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Abstract The reciprocal degree distance (RDD), defined for a connected graph G as vertex
degree-weighted sum of the reciprocal distances, that is RDD(G) =

∑
u,v∈V (G)

dG(u)+dG(v)
dG(u,v) .The

reformulated reciprocal degree distance of GraphRt(G), is defined asRt(G) =
∑

u,v∈V (G)

dG(u)+dG(v)
dG(u,v)+t ,

where t is any real number. In this paper, we investigate the relation between the reformulated
reciprocal degree distance and other graph parameters.

1 Introduction

All the graphs considered in this paper are simple and connected. For vertices u, v ∈ V (G),the
distance between u and v in G,denoted by dG(u, v) include the depth eccentricity diameter,is
the length of a shortest(u, v)-path in G and dG(v) is the degree of a vertexv ∈ V (G).A sin-
gle number that can be used to characterize some property of the graph of a molecule is called
a topological index.Topological index is a graph theoretical property that is preserved by iso-
morphism.The chemical information derived through topological index has been found useful
in chemical documentation,isomer discrimination,structure property correlations.The interest
in topological in-dices is mainly related to their use in non-empirical quantitative structure-
property relationships and quantitative structural-activity relationships.One of the oldest and
well-studied distance based graph invariants associated with a connected graph G is the Wiener
numberW (G), also termed as Wiener index in chemical or mathematical chemistry literature,
which is defined Wiener as the sum of distance over all unordered vertex pairs in G, namely,
W (G) = 1

2
∑

u,v∈V (G)

dG(u, v).This definition can be further generalized in the following way:

Wλ(G) =
1
2

∑
u,v∈V (G)

dG(u, v)λ, where dG(u, v)λ = dλG(u, v)andλ is a real number [4]. Another

distance based graph invariant, defined in a fully analogous manner to winner index, is theHarary
index, which is equal to the sum of the the reciprocal distances overall unordered vertex pairs
in G, that is, H(G) = 1

2
∑

u,v∈V (G)

1
dG(u,v) .Dobrynin and Kochetova [2] and Gutman [3] inde-

pendently proposed a vertex-degree-weighted version of Wiener index called degree distance,
which is defined for a connected graph G as DD(G) = 1

2
∑

u,v∈V (G)

(dG(u)+dG(v))dG(u, v). The

additively weighted Harary index(HA) or reciprocal degree distance(RDD) is defined in [1] as
HA(G) = RDD(G) = 1

2
∑

u,v∈V (G)

(dG(u)+dG(v))
dG(u,v) . Hua and Zhang [5] have obtained lower and

upper bounds for the reciprocal degree distance of graph in terms of other graph invariants.The
chemical applications and mathematical properties of the reciprocal degree distance are well
studied in [1, 6, 9].Similarly consider the generalized version of Harary index, namely the t-
Harary index, which is defined as Ht(G) =

1
2

∑
u,v∈V (G)

1
dG(u,v)+t ,where t is any real number.

Recently, Li et al. introduced a vertex-degree-weighted version of t-Harary index called re-
formulated reciprocal degree distance, which is defined for a connected graph G as The re-
formulated reciprocal degree distance of graph , denoted by Rt(G) is defined as Rt(G) =
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1
2

∑
u,v∈V (G)

dG(u)+dG(v)
dG(u,v)+t , where t is any real number.In this paper we investigate the reformulated

reciprocal degree distance with other graph parameters and then determine the extremal values
of this new invariant for general graphs.

2 Bounds Related to other graph parameters

In this section, we compute the bounds for reformulated reciprocal degree distance of a con-
nected graph in terms of other graph parameters. The minimum and maximum degree of the
graph G are denoted by δ(G) and ∆(G), respectively. The first Zagreb index of G denoted by
M1(G) is defined as M1(G) =

∑
u∈V (G)

(dG(u))2 =
∑

uv∈E(G)

(dG(u) + dG(v)). Similarly, the first

Zagreb coindex of G is defined as M1(G) =
∑

uv/∈E(G)

(dG(u) + dG(v)).

Theorem 2.1. Let G be a nontrivial connected graph.Then Rt(G) ≤ DD(G), with equality if
and only if G ∼= Kn.

