Group $\{1, -1, i, -i\}$ **Cordial Labeling of Special Graphs**

M.K.Karthik Chidambaram, S. Athisayanathan and R. Ponraj

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 05C78; Secondary 05C25.

Keywords and phrases: Cordial labeling, group A Cordial labeling, group $\{1, -1, i, -i\}$ Cordial labeling, Jahangir graph, Jelly fish graph, Dumbbellgraph, Flower graph.

Abstract Let G be a (p,q) graph and A be a group. Let $f: V(G) \to A$ be a function. The order of $u \in A$ is the least positive integer n such that $u^n = e$. We denote the order of u by o(u). For each edge uv assign the label 1 if (o(f(u)), o(f(v))) = 1 or 0 otherwise. f is called a group A Cordial labeling if $|v_f(a) - v_f(b)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$, where $v_f(x)$ and $e_f(n)$ respectively denote the number of vertices labeled with an element x and number of edges labeled with n(n = 0, 1). A graph which admits a group A Cordial graphs and prove that the Jahangir graph $J_{3,n}(n \ge 3)$, the Jelly fish graphs $J(m, n)(m \le n)$, the Dumbbell graph Db_n and the Flower graph Fl_n are all group $\{1, -1, i, -i\}$ Cordial for every n.

1 Introduction

Graphs considered here are finite, undirected and simple. Let A be a group. The order of $a \in A$ is the least positive integer n such that $a^n = e$. We denote the order of a by o(a). Cahit [3] introduced the concept of Cordial labeling. Motivated by this, we defined group A cordial labeling and investigated some of its properties. We also defined group $\{1, -1, i, -i\}$ cordial labeling and discussed that labeling for some standard graphs [1, 2]. In this paper we discuss the labeling for the Jahangir graph $J_{3,n}(n \ge 3)$, the Jelly fish graphs $J(m, n)(m \le n)$, the Dumbbell graph Db_n and the Flower graph Fl_n . Terms not defined here are used in the sense of Harary[5] and Gallian [4].

The greatest common divisor of two integers m and n is denoted by (m, n) and m and n are said to be *relatively prime* if (m, n) = 1. For any real number x, we denote by $\lfloor x \rfloor$, the greatest integer smaller than or equal to x and by $\lceil x \rceil$, we mean the smallest integer greater than or equal to x.

A path is an alternating sequence of vertices and edges, $v_1, e_1, v_2, e_2, ..., e_{n-1}, v_n$, which are distinct, such that e_i is an edge joining v_i and v_{i+1} for $1 \le i \le n-1$. A path on n vertices is denoted by P_n . A path $v_1, e_1, v_2, e_2, ..., e_{n-1}, v_n, e_n, v_1$ is called a cycle and a cycle on n vertices is denoted by C_n .

Given two graphs G and H, G + H is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup \{uv/u \in V(G), v \in V(H)\}$. A Wheel W_n is defined as $C_n + K_1$ and the graph obtained by subdividing the edges on the cycle of a wheel exactly once is called the Gear graph. The Helm H_n is the graph obtained from a wheel W_n by attaching a pendent edge at each vertex of the n- cycle.

2 Group $\{1, -1, i, -i\}$ Cordial graphs

Definition 2.1. Let G be a (p, q) graph and consider the group $A = \{1, -1, i, -i\}$ with multiplication. Let $f: V(G) \to A$ be a function. For each edge uv assign the label 1 if (o(f(u)), o(f(v))) = 1 or 0 otherwise. f is called a group $\{1, -1, i, -i\}$ Cordial labeling if $|v_f(a) - v_f(b)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$, where $v_f(x)$ and $e_f(n)$ respectively denote the number of vertices labeled with an element x and number of edges labeled with n(n = 0, 1). A graph which admits a group $\{1, -1, i, -i\}$ Cordial labeling is called a group $\{1, -1, i, -i\}$ Cordial graph.

Example 2.2. A simple example of a group $\{1, -1, i, -i\}$ Cordial graph is given in Fig. 2.1.

We now investigate the group $\{1, -1, i, -i\}$ Cordial labeling of some (p, q) graphs. The Jahangir graph $J_{m,n}$ $(n \ge 3)$ was introduced by Surahmar and Tomescu[6] in 2006.

