Group $\{1,-1, i,-i\}$ Cordial Labeling of Special Graphs

M.K.Karthik Chidambaram, S. Athisayanathan and R. Ponraj
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 05C78; Secondary 05C25.
Keywords and phrases: Cordial labeling, group A Cordial labeling, group $\{1,-1, i,-i\}$ Cordial labeling, Jahangir graph, Jelly fish graph, Dumbbellgraph, Flower graph.

Abstract Let G be a (p, q) graph and A be a group. Let $f: V(G) \rightarrow A$ be a function. The order of $u \in A$ is the least positive integer n such that $u^{n}=e$. We denote the order of u by $o(u)$. For each edge $u v$ assign the label 1 if $(o(f(u)), o(f(v)))=1$ or 0 otherwise. f is called a group A Cordial labeling if $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, where $v_{f}(x)$ and $e_{f}(n)$ respectively denote the number of vertices labeled with an element x and number of edges labeled with $n(n=0,1)$. A graph which admits a group A Cordial labeling is called a group A Cordial graph. In this paper we define group $\{1,-1, i,-i\}$ Cordial graphs and prove that the Jahangir graph $J_{3, n}(n \geq 3)$, the Jelly fish graphs $J(m, n)(m \leq n)$, the Dumbbell graph $D b_{n}$ and the Flower graph $F l_{n}$ are all group $\{1,-1, i,-i\}$ Cordial for every n.

1 Introduction

Graphs considered here are finite, undirected and simple. Let A be a group. The order of $a \in A$ is the least positive integer n such that $a^{n}=e$. We denote the order of a by $o(a)$. Cahit [3] introduced the concept of Cordial labeling. Motivated by this, we defined group A cordial labeling and investigated some of its properties. We also defined group $\{1,-1, i,-i\}$ cordial labeling and discussed that labeling for some standard graphs [1,2]. In this paper we discuss the labeling for the Jahangir graph $J_{3, n}(n \geq 3)$, the Jelly fish graphs $J(m, n)(m \leq n)$, the Dumbbell graph $D b_{n}$ and the Flower graph $F l_{n}$. Terms not defined here are used in the sense of Harary[5] and Gallian [4].

The greatest common divisor of two integers m and n is denoted by (m, n) and m and n are said to be relatively prime if $(m, n)=1$. For any real number x, we denote by $\lfloor x\rfloor$, the greatest integer smaller than or equal to x and by $\lceil x\rceil$, we mean the smallest integer greater than or equal to x.

A path is an alternating sequence of vertices and edges, $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{n-1}, v_{n}$, which are distinct, such that e_{i} is an edge joining v_{i} and v_{i+1} for $1 \leq i \leq n-1$. A path on n vertices is denoted by P_{n}. A path $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{n-1}, v_{n}, e_{n}, v_{1}$ is called a cycle and a cycle on n vertices is denoted by C_{n}.

Given two graphs G and $H, G+H$ is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup\{u v / u \in V(G), v \in V(H)\}$. A Wheel W_{n} is defined as $C_{n}+K_{1}$ and the graph obtained by subdividing the edges on the cycle of a wheel exactly once is called the Gear graph. The Helm H_{n} is the graph obtained from a wheel W_{n} by attaching a pendent edge at each vertex of the n - cycle.

2 Group $\{1,-1, i,-i\}$ Cordial graphs

Definition 2.1. Let G be a (p, q) graph and consider the group $A=\{1,-1, i,-i\}$ with multiplication. Let $f: V(G) \rightarrow A$ be a function. For each edge $u v$ assign the label 1 if $(o(f(u)), o(f(v)))=$ lor 0 otherwise. f is called a group $\{1,-1, i,-i\}$ Cordial labeling if $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, where $v_{f}(x)$ and $e_{f}(n)$ respectively denote the number of vertices labeled with an element x and number of edges labeled with $n(n=0,1)$. A graph which admits a group $\{1,-1, i,-i\}$ Cordial labeling is called a group $\{1,-1, i,-i\}$ Cordial graph.

Example 2.2. A simple example of a group $\{1,-1, i,-i\}$ Cordial graph is given in Fig. 2.1.

Fig. 2.1

We now investigate the group $\{1,-1, i,-i\}$ Cordial labeling of some (p, q) graphs. The Jahangir graph $J_{m, n}(n \geq 3)$ was introduced by Surahmar and Tomescu[6] in 2006.

