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Abstract. This paper deals with the oscillation of the fourth-order delay differential equa-
tion. New oscillation criteria are obtained by employing a refinement of the generalized Riccati
transformations and new comparison principles .An example is included to illustrate the main
results.

1 Introduction

In this work, we are concerned with the oscillation and the asymptotic behavior of solutions of
the fourth order nonlinear differential equations with delayed argument[

b (t) (x′′′ (t))
γ]′

+ q (t) f (x (τ (t))) = 0‚ t ≥ t0. (1.1)

We assume that γ is a quotient of odd positive integers, b ∈ C1[t0‚ ∞), b′ (t) ≥ 0, b (t) >
0, q, τ ∈ C[t0‚∞), f ∈ C (R‚ R) , q > 0, τ (t) ≤ t, lim

t→∞
τ (t) =∞, there exist constants k > 0

such that f (u) /u
γ ≥ k, for u 6= 0 and under the condition∫ ∞

t0

1

b
1
γ (t)

dṫ <∞. (1.2)

By a solution of (1.1) we mean a function x ∈ C ′′′[Tx‚∞), Tx ≥ t◦, which has the property
b (t) [x′′′ (t)]

γ ∈ C1[Tx‚∞), and satisfies (1.1) on [Tx‚∞).We consider only those solutions x of
(1.1) which satisfy sup{|x (t)| : t ≥ T} > 0, for all T > Tx.We assume that (1.1) possesses such
a solution. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [Tx‚ ∞),
and other wiseit is called to be nonoscillatory. (1.1) is said to be oscillatory if all its solutions are
oscillatory.

As is well known, the fourth-order differential equations are derived from many different
areas of applied mathematics and physics, for instance, deflection of buckling beam with a fixed
or variable cross-section, three-layer beam, electromagnetic waves, gravity-driven flows, etc. In
recent years, the oscillation theory of fourth-order differential equations has received a great deal
of attention since it has been widely applied in research of physical sciences, mechanics, radio
technology, lossless high-speed computer network, control system, life sciences, and population
growth.

The oscillations of fourth-order differential equations have been studied by several authors
and several techniques have been proposed for obtaining oscillatory criteria for higher and fourth
order differential equations. For treatments on this subject, we refer the reader to the texts
[[2, 6, 18], [14]-[16]] and the articles [[1], [3]-[13], [17]-[25]]. In what follows, we review some
results that have provided the background and the motivation, for the present work.

Zhang, et al.[23] consider the oscillation of a fourth-order quasilinear delay differential equa-
tion [

b (t) (x′′′ (t))
γ]′

+ q (t)xγ (τ (t)) = 0‚ t ≥ t0.
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Grace et al.[13] studied the oscillation behavior of the fourth-order nonlinear differential equa-
tion [

r (t) (x′ (t))
γ]′′′

+ q (t) f (x (g (t))) = 0‚ t ≥ t0.

Moaaz et al. [18] considered with the oscillatory behavior of solutions of non-linear fourth
order differential equations of the type

(
r (t) (x′′′ (t))

α)′
+

∫ b

a

q (t, ξ) f (x (g (t, ξ))) dσ (ξ) = 0,

Chatzarakis et al. [11] studied the oscillation behavior of the fourth-order differential equa-
tion [

r (t)
(
[x (t) + p (t)x (τ (t))]

′′′)α]′
+

∫ b

a

q (t, ξ) f (x (g (t, ξ))) dξ = 0,

under the condition ∫ ∞
t0

1
r

1
α (t)

dt =∞.

Agarwal et al.[3] and Zhang et al.[24] consider the oscillatory properties of the higher-order
differential equation [

b (t)
(
x(n−1) (t)

)γ]′
+ q (t)xγ (τ (t)) = 0‚ t ≥ t0.

Our aim in the present paper is to employ the Riccatti technique to establish some new conditions
for the oscillation of all solutions of (1.1). The results obtained in the paper a generalized some
results from [23]. One example are presented to illustrate our main results.

The proof of our main results are essentially based on the following lemmas.

