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Abstract. Khokulan et al. [14] introduced frames for finite dimensional quaternionic Hilbert
spaces. In this paper, we study frames for quaternonic Hilbert spaces and discuss some properties
of a frame operator associated with a frame in a quaternionic Hilbert space.

1 Introduction

Theory of frames was introduced by Duffin and Schaeffer [11] associated to applied harmonic
analysis, but its roots are involved in broad areas of functional analysis including operator theory
and theory of bases in Hilbert spaces. One may consider, frames as a generalization of bases in
sense that frames also provide a strong and healthy representation of vectors in a Hilbert spaceH.
Frames are redundant in nature therefore sometimes they allow easier reconstruction of vectors
than bases and that too with some better properties which are not achievable using bases, and
therefore these days frames have variety of applications in wide range of area of engineering and
sciences [2, 3, 4].

“A sequence {xn}n∈N ⊂ H is said to be a frame for a Hilbert space H if there exist positive
constants A and B such that

A‖x‖2≤
∞∑
n=1

|〈x, xn〉|2≤ B‖x‖2, for all x ∈ H. (1.1)

The positive constants A and B, respectively, are called lower and upper frame bounds for the
frame {xn}n∈N. The inequality (1) is called the frame inequality for the frame {xn}n∈N. A
frame {xn}n∈N in H is said to be

• tight if it is possible to choose A = B.
• Parseval if it is a tight frame with A = B = 1."

Beside frames one larger class of sequences which played a vital role in the development of
frame theory is of Bessel sequences. Bessel sequences are the sequences which satisfy only
upper condition of frame inequality (1.1). These sequences, in general need not be bases but
have some properties similar to that of orthonormal bases. For literature on frame theory in
Hilbert spaces and Banach spaces, one may refer to [5, 6, 8, 9, 10, 17].

Recently, Hemmat et al. [13] gave a scheme to form a basis and a frame for a Hilbert space
of quaternion valued square integrable function from a basis and a frame, respectively, of a
Hilbert space of complex valued square integrable functions. Sharma and Goel [15] introduced
and studied frames for separable quaternionic Hilbert spaces and frames for finite dimensional
quaternionic Hilbert spaces were introduced and studied by Khokulan et al. [14] . Sharma and
Virender [16] discuss some different types of dual frames of a given frame in a finite dimensional
quaternionic Hilbert space and gave various types of reconstructions with the help of a dual
frame. In this paper, we study frames for finite dimensional quaternonic Hilbert spaces and
discussed some properties of a frame operator associated with a frame in finite dimensional
quaternionic Hilbert space.

Throughout this paper we denote H as a non-commutative field of quaternion, i.e.,

H = {x0 + x1i+ x2j + x3k : x0, x1, x2, x3 ∈ R}
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where i2 = j2 = k2 = −1; ij = −ji = k; jk = −kj = i and ki = −ik = j, VR(H) as a finite
dimensional right quaternionic Hilbert space and ran T will denote the range of operator T .

For each quaternion q = x0 + x1i+ x2j + x3k ∈ H, define conjugate of q denoted by q as

q = x0 − x1i− x2j − x3k ∈ H.

If q = x0 +x1i+x2j+x3k is a quaternion then x0 is called the real part of q and x1i+x2j+x3k
is called the imaginary part of q. The modulus of quaternion q = x0 +x1i+x2j+x3k is defined
as

|q|= (qq)1/2 = (qq)1/2 =
√
x2

0 + x2
1 + x2

2 + x2
3.

For every non-zero quaternion q = x0 + x1i+ x2j + x3k ∈ H, there exists a unique inverse q−1

as

q−1 =
q

|q|2
=
x0 − x1i− x2j − x3k

x2
0 + x2

1 + x2
2 + x2

3
.

