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Abstract. The aim of this paper is to prove hyperstability results for the following cubic
functional equation on a restricted domain X

f(rx+ y) + f(rx− y) = rf(x+ y) + rf(x− y) + 2(r3 − r)f(x)
for all x, y ∈ X and r is a fixed positive integre r ≥ 2.

1 Introduction

Let X be a nonempty subset symmetric with respect to 0 and Y be a Banach space . In the paper,
we prove the hyper-stability of the cubic functional equation on a restricted domain. We say that
a function f : X → Y satisfies the cubic functional equation on X if

f(rx+ y) + f(rx− y) = rf(x+ y) + rf(x− y) + 2(r3 − r)f(x) (1.1)

for all x, y ∈ X such that x + y, x − y ∈ X . We will show that (1.1) is hyper-stable for each
function f : X → Y (under some additional assumption on X) satisfying the inequality :

‖ 1
2(r3 − r)

f(rx+ y) +
1

2(r3 − r)
f(rx− y)− 1

2(r2 − 1)
f(x+ y)− 1

2(r2 − 1)
f(x− y)− f(x)‖ ≤

c

2(r3 − r)
‖x‖p‖y‖q (1.2)

for all x, y ∈ X such that x+ y, x − y ∈ X with p+ q < 0 and 0 < p+ q < 1 must satisfy
the cubic equation (1.2).

The method of the proof of the main theorem is motivated by an idea used by Brzdȩk in
[4] and further by Piszczek in [21] . It is based on a fixed point theorem for functional spaces
obtained by Brzdȩk et al. In [6] . some generalizations of their result were proved by cǎdariu
et al. In [15] , The case of fixed point theorem for non-Archimedean metric spaces was also
studied by Brzdȩk and Ciepliñski in [9] . It is worth mentioning that using fixed point theorems
is now one of the most popular methods of investigating the stability of functional equations in
single as well as in several variables. Let us recall a few recent approaches of jung in [19], More
information on the application of the fixed point method was collected by Ciepliñski in [17] .
First, we take the following three hypotheses (all notations come from [16] ).

(H1)X is a nonempty set, Y a Banach spaces, and f1, ..., fk : X → X and L1, ..., LK : X →
R+ are given .

(H2)F : Y X → Y X is an operator satisfying the inequality

‖Fξ(x)−Fµ(x)‖ ≤
k∑

i=1

Li(x)‖ξ(fi(x))− µ(fi(x))‖ ξ, µ ∈ Y X , x ∈ X

(H3)Λ : RX
+ → RX

+ is defined by

Λδ(x) :=
k∑

i=1

Li(x)δ(fi(x)), δ ∈ RX
+ , x ∈ X

the mentioned fixed point theorem is stated as follows.
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Theorem 1.1. Let hypotheses (H1) − (H2) be valid, functions ε : X → R+ and ϕ : X → Y
fulfill the following two conditions:

i) ‖Fϕ(x)− ϕ(x)‖ ≤ ε(x), x ∈ X

ii) ε∗(x) :=
∑∞

n=0 Λnε(x) <∞, x ∈ X

Then there exists a unique fixed point ψ of F with ‖ϕ(x)− ψ(x)‖ ≤ ε∗(x), x ∈ X .
Moreover ψ(x) = limn→∞ Fnϕ(x), x ∈ X

Throughout the paper, N, N0 and Nm0 denote the set of all positive integers, the set of all
nonnegative integers and the set of all integers greater than or equal to m0, respectively.

2 Main results

In this section, we prove the hyperstability results of the generalized cubic functional equation.

Theorem 2.1. Assume that X is a nonempty symmetric with respect to 0 subset of a normed
space such that 0 6∈ X and there exist n0 ∈ N with nx ∈ X for x ∈ X and n ∈ Nn0 . Let Y be a
Banach space, c ≥ 0, and p+ q < 0 . If f : X → Y satisfies

‖ 1
2(r3 − r)

f(rx+ y) +
1

2(r3 − r)
f(rx− y)− 1

2(r2 − 1)
f(x+ y)− 1

2(r2 − 1)
f(x− y)− f(x)‖ ≤

c

2(r3 − r)
‖x‖p‖y‖q (2.1)

for all x, y ∈ X such that x+ y, x− y ∈ X , then f satisfies the cubic equation on X.

