The Multiplicative Hyper- Zagreb index of Graph Operations

Akbar. Jahanbani
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 20M99, 13F10; Secondary 13A15, 13M05.
Keywords and phrases: Graph operations, multiplicative Hyper- Zagreb index, first and second Zagreb indices.

Abstract

Let G be a graph of order n with vertices labeled as $v_{1}, v_{2}, \ldots, v_{n}$. Let d_{i} be the degree of the vertex v_{i}, for $i=1,2, \ldots, n$. The multiplicative Hyper- Zagreb index, is defined as, $\operatorname{HII}(G)=\prod_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)^{2}$. In this paper the upper bounds on the multiplicative Hyper- Zagreb indices of the the Cartesian product, corona product, composition, disjunction, join and symmetric difference of graphs are computed. We apply some of our results to compute the multiplicative Hyper- Zagreb index.

1 Introduction

All graphs considered in this paper are assumed to be simple. Let G be a (molecular) graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $\mathrm{E}(\mathrm{G})$. If v_{i} and v_{j} are adjacent vertices of G, then the edge connecting them is denoted by $v_{i} v_{j}$. By d_{i} we denote the degree of the vertex $v_{i} \in V(G)$. We consider only simple connected graphs, i.e. connected graphs without loops and multiple edges. A topological index $\operatorname{Top}\left(G_{1}\right)$ of a graph G_{1}, is a number with this property that for every graph G_{2} isomorphic to G, $\operatorname{Top}\left(G_{1}\right)=\operatorname{Top}\left(G_{2}\right)$. The Cartesian product $G_{1} \boxtimes G_{2}$ of graphs G_{1} and G_{2} has the vertex set $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $(a, x)(b, y)$ is an edge of $G_{1} \boxtimes G_{2}$ if $a=b$ and $x y \in E\left(G_{2}\right)$, or $a b \in E\left(G_{1}\right)$ and $x=y$. If (a, x) is a vertex of $G_{1} \boxtimes G_{2}$, then $d_{G_{1} \boxtimes G_{2}}((a, x))=d_{G_{1}}(a)+d_{G_{2}}(x)$. The composition $G_{1}\left[G_{2}\right]$ of graphs G_{1} and G_{2} with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{1}\right)$ and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$ is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and (a, x) is adjacent to (b, y) whenever b is adjacent to y or $a=b$ and x is adjacent to y. If (a, x) is a vertex of $G_{1}\left[G_{2}\right]$, then $d_{G_{1}\left[G_{2}\right]}((a, x))=\left|V\left(G_{2}\right)\right| d_{G_{1}}(a)+d_{G_{2}}(x)$. The corona product $G_{1} \circ G_{2}$ is defined as the graph obtained from G_{1} and G_{2} by taking one copy of G_{1} and $\left|V\left(G_{2}\right)\right|$ copies of H and then by joining with an edge each vertex of the $i^{\text {th }}$ copy of H which is named $\left(G_{2}, i\right)$ with the $i^{t h}$ vertex of G for $i=1,2, \ldots,\left|V\left(G_{1}\right)\right|$. If u is a vertex of $G_{1} \circ G_{2}$, then

$$
d_{G_{1} \circ G_{2}}(u)=\left\{\begin{array}{lll}
d_{G_{1}}(u)+\left|V\left(G_{2}\right)\right| & \text { if } & u \in V\left(G_{1}\right) \\
d_{G_{2}}(u)+1 & \text { if } & u \in\left(G_{2}, i\right)
\end{array}\right.
$$

The join $G_{1}+G_{2}$ of graphs G_{1} and G_{2} is a graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v: u \in V\left(G_{1}\right) \quad\right.$ and $\left.\quad v \in V\left(G_{2}\right)\right\}$. The symmetric difference $G_{1} \oplus G_{2}$ of two graphs G_{1} and G_{2} is the graph with vertex set $V\left(G_{1}\right) \oplus V\left(G_{2}\right)$ and $E\left(G_{1} \oplus G_{2}\right)=$ $\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right) \quad\right.$ or $\quad u_{2} v_{2} \in E\left(G_{2}\right) \quad$ but not both $\}$. The tensor product $G_{1} \otimes$ G_{2} of two graphs G_{1} and G_{2} is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $E\left(G_{1} \otimes G_{2}\right)=$ $\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right), u_{2} v_{2} \in E\left(G_{2}\right)\right\}$.
This paper is organized as follows. In Section 2, we state some previously known results also we study the multiplicative Hyper- Zagreb index of a graph. In Section 3, we the Hyper- Zagreb index of the Cartesian product, corona product, composition, disjunction, join and symmetric difference of graphs are computed.