2 Quaternionic Hilbert space

Definition 2.1. ([1]) A right quaternionic Hilbert space VR(H) is a vector space under right
multiplication by quaternionic scalars together with the binary mapping 〈.|.〉 : VR(H) ×
VR(H)→ H (called the scalar (quaternion) product) which satisfies following properties:

(a) 〈v1|v2〉 = 〈v2|v1〉 for all v1, v2 ∈ VR(H).

(b) 〈v|v〉 > 0 if v 6= 0.

(c) 〈v|v1 + v2〉 = 〈v|v1〉+ 〈v|v2〉 for all v, v1, v2 ∈ VR(H)

(d) 〈v|uq〉 = 〈v|u〉q for all v, u ∈ VR(H) and q ∈ H.

In view of Definition 2.1, we have following properties of right quaternionic Hilbert space:

(i) 〈vq|u〉 = q〈v|u〉 for all v, u ∈ VR(H) and q ∈ H

(ii) v1p+ v2q ∈ VR(H), for all v1, v2 ∈ VR(H) and p, q ∈ H

One may observe that H(= H(H)) is a right quaternionic Hilbert space with respect to the
quaternion product

〈p|q〉 = pq, p, q ∈ H.

Also, if we take the vector space

Hm = {q = (q1, q2, · · · , qm) : qi ∈ H}

under right multiplication by quaternionic scalars together with the quaternion product on Hm
as

〈p|q〉Hm =
m∑
n=1

piqi, p = (p1, · · · , pm) and q = (q1, · · · , qm) ∈ VR(H).

ThenHm is a right quaternionic Hilbert space with above defined quaternion product.

Definition 2.2 ([1]). Let VR(H) be a right quaternionic Hilbert space and T : VR(H) → VR(H)
be an operator. Then T is said to be

• right linear if T (v1q1 + v2q2) = T (v1)q1 + T (v2)q2 for all v1, v2 ∈ VR(H) and q1, q2 ∈ H.
• bounded if there exist K ≥ 0 such that ‖T (v)‖≤ K‖v‖ for all v ∈ VR(H).

Theorem 2.3 ([18]). Let H be a right quaternionic Hilbert space. Then the right dual space of
H is congruent to the spaceH.



On Frames in Finite Dimensional Quaternionic Hilbert Space 513

Definition 2.4 ([1]). Let VR(H) be a right quaternionic Hilbert space and T : VR(H) → VR(H)
be an operator. Then the adjoint operator T ∗ of T is defined by

〈v|Tu〉 = 〈T ∗v|u〉, for all u, v ∈ VR(H).

Further, T is said to be self-adjoint if T = T ∗.

Theorem 2.5 ([1]). Let S and T be two bounded operators on VR(H). Then

(a) 〈Tv|u〉 = 〈v|S∗u〉.
(b) (S + T )∗ = S∗ + T ∗.

(c) (ST )∗ = T ∗S∗.

(d) (S∗)∗ = S.

(e) I∗ = I , where I is the identity operator on VR(H).

(f) If S is an invertible operator then (S−1)∗ = (S∗)−1.

Definition 2.6. ([12]) Let VR(H) be a finite dimensional right quaternionic Hilbert space. Then
a sequence {vn}mn=1 is said to be right basis for VR(H) if

(i) VR(H) = right span {vn}mn=1 = span [vn]mn=1.

(ii) {vn}mn=1 is a linearly independent set.

Definition 2.7. A right basis {en}mn=1 for VR(H) is said to be right orthonormal basis if

〈ei|ej〉 = δij , for all i, j ∈ {1, 2, · · · ,m}.

Definition 2.8. ([12]) Let VR(H) be a finite dimensional right quaternionic Hilbert space. An
operator P : VR(H)→ VR(H) is called a projection if P 2 = P . It is an orthogonal projection if
P is also self adjoint.

