}\langle T x-T y, j(x-y)\rangle \leq a_{k}\|x-y\|^{2} \tag{2.3}
\end{equation*}
$$

So that for all $k \geq 0, T_{k}$ is continuous and strongly pseudocontractive. Also C is invariant under T_{k}, for all k by convexity. Hence, T_{k} has unique fixed point $x_{k}^{*} \in C$, for all $k \geq 0$. It thus suffices to prove the following
(i) for each fixed $k \geq 0, x_{k, n} \rightarrow x_{k}^{*} \in C$ as $n \rightarrow \infty$;
(ii) $x_{k}^{*} \rightarrow x_{\infty}^{*} \in C$ as $k \rightarrow \infty$;
(iii) $x_{\infty}^{*} \in F(T)$.

Since $\lim _{n \rightarrow \infty} \beta_{n}=0$, there exists $n_{0} \in N$ such that for all $n \geq n_{0}$,

$$
\begin{equation*}
\beta_{n} \leq \min \left\{\frac{\left(1-a_{k}\right)}{\left(1+3 L a_{k}\right)\left(1+a_{k} L\right)}, \frac{1}{4 a_{k}}\right\} \tag{2.4}
\end{equation*}
$$

Consider

$$
\begin{align*}
\left\|x_{k, n+1}-x_{k}^{*}\right\|^{2} & =\left\langle x_{k, n+1}-x_{k}^{*}, j\left(x_{k, n+1}-x_{k}^{*}\right)\right\rangle \\
& =\left\langle S y_{k, n}-x_{k}^{*}, j\left(x_{k, n+1}-x_{k}^{*}\right)\right\rangle \\
& =\left\langle T_{k} x_{k, n+1}-x_{k}^{*}, j\left(x_{k, n+1}-x_{k}^{*}\right)\right\rangle+\left\langle S y_{k, n}-T_{k} x_{k, n+1}, j\left(x_{k, n+1}-x_{k}^{*}\right)\right\rangle \\
& \leq a_{k}\left\|x_{k, n+1}-x_{k}^{*}\right\|^{2}+\left\|S y_{k, n}-T_{k} x_{k, n+1}\right\|\left\|x_{k, n+1}-x_{k}^{*}\right\| \tag{2.5}
\end{align*}
$$

Now, consider

$$
\begin{aligned}
\left\|S y_{k, n}-T_{k} x_{k, n+1}\right\| & \leq\left\|x_{k, n}-S y_{k, n}\right\|+\left\|x_{k, n}-T_{k} y_{k, n}\right\|+\left\|T_{k} y_{k, n}-T_{k} x_{k, n+1}\right\| \\
& \leq\left\|S x_{k, n}-S y_{k, n}\right\|+\left\|T_{k} x_{k, n}-T_{k} y_{k, n}\right\|+\left\|T_{k} y_{k, n}-T_{k} x_{k, n+1}\right\|
\end{aligned}
$$

Since S is nonexpansive and using equation (2.2) in above inequality, we get

$$
\begin{equation*}
\left\|S y_{k, n}-T_{k} x_{k, n+1}\right\| \leq\left\|x_{k, n}-y_{k, n}\right\|+a_{k} L\left\{\left\|x_{k, n}-y_{k, n}\right\|+\left\|y_{k, n}-x_{k, n+1}\right\|\right\} \tag{2.6}
\end{equation*}
$$

Also,

$$
\begin{aligned}
\left\|y_{k, n}-x_{k, n+1}\right\| & \leq\left\|x_{k, n}-y_{k, n}\right\|+\left\|x_{k, n}-x_{k, n+1}\right\| \\
& =\left\|x_{k, n}-y_{k, n}\right\|+\left\|x_{k, n}-S y_{k, n}\right\| \\
& \leq\left\|x_{k, n}-y_{k, n}\right\|+\left\|S x_{k, n}-S y_{k, n}\right\| \\
& \leq 2\left\|x_{k, n}-y_{k, n}\right\|
\end{aligned}
$$

