ON THE COSET PRESERVING SUBCENTRAL AUTOMORPHISMS OF FINITE GROUPS

Mohammad Mehdi Nasrabadi and Parisa Seifizadeh

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 20D45; Secondary 20D15.

Keywords and phrases: Subcentral automorphism, Finite p-groups, Frattini subgroup, Inner automorphism.

Abstract. Let G be a group and M be a characteristic subgroup of G. We denote by $Aut_M^M(G)$ the set of all automorphisms of G which centralize G/M and M. In this paper, we give the necessary and sufficient conditions for equality $Aut_M^M(G)$ with $Aut_M^M(G)$. Also we study equivalent conditions for equality $Aut_M^M(G)$ with Inn(G).

1 Introduction

In this paper p denotes a prime number. Let us denote $\Phi(G)$, G', Z(G), $\operatorname{Aut}(G)$ and $\operatorname{Inn}(G)$, respectively the Frattini subgroup, commutator subgroup, the center, the full automorphism group and the inner automorphisms group of G. An automorphism α of G is called a central automorphism if $x^{-1}\alpha(x) \in Z(G)$ for $x \in G$. All the elements of the central automorphism group of G, denoted by $\operatorname{Aut}^Z(G)$, is a normal subgroup of $\operatorname{Aut}(G)$.

There has been a number of results on the central automorphisms of a group. Curran and Mc-Caughan [4] proved that for any non-abelian finite group G, $Aut_Z^Z(G) \cong Hom(G/G'Z(G), Z(G))$ where $Aut_Z^Z(G)$ is group of all those central automorphisms which preserve the center Z(G) elementwise. Adney and Yen [1] proved that if a finite group G has no abelian direct factor, then there is a one-one and onto map between $Aut^Z(G)$ and Hom(G, Z(G)). Ghumed and Ghate [5] proved that for a finite group G, $Aut_M^M(G) \cong Hom(G/KM, M)$. Also he proved that if G is a purely non-abelian finite group, then $|Aut^M(G)| = |Hom(G, M)|$. Shabani Attar [10] characterized all finite p-groups G for which the equality $Aut^Z(G) = Aut_Z^Z(G)$ holds. Let IA(G) be the subgroup of Aut(G) which consists of those automorphisms α for which $g^{-1}\alpha(g) \in G'$ for each $g \in G$. A group G is called semicomplete if IA(G) = Inn(G). Shabani Attar [9] gave some necessary conditions for finite p-groups to be semicomplete. In this paper, we give necessary and sufficient conditions for G such that $Aut_M^M(G) = Aut^M(G)$ and show some equivalent conditions for equality Aut_M^M with Inn(G).

2 Preliminaries

Let M be a characteristic subgroup of G. By $Aut^{M}(G)$, we mean the subgroup of Aut(G) consisting of all automorphisms which induce identity on G/M. By $Aut_{M}(G)$, we mean the subgroup of Aut(G) consisting of all automorphisms which restrict to the identity on M. Let $Aut_{M}^{M}(G) = Aut^{M}(G) \cap Aut_{M}(G)$. From now onwards, M will be a characteristic central subgroup and elements of $Aut^{M}(G)$ will be called subcentral automorphisms of G (with respect to subcentral subgroup M). It can be seen that $Aut^{M}(G)$ is a normal subgroup of $Aut^{Z}(G)$. We further let A^* be the set { $\alpha \in Aut_{M}(G) : \alpha\beta = \beta\alpha, \forall \beta \in Aut^{M}(G)$ }. Clearly A^* is a normal subgroup of Aut(G). Since every inner automorphism commutes with elements of $Aut^{Z}(G)$, $Inn(G) \leq A^*$. Let

$$P = \langle [g, \alpha] : g \in G, \alpha \in A^* \rangle$$
, where $[g, \alpha] = g^{-1}\alpha(g)$.

It is easy to check that P is a characteristic subgroup of G.

We first state some results that will be used in the proof of the main theorems.

Proposition 2.1. [5, Proposition 2.1]. $Aut^M(G)$ acts trivially on P.

Let A^{**} be any normal subgroup of Aut(G) contained in A^* , and $K = \langle [g, \alpha] : g \in G, \alpha \in A^{**} \rangle$. In particular, when $A^{**} = Inn(G)$, we get K = G'. Since K is a subgroup of P, it is invariant under the action of $Aut^M(G)$. It is easy to see that K is a characteristic subgroup of G, and hence it is a normal subgroup of G.

Theorem 2.2. [5, Theorem A]. For a finite group G, $Aut_M^M(G) \cong Hom(G/KM, M)$.

Theorem 2.3. [5, Theorem C]. If G is a purely non-abelian finite group, then $|Aut^M(G)| = |Hom(G, M)|$.