Khokulan et al. [14] introduced frames for finite dimensional quaternionic Hilbert spaces and
gave the following definition:

Definition 2.9. A sequence {vn}mn=1 ⊂ VR(H) is said to be a frame for a right quaternionic
Hilbert space VL(H) if there exist positive constants A and B such that

A‖v‖2≤
m∑
n=1

|〈vn|v〉|2≤ B‖v‖2, for all v ∈ VL(H). (2.1)

These positive constants A and B, respectively, are called lower and upper frame bounds for
the frame {vn}mn=1. The inequality (2.1) is called the frame inequality for the frame {vn}mn=1. A
frame {vn}mn=1 in VL(H) is said to be

• tight if it is possible to choose A, B satisfying inequality (2.1) with A = B.
• Parseval if it is tight with A = B = 1.
• normalized if ‖vn‖= 1, for all n = 1, · · · ,m.

If {vn}mn=1 is a frame for VR(H), then the bounded linear operator T : Hm → VR(H) given by

T ({qn}mn=1) =
m∑
n=1

vnqn, for all {qn}mn=1 ∈ Hm (2.2)

is called the pre-frame operator or synthesis operator. The adjoint operator T ∗ : VR(H)→ Hm
of T is given by

T ∗(v) = {〈vn|v〉}mn=1, for all v ∈ VR(H) (2.3)

is called the analysis operator. By composing T and T ∗, we obtain the frame operator
SR : VR(H)→ VR(H) defined as

SR(v) = TT ∗(v)

=
m∑
n=1

vn〈vn|v〉, for all v ∈ VR(H).
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3 Frames in Hn

In the quaternion domain we may define four different types of subspaces which exist due to
the proposed left and right matrix multiplication. If A = (aij)m×k and B = (bij)k×n are two
matrices over H, define

A.LB =
k∑
r=1

air.brj and

A.RB =
k∑
r=1

brj .air .

Due to this the row spaces and column spaces are defined in the order of their multiplication.
Hence, the four subspaces corresponding to a matrix A ∈ Hm×n are as follows:

LR(A) = {y ∈ Hm : y = A.Lx, x ∈ Hn} Left row space

RR(A) = {y ∈ Hm : y = A.Rx, x ∈ Hn} Right row space

LC(A) = {y ∈ Hn : yT = xT .LA, x ∈ Hm} Left column space

RC(A) = {y ∈ Hn : yT = xT .RA, x ∈ Hm} Right column space

Therefore, we propose the following definition of the rank of a matrix over quaternions

Definition 3.1. Let H be a right quaternionic Hilbert space and A be a m × n matrix over H.
Then, the right column rank of a quaternion matrix A is defined as the maximum number of
columns of A that are right linearly independent as elements of Hm, and is denoted by rc.ρ(A).
Similarly, the right row rank of a quaternion matrix A is defined as the maximum number of
rows of A that are right linearly independent as elements of Hn, and is denoted by rr.ρ(A). The
right rank of A denoted as r.ρ(A) is defined as the rank of the mapping LA : Hn → Hm defined
by

LA(v) = A.Rv, v ∈ Hn.

If A = (aij) is a m× n matrix over H. Then

(i) LA : Hn → Hm is right linear. Infact, if A = (aij)m×n, then

LA(vq) = A(vq)

=


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n
...

...
...

. . .
...

am1 am2 am3 . . . amn



q1q

q2q
...
qnq



=



n∑
i=1

a1iqiq

n∑
i=1

a2iqiq

...
n∑
i=1

amiqiq



= (Av)q = LA(v)q, where v =


q1

q2
...
qn


(ii) r.L(Ap+Bq) = (r.LA)p+ (r.LB)q, where A & B are m× n matrices over H and p, q ∈ H.

(iii) If m = n then r.LIn = IHn .
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Further, if β and γ are the standard ordered right orthonormal bases for Hn and Hm,
respectively then [LA]β→γ = A.

Theorem 3.2. The right rank of a matrix is the dimension of the right subspace generated by its
columns.