Lemma 1.1. Let z ∈ (Cn [t0‚∞] ,R+) and assume that z(n) is of fixed sign and not identically
zero on a subray of [t0‚∞] . If moreover, z (t) > 0, z(n−1) (t) z(n) (t) ≤ 0 and lim

t→∞
z (t) 6=

0, then, for every λ ∈ (0, 1), there exists tλ ≥ t◦ such that

z (t) ≥
λ

(n− 1)
tn−1

∣∣∣z(n−1) (t)
∣∣∣ , for t ∈ [tλ, ∞).

Lemma 1.2. Let γ ≥ 1 be a ratio of two numbers, where C and D are constants. Then

Cy −Dy
γ+1
γ ≤ γγ

(γ + 1)γ+1
Cγ+1

Dγ
, D > 0.

Lemma 1.3. If the function z satisfies z(i) > 0, i = 0, 1, ..., n, and z(n+1) < 0, then

z (t)

tn/n!
≥ z′ (t)

tn−1/ (n− 1)!
.

2 MAIN RESULTS

In this section, we shall establish some oscillation criteria for equation (1.1). We are now ready
to state and prove the main results. For convenience, we denote

π (s) :=
∫ ∞
t0

1
b (s)

ds, δ′+ (t) := max {0, δ′ (t)} and ρ′+ (t) := max {0, ρ′ (t)} .

Theorem 2.1. Let (1.2) hold. Assume that there exists a positive function δ ∈ C1[t0, ∞) such
that ∫ ∞

t0

[
kq (s)

(
τ 3(s)
s3

)γ
δ (s)− 2

γ
b(s)(δ′(s))

γ+1

(γ+1)γ+1(λ1δ(s)s2)γ

]
ds =∞, (2.1)
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for some constant λ1 ∈ (0, 1) . Assume further that there exists a positive function ρ ∈ C1[t0, ∞)
such that ∫ ∞

t0

[
ρ (s)

∫ ∞
s

[
1
b(ϑ)

∫ ∞
$

kq (ν)
γ

dν

] 1
γ

dϑ− (ρ′(s))
2

4ρ(s)

]
ds =∞. (2.2)

If ∫ ∞
t0

[
kq (s)

(∫ ∞
s

∫ ∞
u

π (χ) dχdu

)γ
− γγ+1 ∫∞

s
π(χ)dχ

(γ+1)γ+1 ∫∞
s

∫∞
u
π(χ)dχdu

]
ds =∞, (2.3)

and ∫ ∞
t0

[
kq (s)

(
λ2

2
τ 2 (s)

)γ
πγ (s)−

γγ+1

(γ + 1)γ+1
π (s) b

1
γ (s)

]
ds =∞, (2.4)

for some constant λ2 ∈ (0, 1) , then every solution of (1.1) is oscillatory.

Proof. Assume that (1.1) has a nonoscillatory solution x. Without loss of generality, we can
assume that x (t) > 0. It follows from (1.1) that there exist four possible cases for t ≥
t1, where t1 ≥ t0 is sufficiently large:

Case 1 : x′ (t) > 0, x′′ (t) > 0, x′′′ (t) > 0, x(4) (t) ≤ 0, (b (x′′′)γ)′ (t) ≤ 0.
Case 2 : x′ (t) > 0, x′′ (t) < 0, x′′′ (t) > 0, x(4) (t) ≤ 0, (b (x′′′)γ)′ (t) ≤ 0.
Case 3 : x′ (t) < 0, x′′ (t) > 0, x′′′ (t) < 0, (b (x′′′)γ)′ (t) ≤ 0.
Case 4 : x′ (t) > 0, x′′ (t) > 0, x′′′ (t) < 0, (b (x′′′)γ)′ (t) ≤ 0.
Assume that we have Case1 .Define.

