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Abstract In this paper we establish several inequalities for logarithm and apply them to
obtain some new inequalities involving weighted arithmetic mean, geometric mean and harmonic
mean of n-tuples of positive sequences. The case of two positive numbers and an analysis of
which bound is better and when are also considered.

1 Introduction

There are a number of inequalities for logarithm, see for instance

http : //functions.wolfram.com/ElementaryFunctions/Log/29/

and [5] that are well know and widely used in literature, such as:

x− 1
x
≤ lnx ≤ x− 1 for x > 0, (1.1)

2x
2 + x

≤ ln (1 + x) ≤
x√
x+ 1

for x ≥ 0, (1.2)

x ≤ − ln (1− x) ≤
x

1− x
, for x < 1,

lnx ≤ n
(
x1/n − 1

)
for n > 0 and x > 0,

ln (1− |x|) ≤ ln (x+ 1) ≤ − ln (1− |x|) for |x| < 1,

and

−3
2
x ≤ ln (1− x) ≤

3
2
x for 0 < x ≤ 0.5838.

A simple proof of the first inequality in (1.2) may be found, for instance, in [6], see also [7]
where the following rational bounds are provided as well:

x
(
1 + 5

6x
)

(1 + x)
(
1 + 1

3x
) ≤ ln (1 + x) ≤

x
(
1 + 1

6x
)

1 + 2
3x

for x ≥ 0.

In the recent paper [3] we established the following result:

(0 ≤) (1− ν) a+ νb− a1−νbν ≤ ν (1− ν) (b− a) (ln b− ln a) (1.3)

for any a, b > 0 and ν ∈ (0, 1).
If we take in (1.3) b = x+ 1, x > 0 and a = 1, then we get

ln (x+ 1) ≥
1− ν + ν (x+ 1)− (x+ 1)ν

ν (1− ν)x
(≥ 0) (1.4)
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for any ν ∈ (0, 1) and, in particular

ln (x+ 1) ≥
2
(√
x+ 1− 1

)2

x
(≥ 0) (1.5)

for any x > 0 and ν ∈ (0, 1) .
In this paper we establish some inequalities for the quantity

b− a
a
− ln b+ ln a

when a, b > 0 and apply them to obtain some new inequalities involving weighted arithmetic
mean, geometric mean and harmonic mean of n-tuples of positive numbers. The case of two
positive numbers and an analysis of which bound is better and when are also considered.

2 Logarithmic Inequalities

The following theorem is well known in the literature as Taylor’s theorem with the integral re-
mainder.

Theorem 2.1. Let I ⊂ R be a closed interval, a ∈ I and let n be a positive integer. If f : I −→ R
is such that f (n) is absolutely continuous on I , then for each x ∈ I

f (x) = Tn (f ; a, x) +Rn (f ; a, x) , (2.1)

where Tn (f ; a, x) is Taylor’s polynomial, i.e.,

Tn (f ; a, x) :=
n∑
k=0

(x− a)k

k!
f (k) (a) .

(Note that f (0) := f and 0! := 1), and the remainder is given by

Rn (f ; a, x) :=
1
n!

∫ x

a

(x− t)n f (n+1) (t) dt.

The following result holds [2]:

Lemma 2.2. For any a, b > 0 we have for n ≥ 1 that

ln b− ln a+
n∑
k=1

(−1)k (b− a)k

kak
= (−1)n

∫ b

a

(b− t)n

tn+1 dt. (2.2)

Proof. Consider the function f : (0,∞) −→ R, f (x) = lnx, then

f (n) (x) =
(−1)n−1

(n− 1)!
xn

, n ≥ 1, x > 0,

Tn (f ; a, x) = ln a+
n∑
k=1

(−1)k−1
(x− a)k

kak
, a > 0

and

Rn (f ; a, x) = (−1)n
∫ x

a

(x− t)n

tn+1 dt.

Now, using (2.1) we have the equality,

lnx = ln a+
n∑
k=1

(−1)k−1
(x− a)k

kak
+ (−1)n

∫ x

a

(x− t)n

tn+1 dt,

i.e.,

lnx− ln a+
n∑
k=1

(−1)k (x− a)k

kak
= (−1)n

∫ x

a

(x− t)n

tn+1 dt, x, a > 0.