Definition 2.3. The Jahangir graph $J_{m, n}(n \geq 3)$ is a graph with $m n+1$ vertices, consisting of a cycle $C_{m n}$ with one additional vertex which is adjacent to n vertices of $C_{m n}$ at distance m to each other on $C_{m n}$.

Remark 2.4. The Jahangir graph $J_{1, n}$ is the Wheel and $J_{2, n}$ is the gear graph.

Theorem 2.5. The Jahangir graph $J_{3, n}(n \geq 3)$ is group $\{1,-1, i,-i\}$ cordial for all n.
Proof. Let the vertices on the cycle be labeled as $u_{1}, u_{2}, \ldots ., u_{3 n}$ and let the central vertex be labeled as w. Assume that w is adjacent to $u_{i}(i \equiv 1(\bmod 3))$. Number of vertices $=3 n+1$ and number of edges $=4 n$. Group $\{1,-1, i,-i\}$ cordial labelings for $n=3$ and $n=4$ are given in Table 1. Suppose $n \geq 5$.

n	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9}	u_{10}	u_{11}	u_{12}	w
3	-1	1	1	-1	1	-1	i	i	$-i$				$-i$
4	-1	1	1	-1	1	1	-1	i	i	i	$-i$	$-i$	$-i$

Table 1
Case(i): $3 n+1 \equiv 0(\bmod 4)$.
Let $3 n+1=4 k(k \in \mathbb{Z})$. Each vertex label should appear k times and each edge label should appear $\frac{8 k-2}{3}$ times in a group $\{1,-1, i,-i\}$ cordial labeling. Note that $k=3 r+1(r \in \mathbb{Z}, r \geq 1)$. So the vertices on the cycle are $u_{i}(1 \leq i \leq 12 r+3)$ where $u_{i}(i \equiv 1(\bmod 3), 1 \leq i \leq 12 r+3)$ are of degree 3 and others are of degree 2 . Label the vertices $u_{i}(1 \leq i \leq 6 r-2, i \equiv 1(\bmod 3))$ with 1. Also choose $r+1$ vertices among $u_{i}(6 r \leq i \leq 12 r+3, i \neq 1(\bmod 3))$ and give them label 1 . Label the remaining vertices arbitrarily so that k of them get label $-1, k$ of them get label i and k of them get label $-i$. Number of edges with label $1=3 \times 2 r+(r+1) 2=\frac{8 k-2}{3}$.

Case(ii): $3 n+1 \equiv 1(\bmod 4)$.
Let $3 n+1=4 k+1(k \in \mathbb{Z})$. Three vertex labels should appear k times and one vertex label should appear $k+1$ times. Each edge label should appear $\frac{8 k}{3}$ times in a group $\{1,-1, i,-i\}$ cordial labeling. In this case $k=3 r(r \in \mathbb{Z}, r \geq 2)$. Now the vertices on the cycle are
$u_{i}(1 \leq i \leq 12 r)$ where $u_{i}(i \equiv 1(\bmod 3))$ are of degree 3 and others are of degree 2 . Label the vertices $u_{i}(1 \leq i \leq 6 r-8, i \equiv 1(\bmod 3))$ with 1 . Also choose $r+3$ vertices $u_{i}(6 r-6 \leq l \leq 12 r, i \neq 1(\bmod 3))$ and give them label 1 . Label the remaining vertices arbitrarily so that k of them get label $-1, k$ of them get label i and k of them get label $-i$. Number of edges with label $1=3 \times(2 r-2)+(r+3) 2=8 r$.

Case(iii): $3 n+1 \equiv 2(\bmod 4)$
Let $3 n+1=4 k+2(k \in \mathbb{Z})$. Two vertex labels should appear k times and 2 vertex labels should appear $k+1$ times. Each edge label should appear $2 n=\frac{8 k+2}{3}$ times. Now $k=3 r+2(r \geq 1, r \in \mathbb{Z})$. The vertices on the cycle are $u_{i}(1 \leq i \leq 12 r+9)$. Label the vertices $u_{i}(1 \leq i \leq 6 r-2, i \equiv 1(\bmod 3))$ with 1 . Also choose $r+3$ vertices among $u_{i}(6 r \leq i \leq 12 r+9, l \neq 1(\bmod 3))$ and give them label 1 . Label the remaining vertices arbitrarily so that $k+1$ vertices get label $-1, k$ vertices get label i and k vertices get label $-i$. Number of edges with label $1=2 r \times 3+2(r+3)=8 r+6$.