ω (t) := δ (t)
b (t) (x′′′)

γ
(t)

xγ (t)
. (2.5)

Then ω (t) > 0 for t ≥ t1 and

ω′ (t) = δ′ (t)
b (t) (x′′′)

γ
(t)

xγ (t)
+ δ (t)

(b (x′′′)
γ
)
′
(t)

xγ (t)

−γδ (t)
xγ−1 (t) (x)

′
(t) b (t) (x′′′)

γ
(t)

x2γ (t)
, (2.6)

from Lemma (1.1) that

x′ (t) ≥
λ

2
t2x′′′ (t) , (2.7)

for every λ ∈ (0, 1) , and all sufficiently large t.By Lemma (1.3), we find x (t) ≥ (t�3)x′ (t) and,
hence

x (τi (t))

x (t)
≥ τ 3 (t)

t3
. (2.8)

Hence, by (2.7) and (2.8), we obtain

ω′ (t) ≤ δ′ (t)
b (t) (x′′′)

γ
(t)

xγ (t)
+ δ (t)

(b (x′′′)
γ
)
′
(t)

xγ (t)
− γλ

2
t2δ (t)

x′′′ (t) b (t) (x′′′)
γ
(t)

(x)
γ+1

(t)
. (2.9)

In view of (1.1), we get

ω′ (t) ≤ −kq (t)
(
τ 3 (t)

t3

)γ
δ (t) +

δ′ (t)

δ (t)
ω (t)−

γλt2

2 (b (t) δ (t))
1
γ
ω
γ+1
γ (t) . (2.10)

Define now

C :=
γλt2

2 (b (t) δ (t))
1
γ
, D :=

δ′ (t)

δ (t)
, y := ω (t) .

Applying Lemma (1.2), we find

δ′ (t)

δ (t)
ω (t)−

γλt2

2 (b (t) δ (t))
1
γ
ω (t)

γ+1
γ ≤ 2γ

(γ + 1)γ+1
b (t) (δ′ (t))

γ+1

(λδ (t) t2)
γ . (2.11)
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Hence, we obtain

ω′ (t) ≤ −kq (t)
(
τ 3 (t)

t3

)γ
δ (t) +

2γ

(γ + 1)γ+1
b (t) (δ′ (t))

γ+1

(λδ (t) t2)
γ .

Integrating from t1 to t , we get∫ t

t

[
−kq (s)

(
τ 3 (s)

s3

)γ
δ (s)−

2
γ

b (s) (δ′ (s))
γ+1

(γ + 1)γ+1
(λ1δ (s) s2)

γ

]
ds ≤ ω (t1) ,

for every λ ∈ (0, 1) , and all sufficiently large t but this contradicts (2.1).
Assume that we have Case 2. Define

ψ (t) := ρ (t)
x′ (t)

x (t)
, t ≥ t1. (2.12)

Then ψ (t) > 0 for t ≥ t1 and

ψ′ (t) = ρ′ (t)
x′ (t)

x (t)
− ρ (t)

x′′ (t)x (t)− (x′)
2
(t)

x2 (t)
, (2.13)

ψ′ (t) = ρ (t)
x′′ (t)

x (t)
+
ρ′ (t)

ρ (t)
ψ (t)−

ψ2 (t)

ρ (t)
.

Integrating (1.1) from t to u we find

b (u) (x′′′)
γ
(u)− b (t) (x′′′)γ (t) +

∫ u

t

kq (s)xγ (τi (s)) ds ≤ 0,

b (u) (x′′′)
γ
(u)− b (t) (x′′′)γ (t) + xγ (t)

∫ u

t

kq (s)

(
τ 3 (s)

s3

)γ
ds ≤ 0.

Letting u→∞, we arrive at the inequality

x′′ (t) + x (t)

∫ ∞
t

[
1

b (ϑ)

∫ ∞
y

kq (t)

(
τ 3 (s)

s3

)γ
ds

] 1
γ

dϑ ≤ 0. (2.14)

Hence, by (2.14) in (2.13), we find

ψ′ (t) ≤ −ρ (t)
∫ ∞
t

[
1

b (ϑ)

∫ ∞
ϑ

kq (t)

(
τ 3 (s)

s3

)γ
ds

] 1
γ

dϑ

+
ρ′ (t)

ρ (t)
ψ (t)−

ψ2 (t)

ρ (t)
.