Using this inequality in equation (2.6), we get

$$
\begin{aligned}
\left\|S y_{k, n}-T_{k} x_{k, n+1}\right\| & \leq\left(1+3 a_{k} L\right)\left\|x_{k, n}-y_{k, n}\right\| \\
& =\left(1+3 a_{k} L\right)\left\|x_{k, n}-\left(1-\beta_{n}\right) x_{k, n}-\beta_{n} T_{k} x_{k, n}\right\| \\
& =\beta_{n}\left(1+3 a_{k} L\right)\left\|x_{k, n}-T_{k} x_{k, n}\right\| \\
& \leq \beta_{n}\left(1+3 a_{k} L\right)\left\{\left\|x_{k, n}-x_{k}^{*}\right\|+\left\|x_{k}^{*}-T_{k} x_{k, n}\right\|\right\} \\
& \left.\leq \beta_{n}\left(1+3 a_{k} L\right)\left(1+a_{k} L\right)\right)\left\|x_{k, n}-x_{k}^{*}\right\|
\end{aligned}
$$

Substitute this in equation (2.5), we get

$$
\left.\left\|x_{k, n+1}-x_{k}^{*}\right\|^{2} \leq a_{k}\left\|x_{k, n+1}-x_{k}^{*}\right\|^{2}+\beta_{n}\left(1+3 a_{k} L\right)\left(1+a_{k} L\right)\right)\left\|x_{k, n}-x_{k}^{*}\right\|\left\|x_{k, n+1}-x_{k}^{*}\right\|
$$

which implies that

$$
\left\|x_{k, n+1}-x_{k}^{*}\right\| \leq \frac{\beta_{n}\left(1+3 a_{k} L\right)\left(1+a_{k} L\right)}{1-a_{k}}\left\|x_{k, n}-x_{k}^{*}\right\|
$$

using equation (2.4) in the above inequality, we get

$$
\left\|x_{k, n+1}-x_{k}^{*}\right\| \leq\left\|x_{k, n}-x_{k}^{*}\right\|
$$

So, from the above discussion, we can conclude that the sequence $\left\{x_{k, n}-x_{k}^{*}\right\}$ is bounded. Since T_{k} is Lipschitzian, so $\left\{T_{k} x_{k, n}-x_{k}^{*}\right\}$ is also bounded.
Let $M_{k}^{\prime}=\sup _{n \geq 1}\left\|x_{k, n}-x_{k}^{*}\right\|+\sup _{n \geq 1}\left\|T_{k} x_{k, n}-x_{k}^{*}\right\|$. Now

$$
\begin{aligned}
\left\|x_{k, n}-y_{k, n}\right\| & =\left\|x_{k, n}-\left(1-\beta_{n}\right) x_{k, n}-\beta_{n} T_{k} x_{k, n}\right\| \\
& =\beta_{n}\left\|x_{k, n}-T_{k} x_{k, n}\right\| \\
& \leq \beta_{n}\left(\left\|x_{k, n}-x_{k}^{*}\right\|+\left\|T_{k} x_{k, n}-x_{k}^{*}\right\|\right) \\
& \leq \beta_{n} M_{k}^{\prime} \\
& \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$, implying that $\left\{x_{k, n}-y_{k, n}\right\}$ is bounded, so let $M_{k}^{\prime \prime}=\sup _{n \geq 1}\left\|x_{k, n}-y_{k, n}\right\|+M_{k}^{\prime}$.
Further,

$$
\begin{aligned}
\left\|y_{k, n}-x_{k}^{*}\right\| & \leq\left\|y_{k, n}-x_{k, n}\right\|+\left\|x_{k, n}-x_{k}^{*}\right\| \\
& \leq M_{k}^{\prime \prime}
\end{aligned}
$$

which implies that $\left\{y_{k, n}-x_{k}^{*}\right\}$ is bounded. Therefore, $\left\{T_{k} y_{k, n}-x_{k}^{*}\right\}$ is also bounded. Let

$$
M_{k}^{\prime \prime \prime}=\sup _{n \geq 1}\left\|y_{k, n}-x_{k}^{*}\right\|+\sup _{n \geq 1}\left\|T_{k} y_{k, n}-x_{k}^{*}\right\|
$$