2 Preliminaries and known results

In this section, we study the Hyper-multiplicative Zagreb index of a graph and some exact formulae for the Hyper-multiplicative Zagreb index of some well-known graphs are presented. We
begin with the definition and crucial theorem related to theorem properties of some graph operations. Let us begin with a few examples, then we will give a crucial theorem related to distance properties of some graph operations. In mathematical chemistry, there is a large number of topological indices of the form

$$
T I=T I(G)=\sum_{v_{i}, v_{j} \in E(G)} \mathbb{F}\left(d_{i}, d_{j}\right)
$$

The most popular topological indices of this kind are the:

- first Zagreb index, $M_{1}(G)=\sum_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)=\sum_{u \in V(G)} d_{G}(u)^{2}$,
- second Zagreb index, $M_{2}(G)=\sum_{u v \in E(G)}\left(d_{G}(u) d_{G}(v)\right)$,
- hyper-Zagreb index, $H M(G)=\sum_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)^{2}$,
- first multiplicative Zagreb index, $\prod_{1}(G)=\prod_{u \in V(G)} d_{G}(u)^{2}$,
- second multiplicative Zagreb index, $\prod_{2}(G)=\prod_{u v \in E(G)}\left(d_{G}(u) d_{G}(v)\right)$,
- hyper-multiplicative Zagreb index, $\operatorname{HII}(G)=\prod_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)^{2}$.

Note that there are several more indices, see ([3], [14], [15]) . The Zagreb indices are widely studied degree-based topological indices, and were introduced by Gutman and Trinajstić [5] in 1972, there was a vast research on comparing Zagreb indices see ([9], [10]). A survey on the first Zagreb index see [4]. The Hyper-multiplicative Zagreb index can also be expressed as a sum over edges of G [15],

$$
\operatorname{HII}(G)=\prod_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)^{2}
$$

Readers interested in more information on Hyper-multiplicative Zagreb index can be referred to ([2], [16], [17], [18]). Recently, the analogous concepts of the sigma index of graphs operations [11] and the Nano-Zagreb index and multiplicative Nano-Zagreb index of some graph operations [12] were put forward.
Proposition 2.1. [15] Let K_{n} be a complete graph with n vertices. Then

$$
\operatorname{HII}\left(K_{n}\right)=\prod_{u v \in E\left(K_{n}\right)}(d(u)+d(v))^{2}=[2(n-1)]^{n(n-1)}
$$

Proposition 2.2. [15] Let $K_{m, n}$ be a complete bipartite graph with $1 \leqslant m \leqslant n$. Then

$$
\operatorname{HII}\left(K_{n, m}\right)=\prod_{u v \in E\left(K_{n, m}\right)}(d(u)+d(v))^{2}=(m+n)^{2 m n}
$$

Proposition 2.3. [15] Let $K_{1, n}$ be a star. Then

$$
\operatorname{HII}\left(K_{1, n}\right)=\prod_{u v \in E\left(K_{1, n}\right)}(d(u)+d(v))^{2}=(n+1)^{2 n}
$$

Proposition 2.4. [15] Let C_{n} be a cycle with $n \geqslant 3$ vertices. Then

$$
\operatorname{HII}\left(C_{n}\right)=\prod_{u v \in E\left(C_{n}\right)}(d(u)+d(v))^{2}=[(2+2)]^{n}=4^{n}
$$

Lemma 2.5. (AM-GM inequality) Let $x_{1}, x_{2}, \ldots, x_{n}$ be nonnegative numbers. Then

$$
\begin{equation*}
\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} \geqslant \sqrt[n]{x_{1} x_{2} \ldots x_{n}} \tag{2.1}
\end{equation*}
$$

holds with equality if and only if all the x_{k}^{\prime} s are equal.

3 Multiplicative Hyper- Zagreb indices of Graph Operations

In this section, we the multiplicative Hyper- Zagreb indices of the Cartesian product, composition, join and disjunction of graphs are computed. We apply some of our results to compute the small Zagreb index. We begin this section with standard Lemma as follow.