Thus, we have

ψ′ (t) ≤ −ρ (t)
∫ ∞
t

[
1

b (ϑ)

∫ ∞
y

kq (s)

(
τ 3 (s)

s3

)γ
ds

] 1
γ

dϑ+
(ρ′ (t))

2

4ρ (t)
. (2.15)

Integrating from t1 to t , we get∫ t

t1

[
ρ (s)

∫ ∞
s

[
1

b (ϑ)

∫ ∞
$

kq (ν)
(
τ 3(ν)
ν3

)γ
dν

] 1
γ

dϑ− (ρ′(s))
2

4ρ(s)

]
ds ≤ ψ (t1) ,

which contradicts (2.2).
Assume that we have Case 3. Recalling that r (x′′′)

γ is nonincreasing, we obtain

b
1
γ (s)x′′′ (s) ≤ b

1
γ (t)x′′′ (t) , s ≥ t ≥ t1,

x′′′ (s) ≤ b
1
γ (t)x′′′ (t) b

−1
γ (s) .
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Integrating again from t to v, we get

x′′ (t)− x′′ (v) ≥ −b
1
γ (t)x′′′ (t)

∫ v

t

b
−1
γ (s) ds.

Letting v →∞, we obtain
x′′ (t) ≥ −b

1
γ (t)x′′′ (t)π (t) . (2.16)

Integrating from t to∞, we get

−x′ (t) ≥ −b
1
γ (t)x′′′ (t)

∫ ∞
t

π (s) ds. (2.17)

Integrating again from t to∞, we get

x′ (t) ≥ −b
1
γ (t)x′′′ (t)

∫ ∞
t

∫ ∞
u

π (s) dsdu. (2.18)

We define

ξ (t) :=
b (t) (x′′′)

γ
(t)

xγ (t)
. (2.19)

Then ξ (t) < 0 for t ≥ t1 and by (2.19), we conclude that

ξ′ (t) =
(b (x′′′)

γ
)
′
(t)

x γ (t)
− γ (x)

′
(t) b (t) (x′′′)

γ
(t)

xγ+1 (t)
.

ξ′ (t) ≤ −kq (t)
(
x (τ (t))

x (t)

)γ
− γ b

γ+1
γ (t) (x′′′)

γ+1
(t)

xγ+1 (t)

∫ ∞
t

π (s) ds. (2.20)

Hence, by (2.20) and (2.19), we obtain

ξ′ (t) ≤ −kq (t)− γξ
γ+1
γ (t)

∫ ∞
t

π (s) ds,

from (2.6), we get

ξ (t)

(∫ ∞
t

∫ ∞
u

π (s) dsdu

)γ
≥ −1. (2.21)

Multiplying (2.20) by
(∫∞
t

∫∞
u
π (s) dsdu

)γand integrating the resulting inequality from t1 to t,
we get (∫ ∞

t

∫ ∞
u

π (s) dsdu

)γ
ξ (t)−

(∫ ∞
t1

∫ ∞
u

π (s) dsdu

)γ
ξ (t1)

+γ

∫ t

t1

∫ ∞
s

π (χ) dχ

(∫ ∞
s

∫ ∞
u

π (χ) dχdu

)γ−1

ξ (s) ds

+

∫ t

t1

kq (s)

(∫ ∞
s

∫ ∞
u

π (χ) dχdu

)γ
ds

+γ

∫ t

t1

ξ
γ+1
γ (s)

(∫ ∞
s

∫ ∞
u

π (χ) dχdu

)γ ∫ ∞
s

π (χ) dχds ≤ 0.