Proof. For any two vertices uand v in G,we have 1
dG(u,v)+t ≤

1
dG(u,v) ≤ dG(u, v) with

equality if and only if dG(u, v) = 1 and t = 0.we have

Rt(G) =
∑

u,v∈V (G)

dG(u) + dG(v)

dG(u, v) + t
≤

∑
u,v∈V (G)

(dG(u) + dG(v))dG(u, v) = DD(G).

Where DD(G) is the degree distance of G. Equality holds if and if dG(u, v) = 1 and t = 0
that is if and only if G ∼= Kn and t = 0.

Theorem 2.2. Let G be a nontrivial connected graph.Then Rt(G) ≤ M1(G) + M1(G),with
equality if G ∼= K.

Proof. For any vertex x in G,we have Rt(G) ≤
∑
{u,v}⊆V (G)

dG(u)+dG(v)
dG(u,v)+t , where t ≥ 0.

One can see that 1
dG(u,v)+t ≤ 1 with equality if and only if dG(u, v) = 1 and t = 0. Hence

Rt(G) ≤
∑

{u,v}⊆V (G)

(dG(u) + dG(v)).

=
∑

uv∈E(G)

(dG(u) + dG(v)) +
∑

uv/∈E(G)

(dG(u) + dG(v))

=
∑

x∈V (G)

(dG(x))
2 +M1(G)

=M1(G) +M1(G).

Thus we have Rt(G) ≤M1(G) +M1(G) with equality if and only if for any two vertices u and
v in G,dG(u, v) = 1, i.e G ∼= Kn and t = 0.

Theorem 2.3. Let G be a connected graph.Then 2δ(G)Ht(G) ≤ Rt(G) ≤ 2∆(G)Ht(G),with
either equality if and only if G is a regular graph

Proof. For any vertex x in G,we have δ(G) ≤ dG(x) ≤ ∆(G). Hence

2δ(G)
∑

{u,v}⊆V (G)

1
dG(u, v) + t

≤ Rt(G) ≤ 2∆(G)
∑

{u,v}⊆V (G)

1
dG(u, v) + t

.

This implies,

2δ(G)Ht(G) ≤ Rt(G) ≤ 2∆(G)Ht(G).
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Theorem 2.4. Let G be a connected graph. Then Rt(G) ≥ (M1(G)+M1(G))2

DD(G) , t ≥ 0 with equality
if and only if t = 0 and G ∼= Kn.

Proof. By the definition of degree distance and reformulated degree distance

DD(G)Rt(G) =

( ∑
{u,v}⊆V (G)

(
dG(u) + dG(v)

)
dG(u, v)

)( ∑
{u,v}⊆V (G)

dG(u) + dG(v)

dG(u, v) + t

)

DD(G)Rt(G) ≥
( ∑
u,v∈V (G)

(dG(u) + dG(v))

)2

=

( ∑
{u,v}⊆V (G)

(dG(u) + dG(v)) +
∑

uv/∈E(G)

(dG(u) + dG(v))

)2

= (M1(G) +M1(G))
2.

Equality holds if and only if dG(u, v) is constant in G and t = 0.
This implies G ∼= Kn and t=0.

Definition of the reformulated reciprocal degree distance is equivalent to

Rt(G) =
∑

u∈V (G)

dG(u)D̃G(u),

where

D̃G(u) =
∑

v∈V (G)

1
dG(u, v) + t

.

Theorem 2.5. Let G be a connected graph of order n ≥ 2 and size m ≥ 1. Then
2(n−1)m
d+t + (d−t)M1(G)

d+t ≤ Rt(G) ≤ 1
2+t2(n − 1)m + (1 + t)M1(G), t ≥ 0 with equality if and

only if t = 0 and G ∼= Kn.

Proof. With either equality if and only if d(G) ≤ 2, where d(G)-diameter of G.

D̃G(x) = dG(x) +
∑

y∈V (G)\NG(x)

1
dG(x, y) + t

≤ dG(x) +
n− dG(x)− 1

2 + t

≤ n+ (1 + t)dG(x)− 1
2 + t

=
(n− 1) + (1 + t)dG(x)

2 + t
.