Definition 2.3. The Jahangir graph $J_{m,n}$ $(n \ge 3)$ is a graph with mn + 1 vertices, consisting of a cycle C_{mn} with one additional vertex which is adjacent to n vertices of C_{mn} at distance m to each other on C_{mn} .

Remark 2.4. The Jahangir graph $J_{1,n}$ is the Wheel and $J_{2,n}$ is the gear graph.

Theorem 2.5. The Jahangir graph $J_{3,n}$ $(n \ge 3)$ is group $\{1, -1, i, -i\}$ cordial for all n.

Proof. Let the vertices on the cycle be labeled as $u_1, u_2, ..., u_{3n}$ and let the central vertex be labeled as w. Assume that w is adjacent to $u_i (i \equiv 1 \pmod{3})$. Number of vertices = 3n + 1 and number of edges = 4n. Group $\{1, -1, i, -i\}$ cordial labelings for n = 3 and n = 4 are given in Table 1. Suppose $n \ge 5$.

n	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}	u_{11}	u_{12}	w
3	-1	1	1	-1	1	-1	i	i	-i				-i
4	-1	1	1	-1	1	1	-1	i	i	i	-i	-i	-i

Table	1
-------	---

Case(i): $3n + 1 \equiv 0 \pmod{4}$.

Let $3n + 1 = 4k(k \in \mathbb{Z})$. Each vertex label should appear k times and each edge label should appear $\frac{8k-2}{3}$ times in a group $\{1, -1, i, -i\}$ cordial labeling. Note that $k = 3r + 1(r \in \mathbb{Z}, r \ge 1)$. So the vertices on the cycle are $u_i(1 \le i \le 12r + 3)$ where $u_i(i \equiv 1 \pmod{3}, 1 \le i \le 12r + 3)$ are of degree 3 and others are of degree 2. Label the vertices $u_i(1 \le i \le 6r - 2, i \equiv 1 \pmod{3})$ with 1. Also choose r + 1 vertices among $u_i(6r \le i \le 12r + 3, i \ne 1 \pmod{3})$ and give them label 1. Label the remaining vertices arbitrarily so that k of them get label -1, k of them get label -i. Number of edges with label $1 = 3 \times 2r + (r + 1)2 = \frac{8k-2}{3}$.

Case(ii): $3n + 1 \equiv 1 \pmod{4}$.

Let 3n + 1 = 4k + 1 ($k \in \mathbb{Z}$). Three vertex labels should appear k times and one vertex label should appear k + 1 times. Each edge label should appear $\frac{8k}{3}$ times in a group $\{1, -1, i, -i\}$ cordial labeling. In this case $k = 3r(r \in \mathbb{Z}, r \ge 2)$. Now the vertices on the cycle are $u_i(1 \le i \le 12r)$ where $u_i(i \equiv 1 \pmod{3})$ are of degree 3 and others are of degree 2. Label the vertices $u_i(1 \le i \le 6r - 8, i \equiv 1 \pmod{3})$ with 1. Also choose r + 3 vertices $u_i(6r - 6 \le l \le 12r, i \ne 1 \pmod{3})$ and give them label 1. Label the remaining vertices arbitrarily so that k of them get label -1, k of them get label i and k of them get label -i. Number of edges with label $1 = 3 \times (2r - 2) + (r + 3)2 = 8r$.

Case(iii): $3n + 1 \equiv 2 \pmod{4}$

Let $3n + 1 = 4k + 2(k \in \mathbb{Z})$. Two vertex labels should appear k times and 2 vertex labels should appear k + 1 times. Each edge label should appear $2n = \frac{8k+2}{3}$ times. Now $k = 3r + 2(r \ge 1, r \in \mathbb{Z})$. The vertices on the cycle are $u_i(1 \le i \le 12r + 9)$. Label the vertices $u_i(1 \le i \le 6r - 2, i \equiv 1 \pmod{3})$ with 1. Also choose r + 3 vertices among $u_i(6r \le i \le 12r + 9, l \ne 1 \pmod{3})$ and give them label 1. Label the remaining vertices arbitrarily so that k + 1 vertices get label -1, k vertices get label i and k vertices get label -i. Number of edges with label $1 = 2r \times 3 + 2(r + 3) = 8r + 6$.