Denote $M_{k}=M_{k}^{\prime}+M_{k}^{\prime \prime}+M_{k}^{\prime \prime \prime}$. Obviously $M_{k}<\infty$. Now from (2.1) for all $n \geq 1$, we obtain

$$
\begin{equation*}
\left\|x_{k, n+1}-x_{k}^{*}\right\|^{2}=\left\|S y_{k, n}-x_{k}^{*}\right\|^{2} \leq\left\|y_{k, n}-x_{k}^{*}\right\|^{2} \tag{2.7}
\end{equation*}
$$

and by Lemma (2.1) we get

$$
\begin{aligned}
\left\|y_{k, n}-x_{k}^{*}\right\|^{2}= & \left\|\left(1-\beta_{n}\right) x_{k, n}+\beta_{n} T_{k} x_{k, n}-x_{k}^{*}\right\|^{2} \\
= & \left\|\left(1-\beta_{n}\right)\left(x_{k, n}-x_{k}^{*}\right)+\beta_{n}\left(T_{k} x_{k, n}-x_{k}^{*}\right)\right\|^{2} \\
\leq & \left(1-\beta_{n}\right)^{2}\left\|x_{k, n}-x_{k}^{*}\right\|^{2}+2 \beta_{n}\left\langle T_{k} x_{k, n}-x_{k}^{*}, j\left(y_{k, n}-x_{k}^{*}\right)\right\rangle \\
= & \left(1-\beta_{n}\right)^{2}\left\|x_{k, n}-x_{k}^{*}\right\|^{2}+2 \beta_{n}\left\langle T_{k} y_{k, n}-x_{k}^{*}, j\left(y_{k, n}-x_{k}^{*}\right)\right\rangle \\
& +2 \beta_{n}\left\langle T_{k} x_{k, n}-T_{k} y_{k, n}, j\left(y_{k, n}-x_{k}^{*}\right)\right\rangle \\
\leq & \left(1-\beta_{n}\right)^{2}\left\|x_{k, n}-x_{k}^{*}\right\|^{2}+2 \beta_{n} a_{k}\left\|y_{k, n}-x_{k}^{*}\right\|^{2} \\
& +2 \beta_{n}\left\|T_{k} x_{k, n}-T_{k} y_{k, n}\right\|\left\|y_{k, n}-x_{k}^{*}\right\| \\
\leq & \left(1-\beta_{n}\right)^{2}\left\|x_{k, n}-x_{k}^{*}\right\|^{2}+2 \beta_{n} a_{k}\left\|y_{k, n}-x_{k}^{*}\right\|^{2}+2 \beta_{n} a_{k} L M_{k}\left\|x_{k, n}-y_{k, n}\right\|
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\left\|y_{k, n}-x_{k}^{*}\right\|^{2} & \leq \frac{\left(1-\beta_{n}\right)^{2}}{1-2 \beta_{n} a_{k}}\left\|x_{k, n}-x_{k}^{*}\right\|^{2}+\frac{2 \beta_{n} a_{k} L M_{k}}{1-2 \beta_{n} a_{k}}\left\|x_{k, n}-y_{k, n}\right\| \\
& \leq\left(1-\beta_{n}\right)\left\|x_{k, n}-x_{k}^{*}\right\|^{2}+4 \beta_{n} a_{k} L M_{k}\left\|x_{k, n}-y_{k, n}\right\|
\end{aligned}
$$

because by (2.4), we have $\left(1-\beta_{n}\right) /\left(1-2 \beta_{n} a_{k}\right) \leq 1$ and $\left(1 /\left(1-2 \beta_{n} a_{k}\right)\right) \leq 2$.
Hence (2.7) gives us

$$
\begin{equation*}
\left\|x_{k, n+1}-x_{k}^{*}\right\|^{2} \leq\left(1-\beta_{n}\right)\left\|x_{k, n}-x_{k}^{*}\right\|^{2}+4 \beta_{n} a_{k} L M_{k}\left\|x_{k, n}-y_{k, n}\right\| \tag{2.8}
\end{equation*}
$$