Proof. First observe that there exists m0 ∈ Nm0 such that

1
2(r3 − r)

(r+m)p+q+
1

2(r3 − r)
(m−r)p+q+

1
2(r2 − 1)

(1+m)p+q+
1

2(r2 − 1)
(m−1)p+q < 1

for m ≥ m0, Assume that q < 0 and Replacing y with mx in (2.1 we get :

‖ 1
2(r3 − r)

f((r+m)x)+
1

2(r3 − r)
f((r−m)x)− 1

2(r2 − 1)
f((1−m)x)− 1

2(r2 − 1)
f((1+m)x)−f(x)‖

≤ c

2(r3 − r)
mq‖x‖p‖y‖q

such that x ∈ X .
Further put

Fmξ(x) :=
1

2(r3 − r)
ξ((r+m)x)+

1
2(r3 − r)

ξ((r−m)x)− 1
2(r2 − 1)

ξ((1+m)x)− 1
2(r2 − 1)

ξ((1−m)x)

x ∈ X , ξ ∈ Y X and εm(x) := c
2(r3−r)m

q‖x‖p‖y‖q

Then the inequality (2.1) takes the form ‖Fmf(x)− f(x)‖ ≤ εm(x) .
The operator

∆δ(x) :=
1

2(r3 − r
δ((r+m)x)+

1
2(r3 − r

δ((m−r)x)+ 1
2(r2 − 1)

δ((1+m)x)+
1

2(r2 − 1)
δ((m−1)x),

such that δ ∈ RX
+ , x ∈ X

has the form described in (H3) with k = 4 and

f1(x) = (m+ r)x, f2(x) = (r −m)x, f3(x) = (1 +m)x, f4(x) = (1−m)x,

L1(x) = L2(x) =
1

2(r3 − r)
, L3(x) = L4(x) =

1
2(r2 − 1)
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Moreover, for every ξ;µ ∈ XX and x ∈ X

‖Fmξ(x)−Fmµ(x)‖ ≤
4∑

i=1

Li(x)‖(ξ − µ)(fi(x))‖

So : (H2) is valid:
Next we can find m0 ∈ N such that

1
2(r3 − r)

(r+m)p+q+
1

2(r3 − r)
(m−r)p+q+

1
2(r2 − 1)

(1+m)p+q+
1

2(r2 − 1)
(m−1)p+q < 1

Therefore we obtain that

ε∗(x) : =
∞∑
n=0

4nε(x)

=
c

2(r3 − r)
mq‖x‖p+q

∞∑
n=0

(
1

2(r3 − r)
(r +m)p+q +

1
2(r3 − r)

(m− r)p+q +
1

2(r2 − 1)
(1 +m)p+q

+
1

2(r2 − 1)
(m− 1)p+q)n

=

c
2(r3−r)m

q‖x‖p+q

1− ( 1
2(r3−r)(r +m)p+q + 1

2(r3−r)(m− r)p+q + 1
2(r2−1)(1 +m)p+q + 1

2(r2−1)(m− 1)p+q)

Thus according to theorem 1.1 there exists a unique solution F : X → Y of the equation:

F (x) =
1

2(r3 − r)
F ((r+m)x)+

1
2(r3 − r)

F ((r−m)x)− 1
2(r2 − 1)

F ((1+m)x)− 1
2(r2 − 1)

F ((1−m)x)

such that

‖f(x)−F (x)‖ ≤
c

2(r3−r)m
q‖x‖p+q

1− ( 1
2(r3−r)(r +m)p+q + 1

2(r3−r)(m− r)p+q + 1
2(r2−1)(1 +m)p+q + 1

2(r2−1)(m− 1)p+q)