Equality is attained if and only if e(x) ≤ 2,where e(x)-eccentricity of x in G. From above
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inequality it follows immediately that

Rt(G) =
∑

u∈V (G)

dG(u)D̃G(u)

≤
∑

x∈V (G)

dG(x)D̃G(x)

≤
∑

x∈V (G)

dG(x)
(n− 1) + (1 + t)dG(x)

2 + t
.

=
(n− 1)
2 + t

∑
x∈V (G)

dG(x) +
(1 + t)

2 + t

∑
x∈V (G)

(dG(x))
2

=
(n− 1)

2
m2 + t+

(1 + t)

2 + t

∑
x∈V (G)

(dG(x))
2

=
1

2 + t

[
(n− 1)

2
m+ (1 + t)

∑
x∈V (G)

(dG(x))
2
]

Equality is attained if and only if e(x) ≤ 2,t ≥ 0. Hence,

Rt(G) ≤
1

2 + t

[
(n− 1)2m+ (1 + t)

∑
x∈V (G)

(dG(x))
2
]

with equality if and if the diameter of G is at most 2,as desired.
Now taking left-hand side inequality.For each vertex x in G we have

D̃G(x) = dG(x) +
∑

y∈V (G)\NG(x)

1
dG(x, y) + t

≥ dG(x) +
n− dG(x)− 1

d+ 2

=
(n− 1) + (d− t)dG(x)

d+ 2
.

Therefore

Rt(G) ≥
∑

x∈V (G)

dG(x)D̃G(x)

=
∑

x∈V (G)

dG(x)

[
(n− 1) + (d− t)dG(x)

d+ t

]
.

=
(n− 1)
d+ t

∑
x∈V (G)

dG(x) +
(d− t)
d+ t

∑
x∈V (G)

(dG(x))
2

=
2(n− 1)m
d+ t

+
(d− t)M1(G)

d+ t

where the equality is attained if and if the diameter of G is ≤ 2,as desired. A cactus is a con-
nected graph each of whose blocks is either a cycle or an edge. If a cactus has no cycles, then
it is just a tree, and if it has exactly a cycle , then it is a unicyclic graph. For 0 ≤ k ≤ n−1

2 , we
let Gkn be an n-vertex star by adding k-independent edges among n − 1 pendent vertices.In the
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following we shall give a sharp upper bound for Rt(G) of k- cycle cactus[10].

Lemma 2.6. Let G be an n vertex k-cycle cactus with0 ≤ k ≤ n−1
2 .Then

M1(G) ≤ n2 − n+ 6k with equality if and only if G ∼= Kn.

Theorem 2.7. Let G be an n-vertex k-cycle cactus with 0 ≤ k ≤ n−1
2 . Then

Rt(G) ≤ (n−1)(n+k−1)+(1+t)(n2−n+6k)
2+t ,with equality if and only G ∼= Kn and t = 0.

Proof. Note that G has n+ k − 1 edges. By Theorem 2.5 and Lemma 2.6, we have

Rt(G) ≤
1

2 + t

[
2(n− 1)(n+ k − 1) + (1 + t)M1(G)

]
≤ 1

2 + t

[
2(n− 1)(n+ k − 1) + (1 + t)M1(G

2
n)

]
=

1
2 + t

[
2(n− 1)(n+ k − 1) + (1 + t)(n2 − n+ 6k)

]
=

1
2 + t

[
2(n− 1)(n+ k − 1) + (1 + t)(n2 − n+ 6k)

]

The above first equality holds if and if the diameter of G is 2 and t = 0 and the second
one holds if and only ifG ∼= Knand t = 0. Note that Gkn has diameter 2.Thus,Rt(G) ≤
(n−1)(n+k−1)+(1+t)(n2−n+6k)

2+t with equality if and only if G ∼= GKn and t = 0. By theorem 2.7,
we immediately have following results for Rt(G) of trees and unicyclic graphs,respectively.
Corollary 1. Let T be a tree on n ≥ 2 vertices.Then

Rt(G) ≤ n−1
2+t

[
(n− 1) + n(1 + t)

]
with equality if and only if T ∼= Sn and t = 0.
Corollary 2. Let G be a uni cyclic graph on n ≥ 3 vertices.Then

Rt(G) ≤ 1
2+t

[
n(n− 1) + (1 + t)(n2 − n+ 6)

]
,

with equality if and only if G ∼= G1
n and t = 0. Let Kp

n denote the graph obtained by attaching p
pendent edges to a vertex of Kn−p.We first prove the following result.

