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Abstract. Following the notation of [1, page 111 ], if G is a group and R is a nonzero
ring of unit element 1, let R(G) denote the group ring. The map ω : R(G) → R given by∑
g∈G

rgg →
∑
g∈G

rg is called the augmentation homomorphism. It is a homomorphism of rings.

The kernel of this homomorphism is denoted by ωR(G) and is called the augmentation ideal of
R(G). The group ring R(G) is called a right hereditary ring if G is finitely generated and ωR(G)
is a right R(G) projective. The group G is called R−1 group if all finite subgroups of G have
order invertible inR. Equivalently, ifH is a finite subgroup ofG of order n, then the element n.1
has inverse in R, where 1 is the unit element of R. In this paper we prove that if R is a nonzero
ring of unit element and G is a group acting on a tree X without inversions such that the group
ring R(Gv) of the stabilize Gv for each vertex v of X is a right hereditary ring and, Gv 6= G, the
stabilizer Ge of each edge e of X is finite, and the quotient graph G/X for the action of G on X
is finite, then the group ring R(G) is a right hereditary ring. Furthermore, we prove that if G is a
group and R is a nonzero ring of unit element such that the group ring R(G) is a right hereditary
ring, and H is a subgroup of G then

(1) If H is of finite index in G, then the group ring R(H) is a right hereditary ring.
(2) If H is finite and normal, then the group ring R(G/H) is a right hereditary ring, where

G/H is the quotient group of G over H .
We have applications to tree product of the groups and HNN extension groups.

1 Introduction

For the structures of group rings we refer the readers to [8] and for the augmentation ideals, and
right hereditary ring to [1, page 111]. In [2, Theorem 2.12, page 118], W. Dicks proved that if G
is a group and R is a nonzero ring of unit element then the group ring R(G) is a right hereditary
ring if and only if there exists a tree X on which G acts without inversions in such a way that the
orders of the stabilizers of the vertices are finite and R−1 are groups. In this paper we use this
result to show that the hereditary group rings of groups acting on trees without inversions are
inherited from the group rings of the stabilizers of the vertices in the sense that if R is a nonzero
ring of unit element and G is a group acting on a tree X without inversions such that the group
ring R(Gv) of the stabilize Gv for each vertex v of X is a right hereditary ring and, Gv 6= G
, the stabilizer Ge of each edge e of X is finite, and the quotient graph G/X for the action of
G on X is finite, then the group ring R(G) is a right hereditary ring. Now we begin a general
background of groups acting on trees without inversions introduced in [1], [2], [6] or in [9] as
follows. A graph X consists of two disjoint sets V (X) (the set of vertices of X) and E(X) (the
set of edges of X) with V (X) non-empty, together with three functions ∂0 : E(X) → V (X),
∂1 : E(X) → V (X) and η : E(X) → E(X) is an involution satisfying the conditions ∂0η = ∂1
and ∂1η = ∂0. For simplicity, if e ∈ E(X) then we write ∂0(e) = 0(e), ∂1(e) = t(e) and η(e) =
e. This implies that o(e) = t(e), t(e) = o(e) and e = e We say that a group G acts on a graph X
without inversions if there is a group homomorphism φ : G → Aut(X). In this case, if x ∈ X
(vertex or edge) and g ∈ G, then we write g(x) for (φ(g))(x). Thus, if g ∈ G, y ∈ E(X) and
then g(o(y)) = o(g(y)), g(t(y)) = t(g(y)), g(y) = g(y). If the group G acts on the graph X and
x ∈ X (x is a vertex or edge), then

1. the stabilizer of x, denoted Gx is defined to be the set Gx = {g ∈ G : g(x) = x}. It is
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clear that Gx ≤ G, and if x ∈ E(X) and u ∈ {o(x), t(x)} then Gx = Gx and Gx ≤ Gu.
2. the orbit of x denoted G(x) is defined to be the set G(x) = {g(x) : g ∈ G} It is clear that

G acts on the graph X without inversions if and only if G(e) 6= G(e) for any e ∈ E(X).
3. the set of the orbits G/X of the action of G on X is defined as G/X = {G(x) : x ∈ X}.

G/X forms a graph called the quotient graph for the action of G on X , where V (G/X) =
{G(v) : v ∈ V (X)}, E(G/X) = {G(e) : e ∈ E(X)} and if e ∈ E(X), then o(G(e)) = G(o(e)),
t(G(e)) = G(t(e)) and G(e) = G(e).

Definition 1.1. Let G be a group acting on a tree X without inversions, and let T and Y be two
subtrees of X such that T ⊆ Y, and each edge of Y has at least one end in T . Assume that T and
Y are satisfying the following:

(i) T contains exactly one vertex from each vertex orbit.
(ii) Y contains exactly one edge y (say) from edge orbit if G(y) = G(y). The pair (T ;Y )

is called a fundamental domain for the action of G on X . For the existence of fundamental
domains, we refer the readers to [4].