Case(iv): $3n + 1 \equiv 3 \pmod{4}$

Let $3n + 1 = 4k + 3(k \in \mathbb{Z})$. Three vertex labels should appear k + 1 times and 1 vertex label should appear k times. Each edge label should appear $\frac{8k+4}{3}$ times. Now $k = 3r+1 (r \ge 1, r \in \mathbb{Z})$. The vertices on the cycle are $u_i(1 \le i \le 12r + 6)$. Label the vertices $u_i(1 \le i \le 6r - 2, l \equiv (mod \ 3))$ with 1. Also choose r + 2 vertices among $u_i(6r \le i \le 12r + 6, l \ne i (mod \ 3))$ and give them label 1. Label the remaining vertices arbitrarily so that k + 1 vertices get label -1, k + 1 vertices get label i and k vertices get label -i. Number of edges with label $1 = 2r \times 3 + 2(r + 2) = 8r + 4$. Table 2 shows that in all cases, the given labeling is group $\{1, -1, i, -i\}$ cordial. \Box

3n + 1	$v_f(1)$	$v_f(-1)$	$v_f(i)$	$v_f(-i)$	$e_f(0)$	$e_f(1)$		
4k	k	k	k	k	$\frac{8k-2}{3}$	$\frac{8k-2}{3}$		
4k + 1	k + 1	k	k	k	$\frac{8k}{3}$	$\frac{8k}{3}$		
4k + 2	k + 1	k + 1	k	k	$\frac{8k+2}{3}$	$\frac{8k+2}{3}$		
4k + 3	k+1	k + 1	k+1	k	$\frac{8k+4}{3}$	$\frac{8k+4}{3}$		

Ta	ble	2

An illustration of the labeling for $J_{3,5}$ is given in Fig. 2.2.

Fig. 2.2

Definition 2.6. Jelly fish graphs $J(m, n)(m \le n)$ are obtained from a cycle C_4 : uxvyu by joining x and y with an edge and appending m pendent edges to u and n pendent edges to v.

Theorem 2.7. Jelly fish graphs $J(m, n)(m \le n)$ are group $\{1, -1, i, -i\}$ cordial if and only if either $m + n \le 10$ or $3m - 6 \le n \le 3m + 6$.

Proof. Let the *m* pendent vertices adjacent to *u* be labeled as $u_1, u_2, ..., u_m$ and the *n* pendent vertices adjacent to *v* be labeled as $v_1, v_2, ..., v_n$. Number of vertices in J(m, n) is m + n + 4 and number of edges is m + n + 5.

Case(i): $m + n \equiv 0 \pmod{4}$.

Let $m + n = 4k, k \ge 1, k \in \mathbb{Z}$. Each vertex label should appear k + 1 times. One edge label should appear 2k + 2 times and another should appear 2k + 3 times.

Subcase(1): $f(u) \neq 1$ and $f(v) \neq 1$.

If f(x) = 1 and $f(y) \neq 1$, then every other vertex with label 1 will yield only one edge with label 1. So k = 2k - 1 or k = 2k so that k = 1 or k = 0. If both f(x) = 1 and f(y) = 1, then k - 1 = 2k - 3 or k - 1 = 2k - 2 and so k = 2 or k = 1. If k = 1, m + n = 4 and if k = 2, m + n = 8. If k = 1, label x and v_1 with 1 and remaining vertices arbitrarily so that 2 vertices get label -1, 2 vertices get label i and 2 vertices get label -i. If k = 2, label x, y and v_1 with 1 and remaining vertices.

Subcase(2): f(u) = 1 and f(v) = 1.

This induces label 1 to m + n + 4 edges and so this case is impossible.

Subcase(3): f(u) = 1 and $f(v) \neq 1$.

If both $f(x) \neq 1$ and $f(y) \neq 1$, then either k = 2k - m or k = 2k - m + 1. So either k = m or k = m - 1 and so n = 3m or n = 3m - 4. In both the cases, label the vertices $v_1, v_2, ..., v_k$ with 1 and the remaining vertices arbitrarily so that each vertex label appears on exactly k + 1 vertices. Suppose either f(x) = 1 or f(y) = 1. Without loss of generality, let f(x) = 1. Then as above, k = m + 1 or k = m. In both the cases, label the vertices $v_1, v_2, ..., v_{k-1}$ with 1 and the remaining vertices arbitrarily so that each vertex label appears on exactly k + 1 vertices. When k = m - 1, m or m + 1, we have n = 3m - 4, 3m, 3m + 4 accordingly.