Case(iv): $3 n+1 \equiv 3(\bmod 4)$
Let $3 n+1=4 k+3(k \in \mathbb{Z})$. Three vertex labels should appear $k+1$ times and 1 vertex label should appear k times. Each edge label should appear $\frac{8 k+4}{3}$ times. Now $k=3 r+1(r \geq 1, r \in \mathbb{Z})$. The vertices on the cycle are $u_{i}(1 \leq i \leq 12 r+6)$. Label the vertices $u_{i}(1 \leq i \leq 6 r-2, l \equiv$ $(\bmod 3))$ with 1. Also choose $r+2$ vertices among $u_{i}(6 r \leq i \leq 12 r+6, l \neq i(\bmod 3))$ and give them label 1. Label the remaining vertices arbitrarily so that $k+1$ vertices get label $-1, k+1$ vertices get label i and k vertices get label $-i$. Number of edges with label $1=2 r \times 3+2(r+2)=8 r+4$. Table 2 shows that in all cases, the given labeling is group $\{1,-1, i,-i\}$ cordial.

$3 n+1$	$v_{f}(1)$	$v_{f}(-1)$	$v_{f}(i)$	$v_{f}(-i)$	$e_{f}(0)$	$e_{f}(1)$
$4 k$	k	k	k	k	$\frac{8 k-2}{3}$	$\frac{8 k-2}{3}$
$4 k+1$	$k+1$	k	k	k	$\frac{8 k}{3}$	$\frac{8 k}{3}$
$4 k+2$	$k+1$	$k+1$	k	k	$\frac{8 k+2}{3}$	$\frac{8 k+2}{3}$
$4 k+3$	$k+1$	$k+1$	$k+1$	k	$\frac{8 k+4}{3}$	$\frac{8 k+4}{3}$

Table 2

An illustration of the labeling for $J_{3,5}$ is given in Fig. 2.2.

Fig. 2.2
Definition 2.6. Jelly fish graphs $J(m, n)(m \leq n)$ are obtained from a cycle C_{4} : uxvyu by joining x and y with an edge and appending m pendent edges to u and n pendent edges to v.

Theorem 2.7. Jelly fish graphs $J(m, n)(m \leq n)$ are group $\{1,-1, i,-i\}$ cordial if and only if either $m+n \leq 10$ or $3 m-6 \leq n \leq 3 m+6$.