For the rest of this section, G is a group acting on a tree X without inversions (T ;Y ) is the
fundamental domain for the action of G on X . We have the following notation:

(1) For any vertex v ∈ V (X), there exist a unique vertex denoted v∗ of T and an element
g (not necessarily unique) of G such that g(v∗) = v. That is, G(v∗) = G(v), Moreover, if
v ∈ V (T ), then v∗ = v.

(2) For each edge y ∈ E(Y )there exists an element denoted [y] of G satisfying the following:
(a) if o(y) ∈ V (T ), then [y]((t(y))∗) = t(y), and [y] = 1 in case y ∈ E(T ).
(b) if t(y) ∈ V (T ), then [y](o(y)) = (o(y))∗, and [y] = [y]−1.
(3) For each edge y ∈ E(Y ),let +y be the edge +y = y if o(y) ∈ V (T ), and +y = [y](y)

if t(y) ∈ V (T ). It is clear that o(+y) = (o(y))∗, and G+y ≤ G(o(y))∗ and if y ∈ E(T ), then
G+y = Gy.

2 The Main Results

We start the following lemma needed for the main results of this section For the proof, we refer
the readers to [2, Theorem 2.12, page. 118].

Lemma 2.1. Let R be a nonzero commutative ring with unit element and let G be a group. Then
the augmented ideal ωR(G) is a right R(G) projective if and only if there exists a tree X such
that G acts on X without inversions, the stabilize Gv for each vertex v of X is finite and is a R−1

group. We have the following applications of Lemma 2.1.

Proposition 2.2. Let R be a nonzero ring of unit element. Let H be a subgroup of finite index of
a group G such that the group ring R(G) is a right hereditary ring. Then the group ring R(H)
is a right hereditary ring.

Proof. Since G is finitely generated and H is of finite index in G, by the Reidemeister-Schreier
subgroup theorem [5, Corollary 2.8, page 93], H is finitely generated. Let the augmented ideal
ωR(G) be a right R(G) projective. By Lemma 2.1, exists a tree X such that G acts on X without
inversions, the stabilizeGv for each vertex v ofX is finite and is aR−1 group. ThenH acts onX
by restriction. It is clear that the vertex stabilize Hv of the vertex v of X satisfies Hv = H ∩Gv.
Since Gv is finite, Hv is finite. Since finite subgroups of H are finite subgroups of G, and G
is a R−1 group, therefore H is a R−1 group. This shows that the group ring R(H) is a right
hereditary ring. This completes the proof.

Proposition 2.3. If H is a finite and normal subgroup of the group G such that the group ring
R(G) is a right hereditary ring, then R(G/H) is a right hereditary ring.

Proof. Since G is finitely generated, it is clear that is finitely generated. Let the augmented
ideal ωR(G) be a right R(G) projective. By Lemma 2.1, exists a tree X such that G acts on
X without inversions, the stabilize Gv for each vertex v of X is finite and is a R−1 group. Let
XH = {x ∈ X : H ≤ Gx}. The set XH 6= φ, because H is finite, and every finite subgroup of
groups acting on trees without inversions is contained in a vertex stabilizer (see [1], Th. 8.1, p.
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27). Now we show that XH is a subtree of X . Let XH consist of more than one vertex. Let e be
an edge of XH . Then H ≤ Ge. Since Ge = Go(e) ∩Gt(e), therefore H ≤ Go(e), and H ≤ Gt(e).
Then o(e) and t(e) are in XH . Since Ge = Ge, therefore e is in XH . This implies that XH is a
subgraph of X . Let u and v be two vertices of XH , and let h ∈ H . Then there exists a unique
reduced path e1, e2, ..., en in X joining u and v. Then it is clear that h(e1), h(e2), ..., h(en) is a
unique reduced path in X joining the vertices h(u) and h(v). Since H ≤ Gu, and H ≤ Gv,
therefore h(e1), h(e2), ..., h(en) is a unique reduced path in X joining u and v. This implies that
h(ei) = ei for i = 1, ..., n. Then H ≤ Gei , for i = 1, ..., n, and e1, e2, ..., en is a unique reduced
path in XH joining u and v. This implies that XH is a subtree of X . Let g ∈ G, and x ∈ XH

. Then g−1Hg = H , because H is a normal subgroup of G and, H ≤ Gx. This implies that
H = g−1Hg ≤ g−1Gxg = Gg(x). So g(x) ∈ XH , and the rule gH(x) = g(x) defines an action
ofG/H onXH . IfG/H acts onXHwith inversions, then there exist an element g ∈ G, and edge
e ∈ E(XH) such that gH(e) = g(e) = e. This is a contradiction because the action of G on X
is without inversions. It is clear that the stabilizer of x ∈ XH under the action of G/H on XH is
(G/H )x = Gx/H , where Gx is the stabilizer of x under the action of G on X . Since stabilizer
of each x ∈ X under the action of G on X is finite, therefore stabilizer of each x ∈ XH under
the action of G/H on XH is finite. Any finite subgroup of G/H is of the form K/H , where K
is a finite subgroup of G. The assumption that G is a R−1 group shows K has order invertible in
R. Therefore G/H is a R−1 group. This shows that the group ring R(G/H) is a right hereditary
ring. This completes the proof.