Subcase(4): $f(u) \neq 1$ and f(v) = 1.

As in Subcase(3), by symmetry, we have k = n, n - 1 or n + 1. But , by assumption $m \le n$ and so in this case $n \le 2$.

Case(ii): $m + n \equiv 1 \pmod{4}$.

Let m + n = 4k + 1, $k \ge 0$, $k \in \mathbb{Z}$. Three vertex labels should appear k + 1 times and one vertex label should appear k + 2 times. Each edge label should appear 2k + 3 times.

Subcase(1): $f(u) \neq 1$ and $f(v) \neq 1$.

If f(x) = 1 and $f(y) \neq 1$, then either k = 2k or k + 1 = 2k so that k = 0 or 1. If k = 0, take f(y) = -1, f(u) = f(v) = i and $f(v_1) = -i$. If both f(x) = 1 and f(y) = 1, then either k - 1 = 2k - 2 or k = 2k - 2 so that k = 1 or k = 2. If k = 1, f(x) = 1, $f(v_1) = 1$ and $f(v_2) = 1$. Label the remaining vertices arbitrarily so that each vertex label appears on 2 vertices. If k = 2, let f(x) = 1, f(y) = 1, $f(v_1) = 1$ and $f(v_2) = 1$. Label the remaining vertices arbitrarily so that each vertex label appears on 2 vertices arbitrarily so that each vertex label appears on 3 vertices. As k = 0, 1 or 2, we have m + n = 1, 5 or 9.

Subcase(2): f(u) = 1 and f(v) = 1.

As in Subcase(2) of Case(i), this is impossible.

Subcase(3): f(u) = 1 and $f(v) \neq 1$.

If both $f(x) \neq 1$ and $f(y) \neq 1$, then either k = 2k - m + 1 or k + 1 = 2k - m + 1 so that k = m - 1 or k = m. In the former case, label $v_1, v_2, ..., v_k$ with 1 and the remaining vertices arbitrarily so that k + 1 vertices get label -1, k + 1 vertices get label i and k + 2 vertices get label -i. In the latter case, label $v_1, v_2, ..., v_{k+1}$ with 1 and the remaining vertices arbitrarily so that each of the vertex labels -1, i and -i appear on k + 1 vertices. Suppose f(x) = 1 and $f(y) \neq 1$. Then as above k = m or k = m + 1. If k = m + 1, label the vertices $v_1, v_2, ..., v_k$ with 1 and the remaining vertices arbitrarily so that each of the vertex labels -1, i and -i appear on k + 1, label the vertices $v_1, v_2, ..., v_k$ with 1 and the remaining vertices arbitrarily so that each of the vertex labels -1, i and -i appear on k + 1, vertices. As k = m - 1, m, m + 1, we have n = 3m - 3, 3m + 1 or 3m + 5.

Subcase(4): $f(u) \neq 1$ and f(v) = 1.

As in Subcase(3), we get k = n - 1, n or n + 1. As $m \le n$, in these cases, $n \le 2$. Case(iii): $m + n \equiv 2 \pmod{4}$.

Let $m + n = 4k + 2, k \ge 0, k \in \mathbb{Z}$. Two vertex labels should appear k + 1 times and two other vertex labels should appear k + 2 times. One edge label should appear 2k + 3 times and another should appear 2k + 4 times.

Subcase(1): $f(u) \neq 1$ and $f(v) \neq 1$.