for all $n \geq 1$, put

$$
\begin{aligned}
\rho_{n} & =\left\|x_{k, n}-x_{k}^{*}\right\|^{2} \\
\theta_{n} & =\beta_{n} \\
\omega_{n} & =4 \beta_{n} a_{k} L M_{k}\left\|x_{k, n}-y_{k, n}\right\|
\end{aligned}
$$

then accordng to Lemma (2.2), we obtain from (2.8) that

$$
\lim _{n \rightarrow \infty}\left\|x_{k, n}-x_{k}^{*}\right\|=0
$$

So the first part is proved. Now,

$$
\begin{array}{rlr}
\left\|x_{k}^{*}-T x_{k}^{*}\right\| & \leq\left\|x_{k}^{*}-x_{r}^{*}\right\|+\left\|x_{r}^{*}-T x_{k}^{*}\right\| \quad \text { where } 0<k<r \\
& =\left\|T_{k} x_{k}^{*}-T_{r} x_{r}^{*}\right\|+\left\|T_{r} x_{r}^{*}-T x_{k}^{*}\right\| & \\
& \leq\left\|\left(1-a_{k}\right) \mu+a_{k} T x_{k}^{*}-\left(1-a_{r}\right) \mu-a_{r} T x_{r}^{*}\right\|+\left\|T_{r} x_{r}^{*}-T_{r} T x_{k}^{*}\right\| \\
& \leq\left\|\mu\left(a_{r}-a_{k}\right)+\left(a_{k}-a_{r}\right) T x_{k}^{*}\right\|+a_{r}\left\|T x_{k}^{*}-T x_{r}^{*}\right\|+a_{r}\left\|x_{r}^{*}-T x_{k}^{*}\right\| \\
& \leq \mid a_{k}-a_{r}\left\|T x_{k}^{*}-\mu\right\|+a_{r} 2 d+a_{r} 2 d & \text { where } d=\operatorname{diamC} \\
& \leq 2 d\left|a_{k}-a_{r}\right|+4 a_{r} d &
\end{array}
$$

So that

$$
\lim _{k \rightarrow \infty}\left\|x_{k}^{*}-T x_{k}^{*}\right\|=0
$$

and hence $\left\{x_{k}^{*}\right\}$ is an approximate fixed point sequence for T. Also, supposing that x_{∞}^{*} is a fixed point of T, then

$$
\lim _{k \rightarrow \infty}\left\|x_{\infty}^{*}-T_{k} x_{\infty}^{*}\right\| \leq 0
$$

Now, for all $0<m \leq k$

$$
\begin{aligned}
\left\|x_{k}^{*}-x_{m}^{*}\right\|^{2}= & \left\langle x_{k}^{*}-x_{m}^{*}, j\left(x_{k}^{*}-x_{m}^{*}\right)\right\rangle \\
= & \left\langle T_{k} x_{k}^{*}-T_{m} x_{m}^{*}, j\left(x_{k}^{*}-x_{m}^{*}\right)\right\rangle \\
= & \left\langle\left(a_{m}-a_{k}\right) \mu+\left(a_{k}-a_{m}\right) T x_{m}^{*}+a_{k}\left(T x_{k}^{*}-T x_{m}^{*}\right), j\left(x_{k}^{*}-x_{m}^{*}\right)\right\rangle \\
= & \left|a_{k}-a_{m}\right|\left\langle\mu, j\left(x_{k}^{*}-x_{m}^{*}\right)\right\rangle+\left|a_{k}-a_{m}\right|\left\langle T x_{m}^{*}, j\left(x_{k}^{*}-x_{m}^{*}\right)\right\rangle \\
& +a_{k}\left\langle T x_{k}^{*}-T x_{m}^{*}, j\left(x_{k}^{*}-x_{m}^{*}\right)\right\rangle \\
\leq & \left|a_{k}-a_{m}\right|\|\mu\|\left\|x_{k}^{*}-x_{m}^{*}\right\|+\left|a_{k}-a_{m}\right|\left\|T x_{m}^{*}\right\|\left\|x_{k}^{*}-x_{m}^{*}\right\| \\
& +a_{k}\left\|x_{k}^{*}-x_{m}^{*}\right\|^{2}
\end{aligned}
$$