We set

D :=
∫ ∞
s

π (χ) dχ

(∫ ∞
s

∫ ∞
u

π (χ) dχdu

)γ−1

,

C :=
(∫ ∞

s

∫ ∞
u

π (χ) dχdu

)γ ∫ ∞
s

π (χ) dχ, y := −ξ (s) .
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From Lemma (1.2), we conclude that∫ ∞
s

π (χ) dχ

(∫ ∞
s

∫ ∞
u

π (χ) dχdu

)γ−1

ξ (s)

+ξ
γ+1
γ (s)

(∫ ∞
s

∫ ∞
u

π (χ) dχdu

)γ ∫ ∞
s

π (χ) dχ

≥
γγ
∫∞
s
π (χ) dχ

(γ + 1)γ+1 ∫∞
s

∫∞
u
π (χ) dχdu

.

Hence, by (2.21), and integrating the resulting inequality from t1 to t, we obtain∫ t

t1

[
kq (s)

(∫ ∞
s

∫ ∞
u

π (χ) dχdu

)γ
− γγ+1 ∫∞

s
π(χ)dχ

(γ+1)γ+1 ∫∞
s

∫∞
u
π(χ)dχdu

]
ds

≥
(∫ ∞

t1

∫ ∞
u

π (s) dsdu

)γ
ξ (t1) + 1,

which contradicts (2.3).
Assume that we have Case 4 . In view of the proof of Case 3, we have (2.6). On the other

hand, by Lemma (1.1), we get

x (t) ≥
λ

2
t 2x′′ (t) , (2.22)

for every λ ∈ (0, 1) and all sufficiently large t. We now define

σ (t) :=
b (t) (x′′′)

γ
(t)

(x′′)
γ
(t)

. (2.23)

Then σ (t) < 0 for t ≥ t1 and, by virtue of (2.22) and (2.23), we conclude that

σ′ (t) = −kq (t)
x
γ

(τ (t))

(x′′ (τ (t)))
γ

(x′′ (τ (t)))
γ

(x′′)
γ
(t)

− γ σ
γ+1
γ (t)

b
1
γ (t)

.

σ′ (t) ≤ −kq (t)
(
λ

2
τ 2 (t)

)γ
− γ σ

γ+1
γ (t)

b
1
γ (t)

. (2.24)

Multiplying this inequality by πγ (t) and integrating the resulting inequality from t1 to t, we get

πγ (t) σ (t)− πγ (t1)σ (t1) + γ

∫ t

t1

b
−1
γ (s)πγ−1 (s)σ (s) ds

≤ −
∫ t

t1

kq (s)

(
λ

2
τ 2
i (s)

)γ
πγ (s) ds− γ

∫ t

t1

σ
γ+1
γ (t)

b
1
γ (t)

πγ (s) ds.

We set
D := b

−1
γ (s)πγ−1 (s) , C :=

πγ (s)

b
1
γ (t)

, y := −σ (s) .

Applying Lemma (1.2) and (2.16), for every λ ∈ (0, 1) , and all sufficiently larget. we obtain∫ t

t1

[
kq (s)

(
λ

2
τ 2 (s)

)γ
πγ (s)− γγ+1

(γ+1)γ+1π(s)b
1
γ (s)

]
ds ≤ πγ (t1)σ (t1) + 1,

but this contradicts (2.4).
Theorem (2.1) is proved.

It is well known (see[2]) that the differential equation[
a (t) (x′ (t))

α]′
+ q (t)xα (τ (t)) = 0‚ t ≥ t0, (2.25)
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where α > 0 is the ratio of odd positive integers, a , q ∈ C[t◦‚∞), is nonoscillatory if and only
if there exist a number T ≥ t◦, and a function υ ∈ C1[T ‚∞), satisfying the inequality

υ′ (t) + αa
−1
α (t) (υ (t))

(1+α)
α + q (t) ≤ 0‚ on [T ‚∞).

In what follows, we compare the oscillatory behavior of (1.1) with the second-order half-linear
equations of type (2.28). There are numerous results concerning the oscillation of (2.28), which
in clued Hille and Nehari types, Philos type, etc.