If f(x) = 1 and $f(y) \neq 1$, then there are four possibilities; k = 2k, k = 2k + 1, k + 1 = 2kand k+1 = 2k+1. Hence k = 0 or 1. If $k = 0, f(x) = 1, f(y) = -1, f(u) = f(v) = i, f(u_1) = f(v_1) = -i$. If $k = 1, f(x) = 1, f(v_1) = f(v_2) = 1$. Label remaining vertices arbitrarily so that 3 vertices get label -1, 2 vertices get label i and 2 vertices get label -i. If both f(x) = 1 and f(y) = 1, then k = 0, 1 or 2. If $k = 2, f(x) = f(y) = f(v_1) = f(v_2) = 1$. Label the remaining vertices arbitrarily so that 4 vertices get label -1, 3 vertices get label i and 3 vertices get label -i. As k = 0, 1, 2, m + n = 2, 6 or 10.

Subcase(2): f(u) = 1 and f(v) = 1.

As in previous cases, this is not possible.

Subcase(3): f(u) = 1 and $f(v) \neq 1$.

If both $f(x) \neq 1$ and $f(y) \neq 1$ then k = m - 1, m - 2 or m. If k = m - 1 or m - 2, label $v_1, v_2, ..., v_k$ with 1. Label the remaining vertices arbitrarily so that k + 1 vertices get label -1, k + 2 vertices get label i and k + 2 vertices get label -i. If k = m, label $v_1, v_2, ..., v_{k+1}$ with 1. Label the remaining vertices arbitrarily so that k + 2 vertices get label -1, k + 1 vertices get label i and k + 1 vertices get label -i. If k = m, label $v_1, v_2, ..., v_{k+1}$ with 1. Label the remaining vertices arbitrarily so that k + 2 vertices get label -1, k + 1 vertices get label i and k + 1 vertices get label -i. Suppose f(x) = 1 and $f(y) \neq 1$. As above, k = m - 1, m or m + 1. If k = m, label $v_1, v_2, ..., v_{k-1}$ with 1. Label the remaining vertices arbitrarily so that k + 1 vertices get label -1, k + 2 vertices get i and k + 2 vertices get label -i. As k = m - 1, m - 2, m, m + 1, we have n = 3m - 6, 3m - 2, 3m + 2 or 3m + 6.

Subcase(4): $f(u) \neq 1$ and f(v) = 1.

As in Subcase(3), we get k = n - 2, n - 1, n or n + 1. As $m \le n$, we have $n \le 3$. Case(iv): $m + n \equiv 3 \pmod{4}$

Let m + n = 4k + 3, $k \ge 0$, $k \in \mathbb{Z}$. Three vertex labels should appear k + 2 times and one vertex label should appear k + 1 vertices. Each edge label should appear 2k + 4 times. Subcase(1): $f(u) \ne 1$ and $f(u) \ne 1$

Subcase(1): $f(u) \neq 1$ and $f(v) \neq 1$.

If f(x) = 1 and $f(y) \neq 1$, then either k+1 = 2k+1 or k = 2k+1 so that k = 0 or -1; If k = 0, $f(v_1) = 1$; Label the remaining vertices arbitrarily so that 2 vertices get label -1, 2 vertices get label i and 1 vertex get label -i. If both f(x) = 1 and f(y) = 1, then either k = 2k - 1 or k - 1 = 2k - 1 so that k = 1 or k = 0. If k = 1, $f(v_1) = 1$. Label the remaining vertices arbitrarily so that 3 vertices get label -1, 3 vertices get label i and 2 vertices get label -i. As k = 0, 1, m + n = 3 or m + n = 7.

Subcase(2): f(u) = 1 and f(v) = 1.

As in previous cases, this is impossible.

Subcase(3): f(u) = 1 and $f(v) \neq 1$.

If both $f(x) \neq 1$ and $f(y) \neq 1$, then k = m - 1 or k = m - 2. If k = m - 1, label $v_1, v_2, ..., v_{k+1}$ with 1 and remaining vertices arbitrarily so that k+2 vertices get label -i, k+2 vertices get label i and k+1 vertices get label -i. If k = m - 2, label $v_1, v_2, ..., v_k$ with 1 and remaining vertices arbitrarily so that k+2 vertices get label -1, k+2 vertices get label i and k+2 vertices get label -i. If k = m - 2, label $v_1, v_2, ..., v_k$ with 1 and remaining vertices arbitrarily so that k+2 vertices get label -1, k+2 vertices get label i and k+2 vertices get label -i. Suppose f(x) = 1 and $f(y) \neq 1$. Then k = 2k - m or k - 1 = 2k - m so that k = m or k = m - 1. If k = m, label $v_1, v_2, ..., v_k$ with 1. Label the remaining vertices arbitrarily so that k+2 vertices get label -1, k+2 vertices get label i and k+1 vertices get label -i. As k = m - 2, m - 1 or m, we have n = 3m - 5, 3m - 1 or 3m + 3. **Subcase(4):** $f(u) \neq 1$ and f(v) = 1.