which implies that, we get

$$
\left\|x_{k}^{*}-x_{m}^{*}\right\| \leq \frac{\left|a_{k}-a_{m}\right|}{1-a_{k}}\left\{\|\mu\|+\left\|T x_{m}^{*}\right\|\right\}
$$

and hence,

$$
\lim _{k, r \rightarrow \infty}\left\|x_{k}^{*}-x_{m}^{*}\right\| \leq 2 d \lim _{k, r \rightarrow \infty} \frac{\left|a_{k}-a_{m}\right|}{1-a_{k}}=0
$$

Thus, $\left\{x_{k}^{*}\right\}$ is a Cauchy sequence and hence, there exists $x_{\infty}^{*} \in C$ such that $x_{k}^{*} \rightarrow x_{\infty}^{*}$ as $k \rightarrow \infty$. So, the second part is proved.
By continuity, $T x_{k}^{*} \rightarrow T x_{\infty}^{*}$ as $k \rightarrow \infty$. But $x_{k}^{*}-T x_{k}^{*} \rightarrow 0$ as $k \rightarrow \infty$. Hence, $x_{\infty}^{*} \in F(T)$. This completes the proof.

References

[1] Arif Rafiq and Byung Soo Lee, On Asymptotically demicontractive mappings in an arbitrary Banach spaces, East Asian Mathematical Journal, 28(5), 569-578(2012).
[2] C.E. Chidume and C. Moore, The solution by iteration of nonlinear equations in uniformly smooth Banach spaces, J. Math. Anal. Appl. 215 (1), 132-146(1997).
[3] C.E. Chidume and C. Moore, Fixed point iteration for pseudocontractive maps, Proc. Amer. Math. Soc. 127 (4), 1163-1170(1999).
[4] C.E. Chidume and C. Moore, Steepest descent method for equilibrium points of nonlinear systems with accretive operators, J. Math. Anal. Appl. 245 (1), 142-160(2000).
[5] C.E. Chidume and M.O. Osilike, Nonlinear accretive and pseudocontractive operator equations in Banach spaces, Nonlinear Anal. 31 (7), 779-789(1998).
[6] S.Gopinath, J. Gnanaraj and S.Lalithambigai, Strong convergence for Hybrid S-Iteration scheme of nonexpansive and asymptotically demicontractive mappings, Int. J. Pure Appl. Math. 110(1), 153-163(2016).
[7] S. Ishikawa, Fixed points by a new iteration method, Proceedings of the American Mathematical Society, 44, 147 - 150(1974).
[8] S. M. Kang, A. Rafiq and Y. C. Kwun, Strong convergence for Hybrid S-Iterative scheme, Journal of Applied Mathematics, Article ID 705814, 1-4(2013).
[9] W. R. Mann, Mean value methods in iteration, Proceedings of the American Mathematical Society, 4, 506 - 510(1953).
[10] C. Moore, The solution by iteration of nonlinear equations involving psi-strongly accretive operators in Banach spaces, Nonlinear Analysis, 37 (1), 125-138(1999).
[11] C. Moore, A Double-Sequence Iteration process for fixed points of continuous pseudocontraction, An Int. J. Computers and Mathematics with Applications, 43, 1585-1589(2002).
[12] X. Weng, Fixed point iteration for local stricly pseudocontractive mapping, Proceedings of the American Mathematical Society, 113(3), 727 - 731(1991).

Author information

S. Gopinath, Department of Mathematics, Kamaraj College of Engineering and Technology, Near Virudhunagar, Madurai District-625 701, Tamilnadu, India.
E-mail: gops_naps@yahoo.com
J. Gnanaraj, Department of Mathematics, Goverment Arts College, Paramakudi-623 701, Tamilnadu, India.

E-mail: raj_maths08@yahoo .com
S. Lalithambigai, School of Mathematics, Madurai Kamaraj University, Madurai - 625021, Tamilnadu, India. E-mail: s-lalithambigai@yahoo.co.in

Received: January 12, 2018.
Accepted: July 27, 2018.