Moreover: F (x) = limn→∞ Fnf(x) .
To prove that F satisfies the cubic equation on X, observe that

‖ 1
2(r3 − r)

Fnf(rx+ y) +
1

2(r3 − r)
Fnf(rx− y)− 1

2(r2 − 1)
Fnf(x+ y)

− 1
2(r2 − 1)

Fnf(x− y)−Fnf(x)‖

≤ c

2(r3 − r)
(

1
2(r3 − r)

(r +m)p+q +
1

2(r3 − r)
(m− r)p+q +

1
2(r2 − 1)

(1 +m)p+q

+
1

2(r2 − 1)
(m− 1)p+q)n‖x‖p‖y‖q (2.2)

for every x, y ∈ X , x + y ∈ X , x − y ∈ X . Indeed : if n = 0 then, (2.2) is simply . So, fix
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n ∈ N0 and suppose that (2.2 holds for n and x, y ∈ X such that x+ y, x− y ∈ X . Then

‖ 1
2(r3−r)F

n+1f(rx+ y) + 1
2(r3−r)F

n+1f(rx− y)− 1
2(r2−1)F

n+1f(x+ y)

− 1
2(r2−1)F

n+1f(x− y) −Fn+1f(x)‖

= ‖ 1
2(r3−r)(

1
2(r3−r)F

nf((r +m)(2x+ y) + 1
2(r3−r)F

nf((r −m)(rx+ y)

− 1
2(r2−1)F

n(f((1 +m)(rx+ y))− 1
2(r2−1)F

n(f((1−m)(rx+ y)))

+ 1
2(r3−r)(

1
2(r3−r)F

nf((r +m)(2x− y) + 1
2(r3−r)F

nf((r −m)(rx− y)

− 1
2(r2−1)F

n(f((1 +m)(rx− y))− 1
2(r2−1)F

n(f((1−m)(rx− y)))

− 1
2(r2−1)(

1
2(r3−r)F

nf((r +m)(x+ y) + 1
2(r3−r)F

nf((r −m)(x+ y)

− 1
2(r2−1)F

n(f((1 +m)(x+ y))− 1
2(r2−1)F

n(f((1−m)(x+ y)))

− 1
2(r2−1)(

1
2(r3−r)F

nf((r +m)(x− y) + 1
2(r3−r)F

nf((r −m)(x− y)

− 1
2(r2−1)F

n(f((1 +m)(x− y))− 1
2(r2−1)

1
2(r2−1)F

n(f((1−m)(x− y)))

− 1
2(r3−r)F

nf((r +m)(x))− 1
2(r3−r)F

nf((r −m)(x))

+ 1
2(r2−1)F

n(f((1 +m)(x)) + 1
2(r2−1)F

n(f((1−m)(x))‖

≤ ‖ 1
2(r3−r)

(
1

2(r3−r)F
nf((r +m)(rx+ y)) + 1

2(r3−r)(F
nf((r +m)(rx− y))

− 1
2(r2−1)F

nf((r +m)(x+ y))− 1
2(r2−1)F

nf((r +m)(x− y))

−Fnf((r +m)x)
)
‖+ ‖ 1

2(r3−r)

(
1

2(r3−r)F
nf((r −m)(rx+ y))

+ 1
2(r3−r)(F

nf((r −m)(rx− y))− 1
2(r2−1)(F

nf((r −m)(x+ y)))

− 1
2(r2−1)(F

nf((r −m)(x− y)))−Fnf((r −m)x)
)
‖

+| 1
2(r3−r)

1
2(r2−1)F

nf((1 +m)(rx+ y)) + 1
2(r3−r)(

1
2(r2−1)F

nf((1 +m)(rx− y))

− 1
2(r2−1)(

1
2(r2−1)F

nf((1 +m)(x+ y)))− 1
2(r2−1)(

1
2(r2−1)F

nf((1 +m)(x− y)))

− 1
2(r2−1)F

nf(1 +m)x)‖+ | 1
2(r3−r)

1
2(r2−1)F

nf((1−m)(rx+ y))