Proof. For any A ∈Mm×n(H),

right rank(A) = rank(LA) = dim (ran(LA))

Let β = {e1, e2, · · · , en} be the standard ordered right orthonormal bases for Hn. Then right
span β is Hn. Hence

ran (LA) = right-span(LA(β))
= right-span({LAe1,LAe2, · · · ,LAen})

Also, for any j,

LA(ej) = Aej = Aj ,

where Aj is the jth column of A. Hence

rank(A) = dim(right-span{A1, A2, · · · , An}) 2

In view of above theorem, if A is a m× n matrix over H, then we have following:

• The right rank is the dimension of the subspace (right) spanned by the columns of A as a
subset of m−dimensional right quaternionic Hilbert space over H.

• The right row rank is the dimension of the subspace (right) spanned by the rows of A as a
subset of n−dimensional right quaternionic Hilbert space over H.

On the similar lines, if we consider H as a left quaternionic Hilbert space then two more other
types of numbers (ranks) we can associate with A:

• The left column rank is the dimension of the subspace (left) spanned by the columns of A
as a subset of n−dimensional left quaternionic Hilbert space over H, denoted it as lc.ρ(A).

• The left row rank is the dimension of the subspace (left) spanned by the rows of A as a
subset of m−dimensional left quaternionic Hilbert space over H, denoted it as lr.ρ(A).

Since the columns of A are the rows of its transpose AT , therefore we have

rc.ρ(A) = rr.ρ(AT )

lc.ρ(A) = lr.ρ(AT )

Further, one may observe that

lc.ρ(A) = rr.ρ(A)

rc.ρ(A) = lr.ρ(AT )

If {vk}mk=1 is a frame for Hn, then the matrix of pre-frame operator T : Hm → Hn (there
is an ambiguity of notation here, Hm is a right vector space, but Hn is a left vector space when
considered as the set of linear transformations T : Hm → Hn) with respect to the canonical
bases β in Hn and γ in Hm is given by

[T ]β→γ =

 | | | |
v1 v2 v3 . . . vm

| | | |


Since minimum m vectors are required to span an m−dimensional quaternion Hilbert space,
therefore we must have m ≥ n. Thus, in case {vk}mk=1 is a frame for Hn then the matrix [T ]β→γ
has at least as many columns as rows. Further, we have a following result

Theorem 3.3. Let {vk}mk=1 be a frame for Hn with pre-frame operator T . Then the followings
hold:
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(i) Each vector vk can be considered as the first n coordinate of some vectors wk in Hm

constituting a left basis for Hm.

(ii) If {vk}mk=1 is a tight frame, then each vector vk is the first n coordinate of some vector wk
in Hm constituting an orthogonal basis for Hm.

Proof. Let T ∗ : Hn → Hm be the adjoint of pre-frame operator T . Then

T ∗(q) = {〈vk|q〉}mk=1, q ∈ Hn.

The matrix for T ∗ with respect to the canonical bases is the m × n matrix, where the kth row is
the quaternionic conjugate of vk, i.e.,

[T ∗]γ→β =


v1

v2
...
vm


If T ∗(q) = 0, then 0 = ‖T ∗(q)‖=

m∑
k=1
|〈vk|q〉|2. Since right-span {vk}mk=1 = Hn, therefore q = 0.

Thus T ∗ is an injective map. Extending T ∗ to a bijection T of Hm to Hm by the setting

T (ek) = v′k, k = n+ 1, n+ 2, · · · ,m,

where {v′k} is a basis for the orthogonal complement of ran T ∗ in Hm. Therefore, the matrix for
T is a m×m matrix, whose first n columns are of T ∗:

[T ∗]γ→β =


v1 | |
... v′n+1 · · · v′m
vm | |


Since T is a surjective map, the columns right span Hm. Therefore, the rows in [T ∗]γ→β are left
linearly independent and so they are hence constitute a left basis of Hm.

4 Frame bounds and Frame Algorithm

We begin this section, by giving a relationship between the frame elements and frame bounds.