Before we prove the main result of this paper, we introduce the following concept taken from
[1, page 78]. Let H be a subgroup of a group G and let H act on a set X . Define ≡ to be
the relation on G × X defined as (f, u) ≡ (g, v), if there exists h ∈ H such that f = gh and
u = h−1(v). It is easy to show that ≡ is an equivalence relation on G×X. The equivalence class
containing (f ;u) is denoted by f ⊗H u Thus f ⊗H u= {(fh;h−1(u)) : h ∈ H}. Define G⊗HX
to be the set G⊗H X = {g ⊗H x : g ∈ G, x ∈ X}.

The main result of this section is the following theorem.

Theorem 2.4. LetR be a nonzero ring of unit element. IfG is a group acting on a treeX without
inversions such that the group ring R(Gv) of the stabilize Gv for each vertex v of X is a right
hereditary ring Gv 6= G, the stabilizer Ge of each edge e of X is finite, and the quotient graph
G/X for the ac tion of G on X is finite, then the group ring R(G) is a right hereditary ring.

Proof. Since for each vertex v of X , Gv 6= G and the group ring R(Gv) of the stabilize Gv

is a right hereditary ring, Gv is finitely generated and the augmented ideal ωR(Gv) is a right
R(Gv) projective. The case that the quotient graph G/X for the action of G on X is finite,
by Lemma 4.4 of [6], G is finitely generated. The case the augmented ideal ωR(Gv) is a right
R(Gv) projective, Lemma 2.1 shows that there exists a tree denoted Xv (Xv could consist of
the single vertex {v}) such that Gv acts on Xv without inversions, the stabilize (Gv)u for each
vertex u of Xv is finite and is a R−1 group. Now we show that G is a R−1 group. Let H be
a finite subgroup of G of order n. Then H acts on X without inversions. Since His finite, by
Corollary 4.9 of [1, page 18], H stabilizes a vertex v of X . Thus, H is a finite subgroup of Gz , z
is a vertex of X . Since Gz is R−1 group, this implies that n.1 has an inverse in R. Consequently,
G is R−1 group. Let (T ;Y ) be a fundamental domain for the action of G on X . Since the
quotient graph G/X for the action of G on X is finite, T and Y are finite. By Lemma 4.4 of
[6], G is generated by the generators of Gv, v ∈ V (T ) and by the elements [y], y ∈ E(Y ).

By Theorem 3.4 of [7], there exists a tree denoted as X̃ = X̂ ∪
(
∪

v∈V (T )
(G⊗Gv

Xv)

)
, where

X̂ = {[g; e] : g ∈ G, e ∈ E(Y )} and [g; e] = (gG+e,+e), V (X̃) = ∪
v∈V (T )

(G ⊗Gv
V (Xv))

and E(X̃) = X̂ ∪
(
∪

v∈V (T )
(G⊗Gv

E(Xv))

)
. The ends and the inverse of the edge g ⊗Gv

e are

defined as follows: t(g ⊗Gv e) = g ⊗Gv t(e), o(g ⊗Gv e) = g ⊗Gv o(e) and g ⊗Gv e = g ⊗Gv e

where t(e), o(e), and e are the ends and the inverse of the edge e in Xv. G acts on X̃ as follows:
if f, g ∈ G, y ∈ E(Y ), v ∈ V (T ), and u ∈ V (Xv) then f [g; y] = [fg; y], f(g⊗Gv

e) = fg⊗Gv
e,

and f(g⊗Gv u) = fg⊗Gv u. If g ∈ G and e ∈ E(Y ) such that g(1⊗Gv e) = 1⊗Gv e = 1⊗Gv e,
then g ∈ Gv and e ∈ E(Xv), g(e) = e. Hence, Gv acts on Xv with inversions. This is a
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contradiction. This implies that G acts on X̃ without inversions. Now for g ∈ G and x ∈ Xv, it
is clear that the stabilizer Gg⊗Gvx

of the vertex g⊗Gv
x is g(Gv

)g−1where (Gv)x is the stabilizer
of x under the action of Gv on Xv. Since (Gv)x is finite, therefore, Gg⊗Gvx

is finite. So the
stabilizer of each vertex of X̃ under the action of G on X̃ is finite. Thus, G satisfies the
conditions of Lemma 2.1. So the augmented ideal ωR(R) is a right R(G) projective. Since G is
finitely generated, this shows that the group ring R(G) is a right hereditary ring. This completes
the proof.