+ 1
2(r3−r)(

1
2(r2−1)F

nf((1−m)(rx− y))− 1
2(r2−1)(

1
2(r2−1)F

nf((1−m)(x+ y)))

− 1
2(r2−1)(

1
2(r2−1)F

nf((1−m)(x− y)))− 1
2(r2−1)F

nf(1−m)x)‖

≤ c
2(r3−r)(

1
2(r3−r)(r +m)p+q + 1

2(r3−r)(m− r)
p+q

+ 1
2(r2−1)(1 +m)p+q + 1

2(r2−1)(m− 1)p+q)n‖x‖p‖y‖q( (r+m)p+q

2(r3−r)

+ (m−r)p+q

2(r3−r) + (m+1)p+q

2(r2−1) + (m−1)p+q

2(r2−1) )

= c
2(r3−r)(

1
2(r3−r)(2 +m)p+q + 1

2(r3−r)(m− 2)p+q

+ 1
2(r2−1)(1 +m)p+q + 1

2(r2−1)(m− 1)p+q)(n+1)‖x‖p‖y‖q

By induction, we have shown that (2.2) holds. Letting n→ +∞ in (2.2) we obtain F (rx+ y) +
F (rx− y) = rF (x+ y) + rF (x− y) + 2(r3 − r)F (x)

Thus, we have proved that for every m ∈ Nm0 there exists a function Fm : X → Y such that
Fm is a solution of the cubic equation on X and

‖f(x)−Fm(x)‖ ≤
c

2(r3−r)m
q‖x‖p+q

1− ( 1
2(r3−r)(r +m)p+q + 1

2(r3−r)(m− r)p+q + 1
2(r2−1)(1 +m)p+q + 1

2(r2−1)(m− 1)p+q)
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Since p+ q < 0 with q < 0 , the sequence

(

c
2(r3−r)m

q‖x‖p+q

1− ( 1
2(r3−r)(r +m)p+q + 1

2(r3−r)(m− r)p+q + 1
2(r2−1)(1 +m)p+q + 1

2(r2−1)(m− 1)p+q)
)m∈Nm0

tends to Zero. Consequently f satisfies the cubic equation on X as the pointwise limit of
(Fm)m∈Nm0

.

Theorem 2.2. If f : X → Y satisfies

‖ 1
2(r3 − r)

f(rx+ y) +
1

2(r3 − r)
f(rx− y) − 1

2(r2 − 1)
f(x+ y)− 1

2(r2 − 1)
f(x− y)− f(x)‖

≤ c

2(r3 − r)
‖x‖p‖y‖q (2.3)

for all x, y ∈ X such that x + y ;x − y ∈ X ; and 0 < p + q < 1. Then f satisfies the cubic
functional equation on X .

Proof. Assume that q > 0 and replacing y with x
m we get :

‖ 1
2(r3 − r)

f((r +
1
m
)x) +

1
2(r3 − r)

f((r − 1
m
)x)− 1

2(r2 − 1)
f((1 +

1
m
)x)−

1
2(r2 − 1)

f(1− 1
m
)x)− f(x)‖ ≤ c

2(r3 − r)
1
mq
‖x‖p+q = εm(x)

Such that x ∈ X Similarly as previously we define

Fmξ(x) :=
1

2(r3 − r)
ξ((r +

1
m
)x) +

1
2(r3 − r)

ξ((r − 1
m
)x)− 1

2(r2 − 1)
ξ(1 +

1
m
x)

− 1
2(r2 − 1)

ξ((1− 1
m
)x), x ∈ X, ξ ∈ Y X

and ∆mδ(x) := 1
2(r3−r)δ((r+

1
m)x)+ 1

2(r3−r)δ((
1
m−r)x)

1
2(r2−1)δ((1+

1
m)x)+ 1

2(r2−1)δ((
1
m−1)x)