Proof. Let the m pendent vertices adjacent to u be labeled as $u_{1}, u_{2}, \ldots, u_{m}$ and the n pendent vertices adjacent to v be labeled as $v_{1}, v_{2}, \ldots, v_{n}$. Number of vertices in $J(m, n)$ is $m+n+4$ and number of edges is $m+n+5$.
Case(i): $m+n \equiv 0(\bmod 4)$.
Let $m+n=4 k, k \geq 1, k \in \mathbb{Z}$. Each vertex label should appear $k+1$ times. One edge label should appear $2 k+2$ times and another should appear $2 k+3$ times.
Subcase(1): $f(u) \neq 1$ and $f(v) \neq 1$.
If $f(x)=1$ and $f(y) \neq 1$, then every other vertex with label 1 will yield only one edge with label 1. So $k=2 k-1$ or $k=2 k$ so that $k=1$ or $k=0$. If both $f(x)=1$ and $f(y)=1$, then $k-1=2 k-3$ or $k-1=2 k-2$ and so $k=2$ or $k=1$. If $k=1, m+n=4$ and if $k=2, m+n=8$. If $k=1$, label x and v_{1} with 1 and remaining vertices arbitrarily so that 2 vertices get label $-1,2$ vertices get label i and 2 vertices get label $-i$. If $k=2$, label x, y and v_{1} with 1 and remaining vertices arbitrarily so that each vertex label appears on 3 vertices.
Subcase(2): $f(u)=1$ and $f(v)=1$.
This induces label 1 to $m+n+4$ edges and so this case is impossible.
Subcase(3): $f(u)=1$ and $f(v) \neq 1$.
If both $f(x) \neq 1$ and $f(y) \neq 1$, then either $k=2 k-m$ or $k=2 k-m+1$. So either $k=m$ or $k=m-1$ and so $n=3 m$ or $n=3 m-4$. In both the cases, label the vertices $v_{1}, v_{2}, \ldots, v_{k}$ with 1 and the remaining vertices arbitrarily so that each vertex label appears on exactly $k+1$ vertices. Suppose either $f(x)=1$ or $f(y)=1$. Without loss of generality, let $f(x)=1$. Then as above, $k=m+1$ or $k=m$. In both the cases, label the vertices $v_{1}, v_{2}, \ldots ., v_{k-1}$ with 1 and the remaining vertices arbitrarily so that each vertex label appears on exactly $k+1$ vertices. When $k=m-1, m$ or $m+1$, we have $n=3 m-4,3 m, 3 m+4$ accordingly.
Subcase(4): $f(u) \neq 1$ and $f(v)=1$.
As in Subcase(3), by symmetry, we have $k=n, n-1$ or $n+1$. But, by assumption $m \leq n$ and so in this case $n \leq 2$.
Case(ii): $m+n \equiv 1(\bmod 4)$.
Let $m+n=4 k+1, k \geq 0, k \in \mathbb{Z}$. Three vertex labels should appear $k+1$ times and one vertex label should appear $k+2$ times. Each edge label should appear $2 k+3$ times.
Subcase (1): $f(u) \neq 1$ and $f(v) \neq 1$.
If $f(x)=1$ and $f(y) \neq 1$, then either $k=2 k$ or $k+1=2 k$ so that $k=0$ or 1 . If $k=0$,take $f(y)=-1, f(u)=f(v)=i$ and $f\left(v_{1}\right)=-i$. If both $f(x)=1$ and $f(y)=1$, then either $k-1=2 k-2$ or $k=2 k-2$ so that $k=1$ or $k=2$. If $k=1, f(x)=1, f\left(v_{1}\right)=1$ and $f\left(v_{2}\right)=1$. Label the remaining vertices arbitrarily so that each vertex label appears on 2 vertices. If $k=2$, let $f(x)=1, f(y)=1, f\left(v_{1}\right)=1$ and $f\left(v_{2}\right)=1$. Label the remaining vertices arbitrarily so that each vertex label appears on 3 vertices. As $k=0,1$ or 2 , we have $m+n=1,5$ or 9 .
Subcase(2): $f(u)=1$ and $f(v)=1$.
As in Subcase(2) of Case(i), this is impossible.
Subcase(3): $f(u)=1$ and $f(v) \neq 1$.
If both $f(x) \neq 1$ and $f(y) \neq 1$, then either $k=2 k-m+1$ or $k+1=2 k-m+1$ so that $k=m-1$ or $k=m$. In the former case,label $v_{1}, v_{2}, \ldots, v_{k}$ with 1 and the remaining vertices arbirarily so that $k+1$ vertices get label $-1, k+1$ vertices get label i and $k+2$ vertices get label $-i$. In the latter case, label $v_{1}, v_{2}, \ldots . ., v_{k+1}$ with 1 and the remaining vertices arbitrarily so that each of the vertex labels $-1, i$ and $-i$ appear on $k+1$ vertices. Suppose $f(x)=1$ and $f(y) \neq 1$. Then as above $k=m$ or $k=m+1$. If $k=m+1$, label the vertices $v_{1}, v_{2}, \ldots, v_{k}$ with 1 and the remaining vertices arbitrarily so that each of the vertex labels $-1, i$ and $-i$ appear on $k+1$ vertices. As $k=m-1, m, m+1$, we have $n=3 m-3,3 m+1$ or $3 m+5$.
Subcase(4): $f(u) \neq 1$ and $f(v)=1$.
As in Subcase(3), we get $k=n-1, n$ or $n+1$. As $m \leq n$, in these cases, $n \leq 2$.
Case(iii): $m+n \equiv 2(\bmod 4)$.
Let $m+n=4 k+2, k \geq 0, k \in \mathbb{Z}$. Two vertex labels should appear $k+1$ times and two other vertex labels should appear $k+2$ times. One edge label should appear $2 k+3$ times and another should appear $2 k+4$ times.