Proposition 2.4. [5, Proposition 2.4]. Let G be a purely non-abelian finite group, then for each $\alpha \in Hom(G, M)$ and each $x \in K$, we have $\alpha(x) = 1$. Further $Hom(G/K, M) \cong Hom(G, M)$.

3 Main Results

We note that in this section M is a central characteristic subgroup.

Theorem 3.1. Let G be a finite group. Then G/M is abelian if and only if $Inn(G) \leq Aut^M(G)$.

Proof. Suppose G/M is abelian. Thus $G' \leq M$. Let $x \in G$. Then for the inner automorphism θ_x induced by x and every $g \in G$ we have, $g^{-1}\theta_x(g) = [g, x] \in G' \subseteq M$. So for every $\alpha \in Inn(G)$, $g^{-1}\alpha(g) \in M$. This means $Inn(G) \subseteq Aut^M(G)$. Hence $Inn(G) \leq Aut^M(G)$. Conversely, suppose $Inn(G) \leq Aut^M(G)$. Hence it is clear $G' \subseteq M$ and so G/M is abelian.

Here we give a basic lemmas that will be used in the proof of the results.

Lemma 3.2. [3, Lemma E]. Suppose H is an abelian p-group of exponent p^c , and K is cyclic group of order divisible by p^c . Then Hom(H, K) is isomorphic to H.

Lemma 3.3. [3, Lemma H]. Let G be a purely non-abelian p-group, of nilpotent class 2. Then $|Hom(G/Z(G), G')| \ge |G/Z(G)|p^{r(s-1)}$, where r = rank(G/Z(G)) and s = rank(G').

Theorem 3.4. Suppose G is a non-abelian finite p-group for which G/M is abelian. Then $|Aut^M(G) : Inn(G)| \ge p^{r(s-1)}$, where r and s are as defined before.

Proof. By Theorem 2.3, $|Aut^M(G)| = |Hom(G, M)|$. Now we have

$$|\operatorname{Hom}(G,M)| \ge |\operatorname{Hom}(G/Z(G),M)| \ge |\operatorname{Hom}(G/Z(G),G')| \ge |G/Z(G)|p^{r(s-1)}.$$

Hence $|Aut^{M}(G)| \ge |G/Z(G)|p^{r(s-1)}$, thus $|Aut^{M}(G) : Inn(G)| = |Aut^{M}(G)|/|G/Z(G)| \ge p^{r(s-1)}$.

Find necessary and sufficient conditions on a finite p-group G such that $Aut_M^M(G) = Aut^M(G)$

Let G be a non-abelian finite p-group. Let

 $G/K = C_{p^{a_1}} \times C_{p^{a_2}} \times \ldots \times C_{p^{a_k}},$

where $C_{p^{a_i}}$ is a cyclic group of order p^{a_i} , $1 \le i \le k$, and $a_1 \ge a_2 \ge ... \ge a_k \ge 1$. Let

$$G/KM = C_{p^{b_1}} \times C_{p^{b_2}} \times \dots \times C_{p^{b_l}}$$

and

$$M = C_{p^{c_1}} \times C_{p^{c_2}} \times \dots \times C_{p^{c_m}},$$

where $b_1 \ge b_2 \ge ... \ge b_l \ge 1$ and $c_1 \ge c_2 \ge ... \ge c_m \ge 1$.

Since G/KM is a quotient of G/K, by [2, Section 25], we have $l \leq k$ and $b_i \leq a_i$ for all $1 \leq i \leq l$.

Theorem 3.5. Let G be a purely non-abelian finite p-group (p odd). Then $Aut_M^M(G) = Aut^M(G)$ if and only if $M \leq K$ or $M \leq \Phi(G)$, k = l and $c_1 \leq b_t$ where t is the largest integer between 1 and k such that $a_t > b_t$.

Proof. Let $M \leq K$, by Proposition 2.1 and since $K \leq P$, every $\alpha \in Aut^M(G)$ fixes M and so $Aut^M(G) \leq Aut^M_M(G)$, since $Aut^M_M(G) \leq Aut^M(G)$. Thus $Aut^M_M(G) = Aut^M(G)$. Now suppose that $M \leq \Phi(G)$, k = l and $c_1 \leq b_t$. Since G is purely non-abelian and by Theorem 2.3 and Proposition 2.4, we have

$$|Aut^{M}(G)| = |Hom(G, M)| = |Hom(G/K, M)| = \prod_{1 \le i \le k, 1 \le j \le m} p^{min\{a_i, c_j\}}$$

On the other hand, by Theorem 2.2, we have

$$|Aut_{M}^{M}(G)| = |Hom(G/KM, M)| = \prod_{1 \le i \le l, 1 \le j \le m} p^{min\{b_{i}, c_{j}\}}$$