Theorem 4.1. Let {vi}mi=1 be a frame for finite dimensional right quaternionic Hilbert spaceHn

with frame bounds A and B. Then, ‖vi‖2≤ B for all 1 ≤ i ≤ m and if ‖vi‖2= B holds for some
i, then vi ⊥ span {vj}j 6=i. If ‖vi‖2< A, then vi ∈ span {vj}j 6=i.
Proof. In particular, for each 1 ≤ i ≤ m, taking vi in place of v in frame inequality (2.1), we
have

A‖vi‖2≤ ‖vi‖4+
m∑
j=1
j 6=i

|〈vj |vi〉|2≤ B‖vi‖2, for all v ∈ Hn. (4.1)

Then, we have ‖vi‖2≤ B for all 1 ≤ i ≤ m. Further, let ‖vi‖2= B holds for some i, then

we have
m∑

j=1, j 6=i
|〈vj |vi〉|2= 0. This gives vi ⊥ span{vj}j 6=i. Assume to the contrary that

W = span{vj}j 6=i is a proper subspace of Hn. Now, replacing vi in the inequality (4.1) by
PW⊥(vi) and using the left hand side of the inequality we obtain a contradiction.

Theorem 4.2. Let {vi}mi=1 be a frame for finite dimensional right quaternionic Hilbert spaceHn

with frame operator S and v ∈ Hn. If {qi}mi=1 ⊂ H is a sequence such that

v =
∑
i=1

viqi

then
m∑
i=1

|qi|2=
m∑
i=1

|〈vi|S−1v〉|2+
m∑
i=1

|〈vi|S−1v〉 − qi|2.
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Proof. As

m∑
i=1

vi〈vi|S−1v〉 = v =
m∑
i=1

viqi.

This gives
∞∑
i=1

vi(〈vi|S−1v〉 − qi) = 0. Therefore, 〈vi|S−1v〉 − qi = kerT ∗ = (ran T )⊥, where T

is the analysis operator of {vi}mi=1. Therefore

qi = 〈vi|S−1v〉 − (〈vi|S−1v〉 − qi).

Since the sequence {〈vi|S−1v〉} ∈ ran T , and therefore orthogonal to {〈vi|S−1v〉 − qi}, so the
result holds.

Next, we investigate few properties of the frame operator of a frame in quaternionic Hilbert
space. If T is a linear transformation on the real vector spaceHn. Then,

T (q1ξ1 + q2ξ2) = q1T (ξ1) + q2T (ξ2), q1, q2 ∈ R and ξ1, ξ2 ∈ Hn. (4.2)

However, if we take right quaternionic Hilbert spaceH in place of R then it is non-commutative,
therefore equation (4.2) will not hold in general. Thus, the analogue definitions of eigenvalues
and eigenvectors in the quaternion context is as follows:

Definition 4.3. Let TR : Hn → Hn be a right linear operator on right quaternionic Hilbert space
Hn(H). Then, a non zero vector v ∈ Hn is said to be an right eigenvector of TR with right
eigenvalue q, if

TR(v) = vq. (4.3)

In other words, any solution (q, v) ∈ H × (Hn\{0}) to (4.3) is called a right eigenpair for
TR. Further, if TR has a non-real right eigenvalue, then TR has infinitely many non-real right
eigenvalues. Infact, If (q, v) is a right eigenpair for TR, then (r−1qr, vr) is also a right eigenpair
for TR, for all nonzero r ∈ H. Therefore, one should consider the whole (similarity) orbit σ(q)
of q ∈ H, σ(q) = {r−1qr : r ∈ H, r 6= 0}. The orbit of q is a singleton if and only if q ∈ R. In
all other cases, σ(q) contains infinitely many elements. For further details one may refer to [7].

Definition 4.4. Let TR : Hn → Hn be an invertible positive right linear operator on right
quaternionic Hilbert space Hn(H) with right eigenvalues q1 ≥ q2 ≥ q3 · · · ≥ qn. Then its
(right) conditional number is defined by

q1

qn
.