, δ ∈ RX
+ , x ∈ X and see that (2.2) is: ‖Fmf(x)− f(x)‖ ≤ εm(x), x ∈ X Obiouvsly ∆m has the

form described in (H3) whith k = 4 and f1(x) = (r+ 1
m)x f2(x) = (r− 1

m)x , f3(x) = (1+ 1
m)x

, f4(x) = (1− 1
m)x , L1(x) = L2(x) =

1
2(r3−r) , L3(x) = L4(x) =

1
2(r2−1)

‖Fmξ(x)−Fmµ(x)‖ ≤
4∑

i=1

Li(x)‖(ξ − µ)(fi(x))‖

So (H2) is valid . Next we can find m0 ∈ Nn0 such that

1
2(r3 − r)

(r+
1
m
)p+q+

1
2(r3 − r)

(r− 1
m
)p+q+

1
2(r2 − 1)

(1+
1
m
)p+q+

1
2(r2 − 1)

(1− 1
m
)p+q < 1

For all m ≥ m0,
Therefore we obtain that

ε∗(x) :=
∞∑
n=0

4nε(x)

= cmq‖x‖p+q
∞∑
n=0

(
1

2(r3 − r)
(r +

1
m
)p+q +

1
2(r3 − r)

(r − 1
m
)p+q +

1
2(r2 − 1)

(1 +
1
m
)p+q

+
1

2(r2 − 1)
(1− 1

m
)p+q)n

=
cmq‖x‖p+q

1− ( 1
2(r3−r)(r +

1
m)p+q + 1

2(r3−r)(r −
1
m)p+q + 1

2(r2−1)(1 + 1
m)p+q + 1

2(r2−1)(1−
1
m)p+q)



490 Youssef Aribou, Hajira Dimou and Samir Kabbaj

Thus, according to theorem 1.1 there exists a unique solution F : X → Y of the equation

Fm(x) =
1

2(r3 − r)
Fm((r +

1
m
)x) +

1
2(r3 − r)

Fm((r − 1
m
)x)− 1

2(r2 − 1)
Fm((1 +

1
m
)x)−

1
2(r2 − 1)

Fm((1− 1
m
)x)

such that ‖f(x)− Fm(x)‖ ≤
c

2(r3−r)
mq‖x‖p+q

1−( 1
2(r3−r)

(r+ 1
m )p+q+ 1

2(r3−r)
(r− 1

m )p+q+ 1
2(r2−1)

(1+ 1
m )p+q+ 1

2(r2−1)
(1− 1

m )p+q)

and Fm(2x+ y) + Fm(2x− y) = 2Fm(x+ y) + 2Fm(x− y) + 12Fm(x) ,x ∈ X , y ∈ X ,
x+ y ∈ X , x− y ∈ X

In this way we obtain a sequence (Fm)m∈Nm0
of cubic functions on X such that ‖f(x) −

Fm(x)‖ ≤
c

2(r3−r)
mq‖x‖p+q

1−( 1
2(r3−r)

(r+ 1
m )p+q+ 1

2(r3−r)
(r− 1

m )p+q+ 1
2(r2−1)

(1+ 1
m )p+q+ 1

2(r2−1)
(1− 1

m )p+q)
It follows; with

m→∞ , that f is cubic on X .

Remark 2.3. In the case p > 1 , the considered cubic equation is not hyperstable.
Show for example: X = R − {[−

√
2(r3 − 1);

√
2(r3 − 1)]} and f : X → R be a constant

f(x) = c, x ∈ X for some c > 0. In this case f satisfies the inequality

‖ 1
2(r3 − r)

f(rx+ y) +
1

2(r3 − r)
f(rx− y)− 1

2(r2 − 1)
f(x+ y)− 1

2(r2 − 1)
f(x+ y)− f(x)‖

≤ c

2(r3 − r)
‖x‖p‖y‖q

for all x, y ∈ x such that x+y, x−y ∈ X , with p > 1, but is not a solution of the cubic equation
on X.