Choosing in the last equality x = b, we get (2.2).
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Theorem 2.3. For any a, b > 0 we have

1
2

(
1− min {a, b}

max {a, b}

)2

=
1
2

(b− a)2

max2 {a, b}
(2.3)

≤ b− a
a
− ln b+ ln a

≤ 1
2

(b− a)2

min2 {a, b}
=

1
2

(
max {a, b}
min {a, b}

− 1
)2

.

Proof. For n = 1 we get from (2.2) that∫ b

a

b− t
t2

dt =
b− a
a
− ln b+ ln a (2.4)

for any a, b > 0.
If b > a, then

1
2
(b− a)2

a2 ≥
∫ b

a

b− t
t2

dt ≥ 1
2
(b− a)2

b2 . (2.5)

If a > b then ∫ b

a

b− t
t2

dt = −
∫ a

b

b− t
t2

dt =

∫ a

b

t− b
t2

dt

and
1
2
(b− a)2

b2 ≥
∫ a

b

t− b
t2

dt ≥ 1
2
(b− a)2

a2 . (2.6)

Therefore, by (2.5) and (2.6) we have for any a, b > 0 that∫ b

a

b− t
t2

dt ≥ 1
2

(b− a)2

max2 {a, b}
=

1
2

(
min {a, b}
max {a, b}

− 1
)2

and ∫ b

a

b− t
t2

dt ≤ 1
2

(b− a)2

min2 {a, b}
=

1
2

(
max {a, b}
min {a, b}

− 1
)2

.

By the representation (2.4) we then get the desired result (2.3).

When some bounds for a, b are provided, then we have:

Corollary 2.4. Assume that a, b ∈ [m,M ] ⊂ (0,∞), then we have the local bounds

1
2
(b− a)2

M2 ≤ b− a
a
− ln b+ ln a ≤ 1

2
(b− a)2

m2 (2.7)

and
1
2
(b− a)2

M2 ≤ ln b− ln a− b− a
b
≤ 1

2
(b− a)2

m2 . (2.8)

Remark 2.5. If we take in (2.3) a = 1 and b = x ∈ (0,∞) , then we get

1
2

(
1− min {1, x}

max {1, x}

)2

=
1
2

(x− 1)2

max2 {1, x}
(2.9)

≤ x− 1− lnx

≤ 1
2

(x− 1)2

min2 {1, x}
=

1
2

(
max {1, x}
min {1, x}

− 1
)2
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and if we take a = x and b = 1, then we also get

1
2

(
1− min {1, x}

max {1, x}

)2

=
1
2

(x− 1)2

max2 {1, x}
(2.10)

≤ lnx− x− 1
x

≤ 1
2

(x− 1)2

min2 {1, x}
=

1
2

(
max {1, x}
min {1, x}

− 1
)2

.

If x ∈ [k,K] ⊂ (0,∞), then by analyzing all possible locations of the interval [k,K] and 1
we have

min {1, k} ≤ min {1, x} ≤ min {1,K}

and
max {1, k} ≤ max {1, x} ≤ max {1,K} .

By (2.9) and (2.10) we get the local bounds

1
2

(x− 1)2

max2 {1,K}
≤ x− 1− lnx ≤ 1

2
(x− 1)2

min2 {1, k}
(2.11)

and
1
2

(x− 1)2

max2 {1,K}
≤ lnx− x− 1

x
≤ 1

2
(x− 1)2

min2 {1, k}
(2.12)

for any x ∈ [k,K] .
We have by (2.11) and (2.12):

Corollary 2.6. Let a, b > 0 and such that ba ∈ [k,K] ⊂ (0,∞) . Then we have

1
2

(b− a)2

a2 max2 {1,K}
≤ b− a

a
− ln b+ ln a ≤ 1

2
(b− a)2

a2 min2 {1, k}
(2.13)

and
1
2

(b− a)2

a2 max2 {1,K}
≤ ln b− ln a− b− a

b
≤ 1

2
(b− a)2

a2 min2 {1, k}
. (2.14)