In the next result we show that the largest and the smallest eigenvalue of frame operator
corresponds to optimal frame bounds.

Theorem 4.5. Let {vi}mi=1 be a frame for the right quaternionic Hilbert spaceHn with the frame
operator SR with the right eigenvalues q1 ≥ q2 ≥ q3 · · · ≥ qn. Then q1 coincides with the optimal
upper frame bound and qn coincides with the optimal lower frame bound.

Proof. Let {ei}ni=1 be the right eigenvectors of the frame operator SR with respect to right
eigenvalues {λi}ni=1 expressed in the decreasing order. As for each x ∈ Hn, x =

∑n
j=1 ej〈ej |x〉,

therefore

SR(x) =
n∑
j=1

SR(ej)〈ej |x〉

=
n∑
j=1

ejqj〈ej |x〉, x ∈ Hn.
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This gives
m∑
j=1

|〈vi|x〉|2 = 〈SR(x)|x〉

=

〈
n∑
j=1

ejqj〈ej |x〉,
n∑
j=1

ej〈ej |x〉

〉

=
n∑
j=1

qj |〈ej |x〉|2

≤ q1

n∑
j=1

|ej〈ej |x〉|2

= q1‖x‖2.

Thus Bop ≤ q1, where Bop denotes the optimal upper bound of the frame {vi}mi=1. Also
m∑
j=1

|〈vj |e1〉|2 = 〈SR(e1)|e1〉

= 〈e1q1|e1〉
= q1〈e1|e1〉
= q1.

Similarly, we can show for lower bound.

Theorem 4.6. Let {vi}mi=1 be a frame for the right quaternionic Hilbert spaceHn with the frame
operator SR and {qi}ni=1 denotes the right eigenvalues for SR. If each eigenvalue appears in the
list corresponding to algebraic multiplicity. Then

n∑
i=1

qi =
n∑
i=1

‖vi‖2.

Proof. Let {ei}ni=1 be the right orthonormal basis of right eigenvectors such that

SR(ei) = eiqi, i = 1, 2, · · · , n.

Then, we have
n∑
i=1

qi =
n∑
i=1

qi‖ei‖2

=
n∑
i=1

qi〈ei|ei〉

=
n∑
i=1

〈ei|SR(ei)〉

=
n∑
i=1

〈
ei

∣∣∣∣∣∣∣
m∑
j=1

vj〈vj |ei〉

〉

=
n∑
i=1

m∑
j=1

〈ei|vj〉〈vj |ei〉

=
n∑
i=1

m∑
j=1

|〈ei|vj〉|2=
m∑
j=1

‖vj‖2. �

In view of above theorems, we have a following corollary:
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Corollary 4.7. Let {vi}mi=1 be a normalized tight frame for a n dimensional right quaternionic
Hilbert space VR(H). Then the frame bound is

m

n
.

Proof. As the set of right eigenvalues {qi}ni=1 consists of the frame bound A repeated n times,
thus the result follows.

If we want to find an element v ∈ VR(H) in terms of fram cofficients then we have a
reconstruction formula

v =
m∑
i=1

S−1
R vi〈vi|v〉

= S−1
R T ({〈f, fk〉}mk=1)

In case dimension VR(H) is large it would be complicated to invert frame operator. Therefore
now we discuss an iterative method to derive a converging sequence of approximations of v from
the knowledge of {〈vi|v〉}mi=1, called the frame algorithm.

Theorem 4.8. Let {vi}mi=1 be a frame for the right quaternionic Hilbert space VR(H) with frame
operators A,B. Given v ∈ VR(H), define a sequence {gk}∞k=0 in VR(H) by

g0 = 0, gk = gk−1 +
2

A+B
S(f − gk−1), k ≥ 1.

Then

‖f − gk‖≤
(
B −A
B +A

)k
‖f‖.