Theorem 2.2. Let (A1), (A2) , (A3) and (1.2) hold. Assume that the equation[
b (t)

t2γ
(x′ (t))

γ
]′
+ kq (t)

(
λ1τ

3 (t)

2t3

)γ
xγ (t) = 0‚ (2.26)

is oscillatory for some constant λ1 ∈ (0, 1) , the equation

x′′ (t) + x (t)

∫ ∞
t

[
1

b (ϑ)

∫ ∞
ϑ

kq (t)

(
τ 3 (s)

s3

)γ
ds

] 1
γ

dϑ = 0, (2.27)

is oscillatory, the equation[(∫ ∞
t

π (s) ds

)−1

(x′ (t))
γ

]′
+ kq (t)xγ (τ (t)) = 0‚ (2.28)

is oscillatory, and the equation

[
b (t) (x′ (t))

γ]′
+ kq (t)

(
λ2τ

2 (t)

2

)γ
xγ (t) = 0‚ (2.29)

is oscillatory for some constant λ2 ∈ (0, 1) . Then every solution of (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem (2.1). If we set δ (t) = 1 in (2.9), then we get

ω′ (t) +
γλt2

2 (b (t))
1
γ
ω
γ+1
γ (t) + kq (t)

(
τ 3 (t)

t3

)γ
≤ 0,

for every constant λ ∈ (0, 1) . Thus, we can see that equation (2.26) is nonoscillatory for every
constant λ1 ∈ (0, 1) , which is a contradiction. If we now set ρ (t) = 1 in (2.14), then we find

ψ′ (t) + ψ2 (t) + ρ (t)

∫ ∞
t

[
1

b (ϑ)

∫ ∞
ϑ

kq (t)

(
τ 3 (s)

s3

)γ
ds

] 1
γ

dϑ ≤ 0.

Hence, equation (2.27) is nonoscillatory, which is a contradiction. Thus, it follows from (2.20)
that

ξ′ (t) + γξ
γ+1
γ (t)

∫ ∞
t

π (s) ds+ kq (t) ≤ 0.

Therefore, we conclude that equation (2.28) is nonoscillatory, which is a contradiction. From
(2.23), we get

σ′ (t) + γ
σ
γ+1
γ (t)

b
1
γ (t)

+ kq (t)

(
λ

2
τ 2 (t)

)γ
≤ 0,

for every constant λ ∈ (0, 1) . Thus, we can see that equation (2.29) is nonoscillatory for every
constant λ2 ∈ (0, 1) , which is a contradiction.

Theorem (2.2) is proved.
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It is well known (see[21]) that if∫ ∞
t0

1
a (t)

dt =∞, and lim inf
t→∞

(∫ t

t0

1
a (s)

ds

)∫ ∞
t

q (s) ds >
1
4
,

then equation (2.25) with γ = 1 is oscillatory. It is also well known that if∫ ∞
t0

1
a (t)

dt <∞, and lim inf
t→∞

(∫ ∞
t

1
a (s)

ds

)−1 ∫ ∞
t

(∫ ∞
s

1
a (υ)

dυ

)2

q (s) ds > 1
4 .

then equation (2.25) with γ = 1 is oscillatory.
Based on the above results and Theorem (2.2), we can easily obtain the following Hille and

Nehari type oscilla-tion criteria for (1.1) with γ = 1.

Theorem 2.3. Let γ = 1 and (1.2) hold. Assume that

∫ ∞
t0

t2

b (t)
dt =∞, and lim inf

t→∞

(∫ t

t0

s2

b (s)
ds

)
k

∫ ∞
t

q (s)

(
τ 3 (s)

s3

)
ds >

1
2λ1

,

for some constant λ1 ∈ (0, 1) ,

lim inf
t→∞

∫ ∞
t

∫ ∞
θ

1
b (ϑ)

∫ ∞
ϑ

kq (s)

(
τ 3 (s)

s3

)
dsdϑdθ >

1
4
, (2.30)

∫ ∞
t0

∫ ∞
t

π (s) dtds =∞ and lim inf
t→∞

(∫ t

t0

∫ ∞
s

π (υ) dυds

)∫ ∞
t

kq (s) ds > 1
4 ,

and

lim inf
t→∞

(∫ ∞
t

1
b (s)

ds

)−1 ∫ ∞
t

(∫ ∞
s

1
b (υ)

dυ

)2

kq (t) τ 3 (s) ds >
1

2λ2
, (2.31)

for some constant λ2 ∈ (0, 1) . Then every solution of equation (1.1) with γ = 1 is oscillatory.