Lemma 2.8. Let G be an n-vertex connected graph with p pendent vertices. Then
M1(G) ≤ n3 − (3p− 1)n2 + (3p2 + 6p+ 1)n− p3 − 3p2 − 2p− 1

with equality if and only if G ∼= Kp
n and t = 0.

Proof. Suppose that Gmax is a graph chosen among all connected graphs with n vertices
and p pendent vertices such that it has the maximum first Zagreb index. Let D(Gmax) =
{x1, x2, . . . , xn} denote the degree sequence of Gmax. If we label all pendent vertices of Gmax
as v1, . . . , vp, then G[V (Gmax)\ {v1, . . . , vp}], the sub-graph of Gmax induced by vertices in
V (Gmax)\ {v1, . . . , vp} must be a clique in Gmax, for otherwise, we can obtain a new graph
with a strictly larger first Zagreb index than that of Gmax by adding edges into Gmax.Note that
the degree sequence D(Kp

n) = {n− 1, n− p− 1, . . . , n− p− 1}︸ ︷︷ ︸
n−p−1

, 1, . . . , 1︸ ︷︷ ︸
p

.If Gmax � Kp
n,then

there must exist a pair (xi, xj), in Gmax with n − p ≤ xi ≤ xj ≤ n − 2. We construct a new
n-vertex and p-pendent vertex connected graph G′ by replacing the pair (xi, xj) in Gmax by the
pair (xi−1, xj+1). It is easy to obtain that M1(G′) > M1(Gmax), a contradiction to our choice
of Gmax.
Then Gmax ∼= Kp

n.
Also,M1(Kp

n) = (n−1)2+p+(n−p−1)3 = n3−(3p−1)n2+(3p2+6p+1)n−p3−3p2−2p−1.
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Theorem 2.9. Let G be an n-vertex connected graph with ppendent vertices. Then

Rt(G) ≤ 1
2+t

[
(n−1) [(n−1)2+3p−n]

2 +(1+t)(n3−(3p−1)n2+(3p2+6p+1)n−p3−3p2−2p−1
]

with equality if G ∼= Kp
n and t = 0.

Proof.Let G∗ be a connected graph with n vertices and p-pendent vertices v1, . . . , vp,satisfies
that G[V (Gmax)/ {v1, . . . , vp}],the sub graph of induced by vertices in V (G)/ {v1, . . . , vp}, is a
clique inG∗We need only to consider the upper bound for Rt(G) of G∗.It is obvious that G∗ has
p+(n−p2 )=p+ (n−p)(n−p−1)

2 edges. By Theorem 2.5 and Lemma 2.8, we have

Rt(G) ≤
1

2 + t

[
(n− 1)2m+M1(G

∗)

]
Rt(G) =

1
2 + t

[
(n− 1)[(n− p)2 + 3p− n] +M1(G

∗)

]
Rt(G) ≤

1
2 + t

[
(n− 1)[(n− p)2 + 3p− n] +M1(K

p
n)

]
Rt(G) =

1
2 + t

[
(n− 1)[(n− p)2 + 3p− n] + (1 + t)n3

− (3p− 1)n2 + (3p2 + 6p+ 1)n− p3 − 3p2 − 2p− 1
]
.

The first equality holds if and only if the diameter ofG∗ is at most 2 and the second one holds if
and only if G ∼= Kp

n and t = 0. Note that Kp
n has diameter 2. Hence

Rt(G) =
1

2 + t

[
(n− 1)[(n− p)2 + 3p− n] + (1 + t)n3 − (3p− 1)n2 + (3p2 + 6p+ 1)n

− p3 − 3p2 − 2p− 1
]

. With equality if and only if G ∼= Kp
n and t = 0. This completes the proof.
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