Proof. Let I denotes the identity operator on V and S be the frame operator of the frame {vi}mi=1.
Then

〈Sv|v〉 =

〈
m∑
i=1

vi〈vi|v〉
∣∣∣v〉

=
m∑
i=1

|〈vi|v〉|2.

This gives

〈(
I − 2

A+B
S

)
v

∣∣∣∣∣∣∣v
〉

=

〈
v − 2

A+B
Sv

∣∣∣∣∣∣∣v
〉

= ‖v‖2− 2
A+B

m∑
i=1

|〈vi|v〉|2

≤ B −A
B +A

‖v‖2.

Similarly, we have

−B −A
B +A

‖v‖2≤

〈(
I − 2

A+B
S

)
v

∣∣∣∣∣∣∣v
〉
.

As
(
I − 2

A+B
S

)
is a self-adjoint operator, therefore

∥∥∥∥I − 2
A+B

S

∥∥∥∥ ≤ B −A
B +A

.
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Using the definition of {gk}∞k=0, we have

f − gk = f − gk−1 −
2

A+B
S(f − gk−1) =

(
I − 2

A+B
S

)
(f − gk−1).

Therefore, by repeated use of above argument, we have

f − gk =
(
I − 2

A+B
S

)k
(f − g0).

Thus

‖fg − k‖ =

∥∥∥∥∥
(
I − 2

A+B
S

)k
(f − g0).

∥∥∥∥∥
≤

∥∥∥∥I − 2
A+B

S

∥∥∥∥k ‖f − g0‖

≤
(
B −A
B +A

)k
‖f‖.

Definition 4.9. Let T : Hn → Hn be a right linear operator. Then, the trace (right) of T is given
by

TrR T =
n∑
i=1

〈ei|T (ei)〉,

where {ei}ni=1 is an arbitrary right orthonormal basis forHn.

In the next, we give a relation between the frame vectors, eigenvalues and eigenvectors of the
associated frame operator.

Theorem 4.10. Let {vi}mi=1 be a frame for the right quaternionic Hilbert spaceHn with the frame
operator SR having normalized right eigenvectors {ei}ni=1 and respective right eigenvalues
{qi}ni=1. Then

qj =
m∑
i=1

|〈vi|ej〉|2.

In particular,

TrR(SR) =
n∑
i=1

qi =
m∑
i=1

‖vi‖2.

Proof. As qi = 〈ei|SR(ei)〉 for all i = 1, 2, · · · , n and for each x ∈ Hn, we have

〈x, SR(x)〉 =
m∑
i=1

|〈vi|x〉|2.

Therefore result follows. Further

TrR SR =
n∑
i=1

〈ei|SR(ei)〉

=
n∑
i=1

qi =
m∑
i=1

‖vi‖2. �

Theorem 4.11. If {vn}mn=1 be a frame for Hn with frame operator S having eigenvalues
λ1 ≥ λ2 ≥ · · ·λn. Then

(a)
n∑
i=1
|〈vi|en〉|2= λj , for all 1 ≤ j ≤ n.
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(b)
m∑
i=1
〈vi|er〉〈vi|ej〉 = 0, for all 1 ≤ r 6= j ≤ n.

where {ei}ni=1 is the standard orthonormal basis ofHn.

Proof. (a) For each j = 1, 2, · · ·n, we have

λj = 〈ej |λjej〉
= 〈ej |S(ej)〉

=

〈
ej

∣∣∣∣∣∣∣
m∑
i=1

vi〈vi|ej〉

〉

=
m∑
i=1

〈ej |vi〉〈vi|ej〉 =
m∑
i=1

|〈vi|ej〉|2.

(b) As for 1 ≤ r 6= j ≤ n, we have

〈er|S(ej)〉 = 0

⇒

〈
er

∣∣∣∣∣∣∣
m∑
i=1

vi〈vi|ej〉

〉
= 0

⇒
m∑
i=1

〈er|vi〉〈vi|ej〉 = 0

⇒
m∑
i=1

〈vi|er〉〈vi|ej〉 = 0. �
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