As in Subcase(3), we get k = n - 2, n - 1 or n. As $m \le n$, we have $n \le 2$. \Box

An illustration of the labeling is given for J(3,5) in Fig. 2.3.

Definition 2.8. The graph obtained by joining two disjoint cycles $u_1, u_2, ..., u_n$ and $v_1, v_2, ..., v_n$ with an edge u_1v_1 is called dumbbell graph Db_n .

Theorem 2.9. The Dumbbell graph Db_n is group $\{1, -1, i, -i\}$ cordial for every n.

Proof. Number of vertices in Db_n is 2n and number of edges is 2n + 1. **Case (i)**: n is even. Let $n = 2k, k \ge 2, k \in \mathbb{Z}$. In a group $\{1, -1, i, -i\}$ cordial labeling, each vertex label should appear k times. One edge label should appear 2k times and another 2k + 1 times. Define a labeling f as follows:

Label $u_1, u_3, u_5, ..., u_{n-1}$ with 1. Label the remaining vertices arbitrarily so that k of them get label -1, k of them get label i and k of them get label -i. Number of edges with label 1 is 3 + 2(k-1) = 2k + 1.

Case (ii): n is odd.

Let $n = 2k + 1, k \ge 1, k \in \mathbb{Z}$.

In a group $\{1, -1, i, -i\}$ cordial labeling, two vertex labels should appear k times and two vertex labels should appear k + 1 times. One edge label should appear 2k + 1 times and another 2k + 2 times. Define a labeling f as follows:

Label $u_1, u_3, u_5, ..., u_{n-1}$ with 1. Label the remaining vertices arbitrarily so that k of them get label -1, k + 1 of them get label i and k + 1 of them get label -i. Number of edges with label 1 is 3 + 2(k - 1) = 2k + 1.

Table 3 shows that in all cases, the given labeling is group $\{1, -1, i, -i\}$ cordial. \Box

n	$v_f(1)$	$v_f(-1)$	$v_f(i)$	$v_f(-i)$	$e_f(0)$	$e_f(1)$			
2k	k	k	k	k	2k	2k + 1			
2k + 1	k	k	k + 1	k + 1	2k + 2	2k + 1			
Table 3									

An illustration of the labeling is given for Db_6 in Fig. 2.4.

Definition 2.10. A flower graph Fl_n is the graph obtained from a Helm by joining each pendent vertex to the central vertex of the Helm.

Theorem 2.11. The Flower graph Fl_n is group $\{1, -1, i, -i\}$ cordial for every n.

Proof. Let u be the center of the Wheel W_n . Let $u_1, u_2, ..., u_n$ be the vertices on the cycle of W_n and $v_1, v_2, ..., v_n$ be the pendent vertices of the helm such that v_i is adjacent to u_i for $1 \le i \le n$. Number of vertices in Fl_n is 2n + 1 and number of edges is 4n. **Case (i):** $n \equiv 0 \pmod{4}$.

Let $n = 4k, k \ge 1, k \in \mathbb{Z}$. In a group $\{1, -1, i, -i\}$ cordial labeling, three of the vertex labels should appear 2k times and one vertex label 2k + 1 times. Each edge label should appear 8k times. Define a labeling f as follows:

Label $u_1, u_3, u_5, ..., u_{n-1}$ with 1. Label the remaining vertices arbitrarily so that 2k of them get label -1, 2k of them get label i and 2k + 1 of them get label -i. Number of edges with label 1 is 4(2k) = 8k.

Case (ii): $n \equiv 1 \pmod{4}$.