If we assume that a, b ∈ [m,M ] ⊂ (0,∞), then by taking k = m
M < 1 < M

m = K in (2.13)
and (2.14) we get

1
2
m2

M2

((
b

a

)2

− 2
b

a
+ 1

)
≤ b− a

a
− ln b+ ln a (2.15)

≤ 1
2
M2

m2

((
b

a

)2

− 2
b

a
+ 1

)

and

1
2
m2

M2

((
b

a

)2

− 2
b

a
+ 1

)
≤ ln b− ln a− b− a

b
(2.16)

≤ 1
2
M2

m2

((
b

a

)2

− 2
b

a
+ 1

)
.

Observe also that for x ∈ [k,K] we have

1− min {1, x}
max {1, x}

≥ 1− min {1,K}
max {1, k}

≥ 0
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and
0 ≤ max {1, x}

min {1, x}
− 1 ≤ max {1,K}

min {1, k}
− 1.

Now, by (2.9) and (2.10) we get the global bounds

1
2

(
1− min {1,K}

max {1, k}

)2

≤ x− 1− lnx ≤ 1
2

(
max {1,K}
min {1, k}

− 1
)2

(2.17)

and
1
2

(
1− min {1,K}

max {1, k}

)2

≤ lnx− x− 1
x
≤ 1

2

(
max {1,K}
min {1, k}

− 1
)2

(2.18)

for any x ∈ [k,K] .
By (2.17) and (2.18) we have:

Corollary 2.7. Let a, b > 0 and such that ba ∈ [k,K] ⊂ (0,∞) . Then we have

1
2

(
1− min {1,K}

max {1, k}

)2

≤ b− a
a
− ln b+ ln a ≤ 1

2

(
max {1,K}
min {1, k}

− 1
)2

(2.19)

and
1
2

(
1− min {1,K}

max {1, k}

)2

≤ ln b− ln a− b− a
b
≤ 1

2

(
max {1,K}
min {1, k}

− 1
)2

. (2.20)

We observe that from (2.19) we actually have

1
2


(1−K)

2 if K < 1,
0 if k ≤ 1 ≤ K,(
1− 1

k

)2
if 1 < k,

(2.21)

≤ b− a
a
− ln b+ ln a

≤ 1
2


( 1
k − 1

)2
if K < 1,(

K
k − 1

)2 if k ≤ 1 ≤ K,
(K − 1)2 if 1 < k

and the same bounds for ln b− ln a− b−a
b .

We also have:

Theorem 2.8. For any a, b > 0 we have

(0 ≤)
b− a
a
− ln b+ ln a ≤ (b− a)2

ab
(2.22)

and

(0 ≤) ln b− ln a− b− a
b
≤ (b− a)2

ab
. (2.23)

Proof. If b > a, then∫ b

a

b− t
t2

dt ≤ (b− a)
∫ b

a

1
t2
dt = (b− a)

b− a
ab

=
(b− a)2

ab
.

If a > b, then∫ b

a

b− t
t2

dt =

∫ a

b

t− b
t2

dt ≤ (a− b)
∫ a

b

1
t2
dt = (a− b)

a− b
ab

=
(b− a)2

ab
.

Therefore, ∫ b

a

b− t
t2

dt ≤ (b− a)2

ab

for any a, b > 0 and by the representation (2.4) we get the desired result (2.22).
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It is natural to ask, which of the upper bounds for the quantity

b− a
a
− ln b+ ln a

as provided by (2.3) and (2.22) is better?
Consider the difference

∆ (a, b) :=
1
2

(b− a)2

min2 {a, b}
− (b− a)2

ab
, a, b > 0.

We observe that for b > a we get

∆ (a, b) :=
1
2
(b− a)2

a2 − (b− a)2

ab
=

(b− a)2

2a2b
(b− 2a) .

Therefore ∆ (a, b) > 0 if b > 2a and ∆ (a, b) < 0 if a < b < 2a, meaning that neither of the
upper bounds in (2.3) and (2.22) is always best.