Since $b_t \ge c_1$, we have

$$b_1 \ge b_2 \ge \dots \ge b_{t-1} \ge b_t \ge c_1 \ge c_2 \ge \dots \ge c_m \ge 1.$$

Therefore, $c_j \leq b_i \leq a_i$ for all $1 \leq j \leq m$ and $1 \leq i \leq t$, whence $\min\{a_i, c_j\} = c_j = \min\{b_i, c_j\}$ for all $1 \leq j \leq m$ and $1 \leq i \leq t$. Since $a_i = b_i$ for all i > t, we have $\min\{a_i, c_j\} = \min\{b_i, c_j\}$ for all $1 \leq j \leq m$ and $t + 1 \leq i \leq k$. Thus $\min\{b_i, c_j\} = \min\{a_i, c_j\}$ for all $1 \leq j \leq m$ and $1 \leq i \leq k$. Therefore, $Aut_M^M(G) = Aut^M(G)$.

Conversely if $Aut_M^M(G) = Aut^M(G)$ and $M \nleq K$. We claim that $M \le \Phi(G)$. Assume contrarily that M is not contained in $\Phi(G)$. Then there exists a maximal subgroup D of G such that $M \nleq D$. The maximality of D implies that G = DM and $D \le G$. Hence we assume that |G/D| = p, where p is a prime number. Now we consider the following two cases.

Case 1: $p||M \cap D|$. Choose $z \in M \cap D$ such that o(z) = p and fix $g \in M \setminus D$. It is clear that G = D < g >. Then the map α defined on G by $\alpha(dg^i) = dg^i z^i$ for every $d \in D$ and every $i \in \{0, 1, 2, ..., p-1\}, \alpha \in Aut^M(G)$. By the given hypothesis $g = \alpha(g) = gz$, whence z = 1, which is a contradiction. Hence $M \leq \Phi(G)$.

Case 2: $p \nmid |M \cap D|$. In this case, since

$$p = |G/D| = |DM/D| = |M/M \cap D|,$$

we see that p divides |M| and we may choose $z \in M$ such that o(z) = p and $z \notin D$. Hence $G = \langle D, z \rangle = D \times \langle z \rangle$. Consider the map $\alpha : G \to G$ where $\alpha(dz^i) = dz^{2i}$ for every $d \in D$ and every $i \in \{0, 1, 2, ..., p-1\}$, then $\alpha \in Aut^M(G)$. By the given hypothesis and since $z \in M$ it is clear that $z = \alpha(z) = \alpha(1.z^1) = z^2$, a contradiction. The proof of the theorem is complete. \Box

Lemma 3.6. Let G be a finite p-group, then $Aut_M^M(G) \cong Hom(G/M, M)$.

Proof. Consider the map $\phi : Aut_M^M(G) \longrightarrow \operatorname{Hom}(G/M, M)$ defined by $\phi(\alpha) = \alpha^*$, where $\alpha^*(gM) = g^{-1}\alpha(g)$ for all $g \in G$. It is clear that α^* is a well defined homomorphism. We show that ϕ is an isomorphism. If $\alpha_1, \alpha_2 \in Aut_M^M(G)$ and $\alpha_1 = \alpha_2$, then $g^{-1}\alpha_1(g) = g^{-1}\alpha_2(g)$, thus $\alpha_1^*(gM) = \alpha_2^*(gM)$, hence $\alpha_1^* = \alpha_2^*$, therefore $\phi(\alpha_1) = \phi(\alpha_2)$, so ϕ is a well defined homomorphism. It is easy to check that ϕ is a monomorphism. We show that ϕ is onto. For given any $f \in \operatorname{Hom}(G/M, M)$, define $\alpha : G \longrightarrow G$ by $\alpha(g) = gf(gM)$. Clearly $\alpha \in Aut(G)$. We show that $\alpha \in Aut_M^M(G)$. Since $g^{-1}\alpha(g) = f(gM) \in M$, then $\alpha \in Aut^M(G)$. Also for each $m \in M$, we have $\alpha(m) = mf(mM) = m$, thus $\alpha \in Aut_M(G)$. So $\alpha \in Aut_M^M(G)$ and $\phi(\alpha) = f$. Therefore ϕ is an isomorphism and $Aut_M^M(G) \cong \operatorname{Hom}(G/M, M)$.