Let $n = 4k + 1, k \ge 1, k \in \mathbb{Z}$. In a group $\{1, -1, i, -i\}$ cordial labeling, one vertex label should appear 2k times and three other vertex labels 2k + 1 times. Each edge label should appear 8k + 2 times. Define a labeling f as follows:

Label $u_1, u_3, u_5, ..., u_{n-2}, v_2$ with 1. Label the remaining vertices arbitrarily so that 2k + 1 of them get label -1, 2k + 1 of them get label *i* and 2k of them get label -i. Number of edges with label 1 is 4(2k) + 2 = 8k + 2.

Case (iii): $n \equiv 2 \pmod{4}$.

Let $n = 4k+2, k \ge 1, k \in \mathbb{Z}$. In a group $\{1, -1, i, -i\}$ cordial labeling, three of the vertex labels should appear 2k + 1 times and one vertex label 2k + 2 times. Each edge label should appear 8k = 4 times. Define a labeling f as follows:

Label $u_1, u_3, u_5, ..., u_{n-1}$ with 1. Label the remaining vertices arbitrarily so that 2k + 1 of them get label -1, 2k + 1 of them get label i and 2k + 2 of them get label -i. Number of edges with label 1 is 4(2k + 1) = 8k + 4.

Case (iv): $n \equiv 3 \pmod{4}$.

Let $n = 4k + 3, k \ge 0, k \in \mathbb{Z}$. In a group $\{1, -1, i, -i\}$ cordial labeling, three vertex labels should appear 2k + 2 times and one vertex label should appear 2k + 1 times. Each edge label should appear 8k + 6 times. Define a labeling f as follows:

Label $u_1, u_3, u_5, ..., u_{n-2}, v_2$ with 1. Label the remaining vertices arbitrarily so that 2k + 2 of them get label -1, 2k + 2 of them get label i and 2k + 1 of them get label -i. Number of edges with label 1 is 4(2k + 1) + 2 = 8k + 6.

Table 4 shows that in all cases, the given labeling is group $\{1, -1, i, -i\}$ cordial. \Box

n	$v_f(1)$	$v_f(-1)$	$v_f(i)$	$v_f(-i)$	$e_f(0)$	$e_f(1)$		
$4k, k \ge 1, k \in \mathbb{Z}$	2k	2k	2k	2k + 1	8k	8k		
$4k+1, k \ge 1, k \in \mathbb{Z}$	2k + 1	2k + 1	2k + 1	2k	8k + 2	8k + 2		
$4k+2, k \ge 1, k \in \mathbb{Z}$	2k + 1	2k + 1	2k + 1	2k + 2	8k + 4	8k + 4		
$4k+3, k \ge 0, k \in \mathbb{Z}$	2k + 2	2k + 2	2k + 2	2k + 1	8k + 6	8k + 6		
Table 4								

An illustration of the labeling is given for Fl_6 in Fig. 2.5.

Fig 2.5

REFERENCES

[1] Athisayanathan, S., Ponraj, R. and Karthik Chidambaram, M., K., Group A cordial labeling of Graphs, International Journal of Applied Mathematical Sciences, Vol 10, No.1(2017),pp 1-11. [2] Athisayanathan, S., Ponraj, R. and Karthik Chidambaram, M., K., Group $\{1, -1, i, -i\}$ Cordial labeling of sum of P_n and K_n , Journal of Mathematical and Computational Science, Vol 7, No 2 (2017), 335-346

[3]. Cahit, I., cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin. 23(1987) 201-207

[4]. Gallian, J. A, A Dynamic survey of Graph Labeling, The Electronic Journal of Combinatories *Dec*7(2015), *No.D56*.

[5]. Harary, F., Graph Theory, Addison Wesley, Reading Mass, 1972.

[6]. Kashif Ali, Edy Tri Baskoo and I. Tomescu, On the Ramsey numbers for paths and generalized Jahangirs, $J_{s,m}$, Bull.Math.Soc. Sci., Math.Roumanie Tome, 2008, Vol. 15, pp 177-182.

Author information

M.K.Karthik Chidambaram, Department of Mathematics, St. Xavier's College, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India. E-mail: karthikmat5@gmail.com

S. Athisayanathan, Department of Mathematics, St. Xavier's College, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India. E-mail: athisxc@gmail.com

R. Ponraj, Department of Mathematics, Sri Paramakalyani College, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India. E-mail: ponrajmaths@gmail.com

Received: October 10, 2017. Accepted: April 6, 2018