If we take in (2.22) and (2.23) a = 1 and b = x ∈ (0,∞) , then we get

(0 ≤)x− 1− lnx ≤ (x− 1)2

x
(2.24)

and

(0 ≤) lnx− x− 1
x
≤ (x− 1)2

x
(2.25)

for any x > 0.

Corollary 2.9. Let a, b > 0 and such that ba ∈ [k,K] ⊂ (0,∞) . Then we have

b− a
a
− ln b+ ln a ≤ U (k,K) (2.26)

and
ln b− ln a− b− a

b
≤ U (k,K) , (2.27)

where

U (k,K) :=


(k−1)2

k if K < 1,

max
{

(k−1)2

k , (K−1)2

K

}
if k ≤ 1 ≤ K,

(K−1)2

K if 1 < k.

Proof. Consider the function f (x) = (x−1)2

x , x > 0. We observe that

f ′ (x) =
x2 − 1
x2 and f ′′ (x) =

2
x3 ,

which shows that f is strictly decreasing on (0, 1), strictly increasing on [1,∞) and strictly
convex for x > 0. We also have f

( 1
x

)
= f (x) for x > 0.

By (2.24) and by the properties of f we then have that for any x ∈ [k,K]

x− 1− lnx ≤ max
x∈[k,K]

(x− 1)2

x
(2.28)

=


(k−1)2

k if K < 1,

max
{

(k−1)2

k , (K−1)2

K

}
if k ≤ 1 ≤ K,

(K−1)2

K if 1 < k.

= U (k,K) .
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Now, put x = b
a ∈ [k,K] in (2.28) to get the desired inequality (2.26).

Let y = 1
x with x = b

a ∈ [k,K] . Then y ∈
[ 1
K ,

1
k

]
and we have like in (2.28) that

y − 1− ln y ≤ max
y∈[K−1,k−1]

(y − 1)2

y

=


(K−1−1)

2

K−1 if k−1 < 1,

max
{
(K−1−1)

2

K−1 ,
( 1
k−1−1)

2

k−1

}
if k ≤ 1 ≤ K−1,

( 1
k−1−1)

2

k−1 if 1 < 1
K−1 ,

= U (k,K) ,

which implies (2.27).

Now, by Corollary 2.4 we have the global upper bound

b− a
a
− ln b+ ln a ≤ 1

2
(M −m)

2

m2 , (2.29)

for any a, b ∈ [m,M ] . Moreover, if a, b ∈ [m,M ] , then K = M
m and k = m

M and by Corollary
2.9 we also get

b− a
a
− ln b+ ln a ≤ (M −m)

2

mM
, (2.30)

which implies that

(0 ≤)
b− a
a
− ln b+ ln a ≤ (M −m)

2

mM
min

{
M

2m
, 1
}

(2.31)

for any a, b ∈ [m,M ] .
We observe that, for m < M < 2m, the inequality (2.29) is better than (2.30). If M ≥ 2m,

then the conclusion is the other way around.
From the above consideration, we can conclude that the following inequality is also valid

(0 ≤) ln b− ln a− b− a
b
≤ (M −m)

2

mM
min

{
M

2m
, 1
}

(2.32)

for any a, b ∈ [m,M ] .

3 Applications for Weighted AM-GM Inequality

Define the weighted arithmetic mean of the positive n-tuple x = (x1, ..., xn) with the probability
distribution w = (w1, ..., wn) by

An (w, x) :=
n∑
i=1

wixi

and the weighted geometric mean of the same n-tuple, by

Gn (w, x) := (ni=1x
wi
i ) .

It is well know that the following arithmetic mean-geometric mean inequality holds

An (w, x) ≥ Gn (w, x) .

Define also

An,2 (w, x) :=
n∑
i=1

wi x
2
i ,
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the weighted harmonic mean

Hn (w, x) :=
1∑n
i=1

wi
xi

= A−1
n

(
w, x−1) ,

and the dispersion
D2
n (w, x) := An,2 (w, x)−A2

n (w, x) .