Theorem 3.7. Let G be a finite p-group such that G/M is abelian. Then the following are equivalent:

(1) $Aut_M^M(G) = Inn(G).$ (2) $Hom(G/M, M) \cong G/Z(G).$ (3) *M* is cyclic and $Hom(G/M, M) \cong Hom(G/Z(G), M).$

Proof. (1) \Rightarrow (2) By Lemma 3.6, and since $Aut_M^M(G) = Inn(G)$ we have, $Hom(G/M, M) \cong Inn(G) \cong G/Z(G)$.

 $(2) \Rightarrow (1)$ By Lemma 3.6, and since $Hom(G/M, M) \cong G/Z(G)$, thus $Aut_M^M(G) \cong Inn(G)$, also since G/M is abelian we have $G' \leq M$ and so $Inn(G) \leq Aut^M(G)$, also for every $\alpha \in Inn(G)$ and $m \in M$, we have $\alpha(m) = m$, therefore $Inn(G) \leq Aut_M^M(G)$ and so $Aut_M^M(G) = Inn(G)$.

(1) \Rightarrow (3) Since $Aut_M^M(G) = Inn(G)$, every $f \in Aut_M^M(G)$ is an inner one, and so fixes each element of Z(G). Therefore, for every $f \in Aut_M^M(G)$, the map $\sigma_f : G/Z(G) \longrightarrow M$ defined by $\sigma_f(gZ(G)) = g^{-1}f(g)$ is well defined. Now consider the map $\sigma : f \longmapsto \sigma_f$. It is easy to check that σ is an isomorphism from $Aut_M^M(G)$ onto Hom(G/Z(G), M). Thus $Hom(G/Z(G), M) \cong$ G/Z(G). Now we show that M is cyclic. Assume contrarily that M isnot cyclic and exp(M)= p^e , then $M = C_{p^e} \times N$ where C_{p^e} is cyclic subgroup of M and N is a nontrivial proper subgroup of M. We have $|G/Z(G)| = |Hom(G/Z(G), M)| = |Hom(G/Z(G), C_{p^e} \times N)| =$ $|Hom(G/Z(G), C_{p^e})||Hom(G/Z(G), N)|$. Since G/M is abelian we have $G' \leq M \leq Z(G)$, so G is nilpotent of class 2, and exp(G/Z(G)) = exp(G'). Now by Lemma 3.2, $|Hom(G/Z(G), C_{p^e})| =$ |G/Z(G)|. Therefore

$$|G/Z(G)| = |Hom(G/Z(G), M)| = |G/Z(G)||Hom(G/Z(G), N)|,$$

which is a contradiction. Hence M is cyclic.

 $(3) \Rightarrow (1)$ Since M is cyclic and G/Z(G) is an abelian p-group of exponent |G'| and G' is cyclic, it follows that $Hom(G/Z(G), M) \cong G/Z(G)$. By Lemma 3.6, $Aut_M^M(G) \cong Hom(G/M, M)$ and also $Inn(G) \leq Aut_M^M(G)$. Thus $Aut_M^M(G) = Inn(G)$.

References

- [1] J. E. Adney and T. Yen, Automorphisms of a p-group, Illinois J. Math. 9, 137-143 (1965).
- [2] R. D. Carmichael, Groups of Finite Order, Dover Publications, New York (1965).
- [3] M. J. Curran and D. J. McCaughan, Central automorphisms that are almost inner, Comm. Algebra. 29, 2081–2087 (2001).
- [4] M. J. Curran and D. J. McCaughan, Finite groups with central automorphism group of minimal order, Math. Proc. R. Ir. Acad. 104, 223–229 (2004).
- [5] R. G. Ghumde and S. H. Ghate, Group of automorphisms preserving cosets of a central charactristic subgroup and related results, *Acta Math. Univ. Comenianae.* 2, 181–189 (2016).
- [6] M. Hangyang and G. Xiuyun, The absolute center of finite groups, J. Group Theory. 18, 887–904 (2015).
- [7] Z. Kaboutari Farimani and M. M. Nasrabadi, On absolute central automorphisms fixing the center elementwise, *Journal of Algebraic Systems.* **2**, 127–131 (2016).
- [8] M. M. Nasrabadi and Z. Kaboutary Farimani, Absolute central automorphism that are inner, *Indagationes Mathematica*. 26, 137–141 (2015).
- [9] M. Shabani Attar, Semicomplete Finite p-Groups, Algebra Colloquium. 18, 937–944 (1974).
- [10] M. Shabani Attar, finite p-groups in which each central automorphism fixes centre elementwise, *Communi. cations in Algebra.* 40, 1096–1102 (2012).

Author information

Mohammad Mehdi Nasrabadi and Parisa Seifizadeh, Department of Mathematics, University of Birjand, South Khorasan, Birjand, Iran.

E-mail: (Corresponding Author) paris.seifizadeh@birjand.ac.ir

Received: November 11, 2018. Accepted: January 30, 2019.