Subcase(1): $f(u) \neq 1$ and $f(v) \neq 1$.
If $f(x)=1$ and $f(y) \neq 1$, then there are are four possibilities; $k=2 k, k=2 k+1, k+1=2 k$ and $k+1=2 k+1$. Hence $k=0$ or 1 . If $k=0, f(x)=1, f(y)=-1, f(u)=f(v)=i, f\left(u_{1}\right)=$ $f\left(v_{1}\right)=-i$. If $k=1, f(x)=1, f\left(v_{1}\right)=f\left(v_{2}\right)=1$. Label remaining vertices arbitrarily so that 3 vertices get label $-1,2$ vertices get label i and 2 vertices get label $-i$. If both $f(x)=1$ and $f(y)=1$, then $k=0,1$ or 2 . If $k=2, f(x)=f(y)=f\left(v_{1}\right)=f\left(v_{2}\right)=1$. Label the remaining vertices arbitrarily so that 4 vertices get label $-1,3$ vertices get label i and 3 vertices get label $-i$. As $k=0,1,2, m+n=2,6$ or 10 .
Subcase(2): $f(u)=1$ and $f(v)=1$.
As in previous cases, this is not possible.
Subcase(3): $f(u)=1$ and $f(v) \neq 1$.
If both $f(x) \neq 1$ and $f(y) \neq 1$ then $k=m-1, m-2$ or m. If $k=m-1$ or $m-2$, label $v_{1}, v_{2}, \ldots, v_{k}$ with 1 . Label the remaining vertices arbitrarily so that $k+1$ vertices get label $-1, k+2$ vertices get label i and $k+2$ vertices get label $-i$. If $k=m$, label $v_{1}, v_{2}, \ldots, v_{k+1}$ with 1 . Label the remaining vertices arbitrarily so that $k+2$ vertices get label $-1, k+1$ vertices get label i and $k+1$ vertices get label $-i$. Suppose $f(x)=1$ and $f(y) \neq 1$. As above, $k=m-1$, mor $m+1$. If $k=m$, label $v_{1}, v_{2}, \ldots . ., v_{k-1}$ with 1 . Label the remaining vertices arbitrarily so that $k+1$ vertices get label $-1, k+2$ vertices get i and $k+2$ vertices get label $-i$. As $k=m-1, m-2, m, m+1$, we have $n=3 m-6,3 m-2,3 m+2$ or $3 m+6$.
Subcase(4): $f(u) \neq 1$ and $f(v)=1$.
As in Subcase(3), we get $k=n-2, n-1, n$ or $n+1$. As $m \leq n$, we have $n \leq 3$.
Case(iv): $m+n \equiv 3(\bmod 4)$
Let $m+n=4 k+3, k \geq 0, k \in \mathbb{Z}$. Three vertex labels should appear $k+2$ times and one vertex label should appear $k+1$ vertices. Each edge label should appear $2 k+4$ times.
Subcase(1): $f(u) \neq 1$ and $f(v) \neq 1$.
If $f(x)=1$ and $f(y) \neq 1$, then either $k+1=2 k+1$ or $k=2 k+1$ so that $k=0$ or -1 ; If $k=0$, $f\left(v_{1}\right)=1$; Label the remaining vertices arbitrarily so that 2 vertices get label $-1,2$ vertices get label i and 1 vertex get label $-i$. If both $f(x)=1$ and $f(y)=1$, then either $k=2 k-1$ or $k-1=2 k-1$ so that $k=1$ or $k=0$. If $k=1, f\left(v_{1}\right)=1$. Label the remaining vertices arbitrarily so that 3 vertices get label $-1,3$ vertices get label i and 2 vertices get label $-i$. As $k=0,1, m+n=3$ or $m+n=7$.
Subcase(2): $f(u)=1$ and $f(v)=1$.
As in previous cases, this is impossible.
Subcase(3): $f(u)=1$ and $f(v) \neq 1$.
If both $f(x) \neq 1$ and $f(y) \neq 1$,then $k=m-1$ or $k=m-2$. If $k=m-1$, label $v_{1}, v_{2}, \ldots ., v_{k+1}$ with 1 and remaining vertices arbitrarily so that $k+2$ vertices get label $-i, k+2$ vertices get label i and $k+1$ vertices get label $-i$. If $k=m-2$, label $v_{1}, v_{2}, \ldots . ., v_{k}$ with 1 and remaining vertices arbitrarily so that $k+2$ vertices get label $-1, k+2$ vertices get label i and $k+2$ vertices get label $-i$. Suppose $f(x)=1$ and $f(y) \neq 1$. Then $k=2 k-m$ or $k-1=2 k-m$ so that $k=m$ or $k=m-1$. If $k=m$, label $v_{1}, v_{2}, \ldots ., v_{k}$ with 1 . Label the remaining vertices arbitrarily so that $k+2$ vertices get label $-1, k+2$ vertices get label i and $k+1$ vertices get label $-i$. As $k=m-2, m-1$ or m, we have $n=3 m-5,3 m-1$ or $3 m+3$.
Subcase(4): $f(u) \neq 1$ and $f(v)=1$.
As in Subcase(3), we get $k=n-2, n-1$ or n. As $m \leq n$, we have $n \leq 2$.
An illustration of the labeling is given for $J(3,5)$ in Fig. 2.3.