We have the following result:

Theorem 3.1. Assume that the n-tuple x = (x1, ..., xn) satisfies the condition

0 < m ≤ xi ≤M <∞ (3.1)

for any i ∈ {1, ..., n} , then for any probability distribution w = (w1, ..., wn) we have

exp
[
An (w, x)H

−1
n (w, x)− 1− 1

2m2D
2
n (w, x)

]
(3.2)

≤ An (w, x)

Gn (w, x)

≤ exp
[
An (w, x)H

−1
n (w, x)− 1− 1

2M2D
2
n (w, x)

]
and

exp
[

1
2M2D

2
n (w, x)

]
≤ An (w, x)

Gn (w, x)
≤ exp

[
1

2m2D
2
n (w, x)

]
. (3.3)

Proof. We have that An (w, x) ∈ [m,M ] and by (2.7) we obtain

1
2
(An (w, x)− a)2

M2 ≤ An (w, x)− a
a

− lnAn (w, x) + ln a (3.4)

≤ 1
2
(An (w, x)− a)2

m2

and

1
2
(b−An (w, x))2

M2 ≤ b−An (w, x)
An (w, x)

− ln b+ lnAn (w, x) (3.5)

≤ 1
2
(b−An (w, x))2

m2

for any a, b ∈ [m,M ] .
Take in (3.4) a = xi, multiply the obtained inequality by wi and sum over i ∈ {1, ..., n} to

get

1
2M2

n∑
i=1

wi (An (w, x)− xi)2 (3.6)

≤ An (w, x)
n∑
i=1

wi
xi
− 1− lnAn (w, x) +

n∑
i=1

wi lnxi

≤ 1
2m2

n∑
i=1

wi (An (w, x)− xi)2
.

Since
n∑
i=1

wi (An (w, x)− xi)2
= An,2 (w, x)− (An (w, x))

2
= D2

n (w, x) ,
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n∑
i=1

wi
xi

= H−1
n (w, x)

and
n∑
i=1

wi lnxi = lnGn (w, x) ,

hence by (3.6) we have

1
2M2D

2
n (w, x) (3.7)

≤ An (w, x)H−1
n (w, x)− 1− lnAn (w, x) + lnGn (w, x)

≤ 1
2m2D

2
n (w, x)

that is equivalent to

An (w, x)H
−1
n (w, x)− 1− 1

2m2D
2
n (w, x)

≤ lnAn (w, x)− lnGn (w, x)

≤ An (w, x)H−1
n (w, x)− 1− 1

2M2D
2
n (w, x)

and by taking the exponential, we get (3.2).
Further, take in (3.4) b = xi, multiply the obtained inequality by wi and sum over i ∈

{1, ..., n} to get

1
2M2

n∑
i=1

wi (An (w, x)− xi)2 ≤ lnAn (w, x)− lnGn (w, x) (3.8)

≤ 1
2m2

n∑
i=1

wi (An (w, x)− xi)2

and by taking the exponential, we deduce (3.3).

Remark 3.2. Choose n = 2 and let w1 = 1 − ν, w2 = ν, x1 = a, x2 = b with ν ∈ [0, 1] and a,
b > 0. Then

A2 (w, x) = (1− ν) a+ νb,

H−1
2 (w, x) = (1− ν)

1
a
+ ν

1
b
=

(1− ν) b+ νa

ab

and

D2
2 (w, x) = (1− ν) a2 + νb2 − ((1− ν) a+ νb)

2

= (1− ν) a2 + νb2 − (1− ν)2
a2 − 2 (1− ν) νab− ν2b2

= (1− ν) ν (b− a)2
.

Moreover,

A2 (w, x)H
−1
2 (w, x)− 1

=
[(1− ν) a+ νb] [(1− ν) b+ νa]

ab
− 1

=
(1− ν)2

ab+ ν (1− ν) b2 + ν (1− ν) a2 + ν2ab− ab
ab

=
ν (1− ν) (b− a)2

ab
.
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Then

A2 (w, x)H
−1
2 (w, x)− 1− 1

2m2D
2
2 (w, x)

=
ν (1− ν) (b− a)2

ab
− (1− ν) ν (b− a)2

2m2

= ν (1− ν) (b− a)2
(

1
ab
− 1

2m2

)
and

A2 (w, x)H
−1
2 (w, x)− 1− 1

2M2D
2
2 (w, x)

=
ν (1− ν) (b− a)2

ab
− (1− ν) ν (b− a)2

2M2

= ν (1− ν) (b− a)2
(

1
ab
− 1

2M2

)
.