Theorem 2.4. Let γ = 1 and (2.30) hold. Assume that∫ ∞
t0

t2

b (t)
dt <∞,

lim inf
t→∞

(∫ ∞
t

s2

b (s)
ds

)−1 ∫ ∞
t

(∫ ∞
s

υ2

b (υ)
dυ

)2

kq (t)

(
τ 3 (s)

s3

)
ds >

1
2λ1

,

for some constant λ1 ∈ (0, 1) , ∫ ∞
t0

∫ ∞
t

π (s) dtds <∞,

lim inf
t→∞

(∫ ∞
t

∫ ∞
s

π (υ) dυds

)−1 ∫ ∞
t

(∫ ∞
s

∫ ∞
u

π (υ) dυdu

)2

kq (t) ds > 1
4 ,

and (2.31) holds for some constant λ2 ∈ (0, 1) .Then every solution of equation (1.1) with γ = 1
is oscillatory.

3 EXAMPLE

In this section, we give the following example to illustrate our main results.

Example 3.1. Consider a differential equation
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(
t6 (x′′′ (t))

)′
+ ηt2

(
x3 (t) + x (t)

)
= 0, t ≥ 1, (3.1)

where η > 0 is a constant. Let

γ = 1, b (t) = t6 > 0, b′ (t) = 6t5 ≥ 0, b ∈ C1[t0‚∞),

q (t) = ηt2 > 0, q ∈ C[t0‚∞), f (x (t)) = x3 (t) + x (t) ,

τ (t) = t, lim
t→∞

t =∞, τ (t) ∈ C[t0‚∞).

Thus, we get

π (t) =
1

5t5
,

∫ ∞
s

π (χ) dχ =
1

20s4 ,

∫ ∞
s

∫ ∞
u

π (χ) dχdu =
1

60s3 .

If we now set δ (t) = ρ (t) = 1 and k = 1, then we conclude that (2.1) and (2.2) are satisfied. As
a result of calculations, we see that (2.3) and (2.4) hold for η > 45.∫ ∞

t0

[
kq (s)

(
τ 3(s)
s3

)γ
δ (s)− 2

γ
b(s)(δ′(s))

γ+1

(γ+1)γ+1(λ1δ(s)s2)γ

]
ds =∞,

∫ ∞
t0

ηs2ds =∞

∫ ∞
t0

[
ρ (s)

∫ ∞
s

[
1
b(ϑ)

∫ ∞
$

kq (ν)
γ

dν

] 1
γ

dϑ− (ρ′(s))
2

4ρ(s)

]
ds =∞,

∫ ∞
t0

[
kq (s)

(∫ ∞
s

∫ ∞
u

π (χ) dχdu

)γ
− γγ+1 ∫∞

s
π(χ)dχ

(γ+1)γ+1 ∫∞
s

∫∞
u
π(χ)dχdu

]
ds =∞,

∫ ∞
t0

(
ηs2

60s3 −
60s3

4 (20s4)

)
ds =

∫ ∞
t◦

1
s

(
η

60
− 3

4

)
ds =∞, for η > 45.

∫ ∞
t0

[
kq (s)

(
λ2

2
τ 2 (s)

)γ
πγ (s)−

γγ+1

(γ + 1)γ+1
π (s) b

1
γ (s)

]
ds =∞,

∫ ∞
t0

1
s

(
ηλ2

10
− 5

4

)
ds =∞, for η > 45, λ2 =

5
18
∈ (0, 1) .

Hence, by Theorem(2.1), every solution of equation (3.1) is oscillatory for η > 45.

Remark 3.2. The results of this example can not apply to results of [25].
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