Definition 2.8. The graph obtained by joining two disjoint cycles $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ with an edge $u_{1} v_{1}$ is called dumbbell graph $D b_{n}$.

Theorem 2.9. The Dumbbell graph $D b_{n}$ is group $\{1,-1, i,-i\}$ cordial for every n.
Proof. Number of vertices in $D b_{n}$ is $2 n$ and number of edges is $2 n+1$.
Case (i): n is even.
Let $n=2 k, k \geq 2, k \in \mathbb{Z}$.

In a group $\{1,-1, i,-i\}$ cordial labeling, each vertex label should appear k times. One edge label should appear $2 k$ times and another $2 k+1$ times. Define a labeling f as follows:
Label $u_{1}, u_{3}, u_{5}, \ldots, u_{n-1}$ with 1 . Label the remaining vertices arbitrarily so that k of them get label $-1, k$ of them get label i and k of them get label $-i$. Number of edges with label 1 is $3+2(k-1)=2 k+1$.

Fig. 2.3
Case (ii): n is odd.
Let $n=2 k+1, k \geq 1, k \in \mathbb{Z}$.
In a group $\{1,-1, i,-i\}$ cordial labeling, two vertex labels should appear k times and two vertex labels should appear $k+1$ times. One edge label should appear $2 k+1$ times and another $2 k+2$ times. Define a labeling f as follows:
Label $u_{1}, u_{3}, u_{5}, \ldots, u_{n-1}$ with 1 . Label the remaining vertices arbitrarily so that k of them get label $-1, k+1$ of them get label i and $k+1$ of them get label $-i$. Number of edges with label 1 is $3+2(k-1)=2 k+1$.
Table 3 shows that in all cases, the given labeling is group $\{1,-1, i,-i\}$ cordial.

n	$v_{f}(1)$	$v_{f}(-1)$	$v_{f}(i)$	$v_{f}(-i)$	$e_{f}(0)$	$e_{f}(1)$
$2 k$	k	k	k	k	$2 k$	$2 k+1$
$2 k+1$	k	k	$k+1$	$k+1$	$2 k+2$	$2 k+1$

Table 3
An illustration of the labeling is given for $D b_{6}$ in Fig. 2.4.

Fig. 2.4
Definition 2.10. A flower graph $F l_{n}$ is the graph obtained from a Helm by joining each pendent vertex to the central vertex of the Helm.

Theorem 2.11. The Flower graph $F l_{n}$ is group $\{1,-1, i,-i\}$ cordial for every n.
Proof. Let u be the center of the Wheel W_{n}. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices on the cycle of W_{n} and $v_{1}, v_{2}, \ldots, v_{n}$ be the pendent vertices of the helm such that v_{i} is adjacent to u_{i} for $1 \leq i \leq n$. Number of vertices in $F l_{n}$ is $2 n+1$ and number of edges is $4 n$.