Then by (3.2) and (3.3) we get

exp
[
ν (1− ν) (b− a)2

(
1
ab
− 1

2m2

)]
(3.9)

≤ Aν (a, b)

Gν (a, v)
≤ exp

[
ν (1− ν) (b− a)2

(
1
ab
− 1

2M2

)]
and

exp
[

1
2M2 (1− ν) ν (b− a)2

]
(3.10)

≤ Aν (a, b)

Gν (a, v)
≤ exp

[
1

2m2 (1− ν) ν (b− a)2
]

where
Aν (a, b) := (1− ν) a+ νb

is the weighted arithmetic mean of (a, b) and

Gν (a, b) := a1−νbν

is the weighted geometric mean of (a, b) .
The inequality (3.10) has been obtained in different ways in either of the recent papers [1]

and [4].
In order to compare the upper and lower bounds for the quotient Aν (a,b)

Gν (a,v)
provided by (3.9)

and (3.10) we consider the difference

Dm,M (a, b) :=
1
ab
− 1

2M2 −
1

2m2

where a, b ∈ [m,M ] .
We observe that

lim
a,b→m

Dm,M (a, b) :=
1
m2 −

1
2M2 −

1
2m2 =

M2 −m2

2m2M2 > 0

and

lim
a,b→M

Dm,M (a, b) =
1
M2 −

1
2M2 −

1
2m2 =

m2 −M2

2m2M2 < 0,

which show that neither of the lower or upper bounds in (3.9) and (3.10) is always best.
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We also have:

Theorem 3.3. Assume that the n-tuple x = (x1, ..., xn) satisfies the condition (3.1) for any
i ∈ {1, ..., n} then for any probability distribution w = (w1, ..., wn) we have

exp
[
An (w, x)H−1

n (w, x)− 1
]

An(w,x)
Gn(w,x)

≤ exp

[
(M −m)

2

mM
min

{
M

2m
, 1
}]

(3.11)

and
An (w, x)

Gn (w, x)
≤ exp

[
(M −m)

2

mM
min

{
M

2m
, 1
}]

. (3.12)

Proof. From the inequalities (2.31) and (2.32) we have

An (w, x)− a
a

− lnAn (w, x) + ln a ≤ (M −m)
2

mM
min

{
M

2m
, 1
}

(3.13)

and
b−An (w, x)
An (w, x)

− ln b+ lnAn (w, x) ≤
(M −m)

2

mM
min

{
M

2m
, 1
}

(3.14)

for any a, b ∈ [m,M ] .
By a similar argument to the one in the proof of Theorem 3.1 we get

An (w, x)H
−1
n (w, x)− 1− lnAn (w, x) + lnGn (w, x) ≤

(M −m)
2

mM
min

{
M

2m
, 1
}

and

lnAn (w, x)− lnGn (w, x) ≤
(M −m)

2

mM
min

{
M

2m
, 1
}

that are equivalent to the desired results (3.11) and (3.12).

Now, we observe that since ν (1− ν) ≤ 1
4 for any ν ∈ [0, 1] , then by (3.10) we have

Aν (a, b)

Gν (a, v)
≤ exp

[
1

8m2 (M −m)
2
]

(3.15)

while from (3.12) we get

Aν (a, b)

Gν (a, v)
≤ exp

[
(M −m)

2

mM
min

{
M

2m
, 1
}]

(3.16)

for any ν ∈ [0, 1] and any a, b ∈ [m,M ] .

Now, if m < M < 2m, then (M−m)2

mM min
{
M
2m , 1

}
= (M−m)2

2m2 , which shows that the upper

bound from (3.15) is better than the one from (3.16). If 2m < M < 8m then (M−m)2

mM min
{
M
2m , 1

}
=

(M−m)2

mM , which shows that still the upper bound from (3.15) is better than the one from (3.16).
If 8m ≤M , then the bound in (3.16) is better than the one in (3.15).
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