3 Application

Now we apply Theorem 2.4 to tree product of groups and HNN groups introduced in [3]. Tree
product of groups andHNN groups are examples of groups acting on trees without inversions. If
A =

∏∗
i∈I(Ai;Uij = Uji) is a tree product of the groupsAi, i ∈ I with amalgamation subgroups

Uij , i, j ∈ I, then A acts on the tree X without inversions defined as follow: V (X) = {(gAi, i) :
g ∈ A, i ∈ I} and E(X) = {(gUij , ij) : g ∈ A, i, j ∈ I}. If y is the edge y = (gUij , ij), then
o(y) = (gAi, i), t(y) = (gAj , j), and y = (gUji, ji). A acts on X as follows: let f ∈ A. Then
f((gAi, i)) = (fgAi, i) and f(gUij , ij) = (fgUij , ij). If v = (gAi, i) ∈ V (X) and f(gUij , ij) ∈
E(X), then the stabilizer of v is Av = gAig

−1 ∼= Ai, a conjugate of Aj and the stabilizer of y is
Ay = gUijg

−1 ∼= Uij , a conjugate of Uij . The orbit of v is A(v) = {(agAi, i) : a ∈ A, i ∈ I}
and the orbit of y is A(y) = {(agUij , ij) : a ∈ A, i ∈ I}. Now, we turn to the definition of an
HNN group. Let G be a group and let I be an index set. Let {Ai, i ∈ I} and {Bi, i ∈ I} be
two families of subgroups of G. For each i ∈ I, let φi : Ai → Bi be an onto isomorphism. The
group G∗ of the presentation G∗ =< gen(G), ti | rel(G), tiAit

−1
i = Bi, i ∈ I > is called an

HNN group of base G and of associated pairs (Ai, Bi) of isomorphic subgroups of G, i ∈ I,
where < gen(G) | rel(G) > stands for any presentation of G, and tiAit

−1
i = Bi, i ∈ I stands

for the relations tiait−1
i = φi(ai), ai ∈ Ai. The HNN group G∗ acts on the tree X without

inversions defined as follow: V (X) = {gG : g ∈ G∗}, and E(X) = {(gBi, ti), (gAi, t
−1
i ),

where g ∈ G∗ and i ∈ I. For the edges (gBi, ti) and (gAi, t
−1
i ), i ∈ I, define o(gBi, ti) =

o(gAi, t
−1
i ) = gG, t(gBi, ti) = gtiG, t(gAi, t

−1
i ) = gt−1

i G, and (gBi, ti) = (gtiAi, t
−1
i ) and

(gAi, t
−1
i ) = (gt−1

i Bi, ti). Let f ∈ G∗. Then for the vertex gG and the edges (gBi, ti) and
(gAi, t

−1
i ) of X , define f(gG) = fgG, f(gBi, ti) = (fgBi, ti), and f(gAi, t

−1
i ) = (fgAi, t

−1
i ).

The stabilizer of the vertex v = gG is G∗v = gGg−1, a conjugate of G, the stabilizers of the edges
(gBi, ti) and (gAi, t

−1
i ) are gBig

−1, a conjugate ofBi and gAig
−1, a conjugate ofAi are finite for

all i ∈ I. The orbits of gG, (gBi, ti) and (gAi, t
−1
i ) are {fG : f ∈ G∗} and {(fBi, ti) : f ∈ G∗}.

Proposition 3.1. Let R be a nonzero ring of unit element and A =
∏∗

i∈I(Ai;Uij = Uji) be a
tree product of the groups Ai, i ∈ I with amalgamation subgroups Uji, i, j ∈ I such that the
group ring R(Ai) a right hereditary ring , I is finite, and Uij is finite for all i, j ∈ I . Then the
group ring R(A) is a right hereditary ring.

Corollary 3.2. Let R be a nonzero ring of unit element and A = ∗CAi, i ∈ I be the free product
of the groups Ai, i ∈ I with amalgamation subgroup C Uij , i, j ∈ I such that the group ring
R(Ai) a right hereditary ring, I is finite, and C is finite for all i, j ∈ I . Then the group ring
R(A) is a right hereditary ring.

Proposition 3.3. Let R be a nonzero ring of unit element and G∗ be the HNN group G∗ =<
gen(G), ti | rel(G), tiAit

−1
i = Bi, i ∈ I > of G base and of associated pairs (Ai, Bi) of

isomorphic subgroups of G such that the group ring R(G) a right hereditary ring, Ai is finite,
i, j ∈ I and I is finite. Then the group ring R(G∗) is a right hereditary ring.
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