Theorem 2.4. Assume that X is a nonempty, symmetric with respect to 0 subset of a normed
space such that 0 6∈ X and there existd n0 ∈ N with nx ∈ X for x ∈ X and n ∈ Nn0 . Let Y be
a Banach space, c ≥ 0 , and p < 0 . If f : X → Y satisfies

‖f(rx+ y) + f(rx− y)− rf(x+ y)− rf(x− y)− 2(r3 − r)f(x)‖ ≤ c(‖x‖p + ‖y‖p) (2.4)

for all x, y ∈ X such that x+ y ;x− y ∈ X , then f satisfies the cubic equation on X .

Proof. Replacing (x, y) by (mx, (rm)x) , where m ∈ N∗ − {1; 2} in (2.4), we get

‖f(x) + f((2rm− 1)x)− rf(((r + 1)m− 1)x)− rf(((1− r)m+ 1)x)− 2(r3 − r)f(mx)‖

≤ c

2(r3 − r)
(mp + (rm− 1)p)‖x‖p (2.5)

for all x ∈ X
Further put

Fmξ(x) := 2(r3 − r)ξ((m)x) + rξ(((1− r)m+ 1)x) + rξ(((r+ 1)m− 1)x)− ξ((2rm− 1)x)

x ∈ X , ξ ∈ Y X and εm(x) := c(mp + (rm− 1)p)‖x‖p
Then the inequality (2.5) takes the form ‖Fmf(x)− f(x)‖ ≤ εm(x) . x ∈ X
The operator ∆mδ(x) := 2(r3 − r)δ(mx) + rδ(((1− r)m+ 1)x) + rδ(((r + 1)m− 1)x) +

δ((2rm− 1)x)
δ ∈ RX

+ , x ∈ X
has the form described in (H3) with k = 4 and f1(x) = mx ;f2(x) = ((1 − r)m + 1)x ;

f3(x) = ((r + 1)m − 1)x ; f4(x) = (2rm − 1)x ; L1(x) = 2(r3 − r) ; L3(x) = L4(x) = r ,
L4(x) = 1 for all x ∈ X

Moreover , for every ξ, µ ∈ Y X and x ∈ X , we have
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‖Fmξ(x)−Fmµ(x)‖ ≤
4∑

i=1

Li(x)‖(ξ − µ)(fi(x))‖

So,H2 is valid. Now, we can find m0 ∈ N∗ − {1; 2} such that

2(r3 − r)mp + r((r − 1)m+ 1)p + r((r + 1)m− 1)p + (2rm− 1)p < 1

for all m0 ≤ m
Therefore, we obtain that

ε∗(x) :=
∞∑
n=0

4nε(x) = c(mp + (rm− 1)p)‖x‖p
∞∑
n=0

(2(r3 − r)mp + r((1− r)m+ 1)p+

r((r + 1)m− 1)p + (2rm− 1)p)n =
c(mp + (rm− 1)p)

1− ((2(r3 − r)mp + r(3m+ 1)p + r(m− 1)p + (2rm− 1)p)

for allx ∈ X and m ≥ m0. The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.5. . Assume that X is that a nonempty symmetric with respect to 0 subset of a
normed space such that 0 /∈ X and Y be a banach space. Let F : X2 → Y be a mapping such
that F (xO, y0) 6= 0 for some x0, y0 ∈ X and

‖F (x, y)‖ ≤ c‖x‖p‖y‖q (2.6)

Or
‖F (x, y)‖ ≤ c(‖x‖p + ‖y‖p) (2.7)

For all x, y ∈ X , where c ≥ 0 and p, q ∈ R . Assume that the numbers p; q satisfy p+ q < 1 and
p+ q 6= 1 In the case (2.8) and p < 0 in the case (2.7), Then the functional equation:

h(rx+ y) + h(rx− y) + F (x, y) = rh(x+ y) + rh(x− y) + ((2(r3 − r)h(x) (2.8)

x, y ∈ X Has no solution in the class of functions h : X → Y

Proof. Suppose that h : X → Y is a solution to (2.8); Then(2.1)or (2.3)holds, and conse-
quently, according to above theorems, h is cubic on X , which means that F (x0, y0) = 0 . This
is contradiction.
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