Case $(\mathbf{i}): n \equiv 0(\bmod 4)$.
Let $n=4 k, k \geq 1, k \in \mathbb{Z}$. In a group $\{1,-1, i,-i\}$ cordial labeling, three of the vertex labels should appear $2 k$ times and one vertex label $2 k+1$ times. Each edge label should appear $8 k$ times. Define a labeling f as follows:
Label $u_{1}, u_{3}, u_{5}, \ldots, u_{n-1}$ with 1 . Label the remaining vertices arbitrarily so that $2 k$ of them get label $-1,2 k$ of them get label i and $2 k+1$ of them get label $-i$. Number of edges with label 1 is $4(2 k)=8 k$.
Case $(\mathbf{i i}): n \equiv 1(\bmod 4)$.
Let $n=4 k+1, k \geq 1, k \in \mathbb{Z}$. In a group $\{1,-1, i,-i\}$ cordial labeling, one vertex label should appear $2 k$ times and three other vertex labels $2 k+1$ times. Each edge label should appear $8 k+2$ times. Define a labeling f as follows:
Label $u_{1}, u_{3}, u_{5}, \ldots, u_{n-2}, v_{2}$ with 1 . Label the remaining vertices arbitrarily so that $2 k+1$ of them get label $-1,2 k+1$ of them get label i and $2 k$ of them get label $-i$. Number of edges with label 1 is $4(2 k)+2=8 k+2$.
Case (iii): $n \equiv 2(\bmod 4)$.
Let $n=4 k+2, k \geq 1, k \in \mathbb{Z}$. In a group $\{1,-1, i,-i\}$ cordial labeling, three of the vertex labels should appear $2 k+1$ times and one vertex label $2 k+2$ times. Each edge label should appear $8 k=4$ times. Define a labeling f as follows:
Label $u_{1}, u_{3}, u_{5}, \ldots, u_{n-1}$ with 1 . Label the remaining vertices arbitrarily so that $2 k+1$ of them get label $-1,2 k+1$ of them get label i and $2 k+2$ of them get label $-i$. Number of edges with label 1 is $4(2 k+1)=8 k+4$.
Case (iv): $n \equiv 3(\bmod 4)$.
Let $n=4 k+3, k \geq 0, k \in \mathbb{Z}$. In a group $\{1,-1, i,-i\}$ cordial labeling, three vertex labels should appear $2 k+2$ times and one vertex label should appear $2 k+1$ times. Each edge label should appear $8 k+6$ times. Define a labeling f as follows:
Label $u_{1}, u_{3}, u_{5}, \ldots, u_{n-2}, v_{2}$ with 1 . Label the remaining vertices arbitrarily so that $2 k+2$ of them get label $-1,2 k+2$ of them get label i and $2 k+1$ of them get label $-i$. Number of edges with label 1 is $4(2 k+1)+2=8 k+6$.
Table 4 shows that in all cases, the given labeling is group $\{1,-1, i,-i\}$ cordial.

n	$v_{f}(1)$	$v_{f}(-1)$	$v_{f}(i)$	$v_{f}(-i)$	$e_{f}(0)$	$e_{f}(1)$
$4 k, k \geq 1, k \in \mathbb{Z}$	$2 k$	$2 k$	$2 k$	$2 k+1$	$8 k$	$8 k$
$4 k+1, k \geq 1, k \in \mathbb{Z}$	$2 k+1$	$2 k+1$	$2 k+1$	$2 k$	$8 k+2$	$8 k+2$
$4 k+2, k \geq 1, k \in \mathbb{Z}$	$2 k+1$	$2 k+1$	$2 k+1$	$2 k+2$	$8 k+4$	$8 k+4$
$4 k+3, k \geq 0, k \in \mathbb{Z}$	$2 k+2$	$2 k+2$	$2 k+2$	$2 k+1$	$8 k+6$	$8 k+6$

Table 4

An illustration of the labeling is given for $F l_{6}$ in Fig. 2.5.

Fig 2.5

REFERENCES

[1] Athisayanathan, S., Ponraj, R. and Karthik Chidambaram, M., K., Group A cordial labeling of Graphs, International Journal of Applied Mathematical Sciences, Vol 10, No.1(2017),pp 1-11.
[2] Athisayanathan, S., Ponraj, R. and Karthik Chidambaram, M., K., Group $\{1,-1, i,-i\}$ Cordial labeling of sum of P_{n} and K_{n}, Journal of Mathematical and Computational Science, Vol 7, No 2 (2017), 335-346
[3]. Cahit, I., cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin. 23(1987) 201-207
[4]. Gallian, J. A, A Dynamic survey of Graph Labeling, The Electronic Journal of Combinatories $\operatorname{Dec} 7(2015)$, No.D56.
[5]. Harary, F., Graph Theory, Addison Wesley, Reading Mass, 1972.
[6]. Kashif Ali, Edy Tri Baskoo and I. Tomescu, On the Ramsey numbers for paths and generalized Jahangirs, $J_{s, m}$, Bull.Math.Soc. Sci., Math.Roumanie Tome, 2008, Vol. 15, pp 177-182.

Author information

M.K.Karthik Chidambaram, Department of Mathematics, St. Xavier's College, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India.
E-mail: karthikmat5@gmail.com
S. Athisayanathan, Department of Mathematics, St. Xavier's College, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India.
E-mail: athisxc@gmail.com
R. Ponraj, Department of Mathematics, Sri Paramakalyani College, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India.
E-mail: ponrajmaths@gmail.com
Received: October 10, 2017.
Accepted: April 6, 2018