Lemma 3.1. Let G_{1} and G_{2} be two connected graphs, then we have:

$$
\begin{aligned}
(a)\left|V\left(G_{1} \times G_{2}\right)\right| & =\left|V\left(G_{1} \vee G_{2}\right)\right|=\left|V\left(G_{1}\left[G_{2}\right]\right)\right|=\left|V\left(G_{1} \oplus G_{2}\right)\right|=\left|V\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|, \\
\left|E\left(G_{1} \times G_{2}\right)\right| & =\left|E\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|+\left|V\left(G_{1}\right)\right|\left|E\left(G_{2}\right)\right|, \\
\left|E\left(G_{1}+G_{2}\right)\right| & =\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|+\left|V\left(G_{1}\right) V\left(G_{2}\right)\right|, \\
\left|E\left(G_{1}\left[G_{2}\right]\right)\right| & =\left|E\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|^{2}+\left|E\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|, \\
\left|E\left(G_{1} \vee G_{2}\right)\right| & =\left|V\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|^{2}+\left|E\left(G_{1}\right)\right|\left|V\left(G_{1}\right)\right|^{2}-2\left|E\left(G_{1}\right)\right|\left|E\left(G_{2}\right)\right|, \\
\left|E\left(G_{1} \oplus G_{2}\right)\right| & =\left|E\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|^{2}+\left|E\left(G_{2}\right)\right|\left|V\left(G_{1}\right)\right|^{2}-42\left|E\left(G_{1}\right)\right|\left|E\left(G_{2}\right)\right| .
\end{aligned}
$$

(b) $G_{1} \times G_{2}$ is connected if and only if G_{1} and G_{2} are connected.
(c) If (a, b) is a vertex of $G_{1} \times G_{2}$ then $d_{G_{1} \times G_{2}}((a, b))=d_{G_{1}}(a)+d_{G_{2}}(b)$.
(d) If (a, b) is a vertex of $G_{1}\left[G_{2}\right]$ then $d_{G_{1}\left[G_{2}\right]}((a, b))=\left|V\left(G_{1}\right)\right| d_{G_{2}}(a)+d_{G_{2}}(b)$.
(e) If (a, b) is a vertex of $G_{1} \oplus G_{2}$ or $G_{1} \otimes G_{2}$, we have :

$$
\begin{aligned}
d_{G_{1} \oplus G_{2}}((a, b)) & =\left|V\left(G_{1}\right)\right| d_{G_{1}}(a)+\left|V\left(G_{1}\right)\right| d_{G_{2}}(b)-2 d_{G_{1}}(a) d_{G_{2}}(b) . \\
d_{G_{1} \otimes G_{2}}((a, b)) & =\left|V\left(G_{2}\right)\right| d_{G_{1}}(a)+\left|V\left(G_{1}\right)\right| d_{G_{2}}(b)-d_{G_{1}}(a) d_{G_{2}}(b) .
\end{aligned}
$$

(f) If u is a vertex of $G_{1} \vee G_{2}$ then we have :

$$
d_{G_{1} \vee G_{2}}(u)=\left\{\begin{array}{lll}
d_{G_{1}}(u)+\left|V\left(G_{2}\right)\right| & \text { if } & u \in V\left(G_{1}\right) \\
d_{G_{2}}(u)+\left|V\left(G_{1}\right)\right| & \text { if } & u \in V\left(G_{2}\right) .
\end{array}\right.
$$

Proof. The parts (a) and (b) are consequence of definitions and some famous results of the book of Imrich and Klavzar [8]. For the proof of (c-f) we refer to [13].

The Cartesian product $G_{1} \boxtimes G_{2}$ of graphs G_{1} and G_{2} has the vertex set $V\left(G_{1} \times G_{2}\right)=$ $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $\left(u_{i}, v_{j}\right)\left(u_{k}, v_{l}\right)$ is an edge of $G_{1} \boxtimes G_{2}$ if
either $u_{i}=u_{k}$ and $v_{j} v_{l} \in E\left(G_{2}\right)$,
or $u_{i} u_{k} \in E\left(G_{1}\right)$ and $v_{j}=v_{l}$.
Theorem 3.2. Let G_{1} and G_{2} be two graphs with n_{1} and n_{2} vertices, m_{1} and m_{2} edges respectively. Then

$$
\begin{aligned}
\operatorname{HII}\left(G_{1} \boxtimes G_{2}\right) & =\frac{1}{\left(n_{1} m_{2}\right)^{n_{1} m_{2}}}\left(4 m_{1} M_{1}\left(G_{1}\right)+n_{2} H M\left(G_{1}\right)+8 m_{2} M_{1}\left(G_{2}\right)\right)^{n_{1} m_{2}} \\
& \times \frac{1}{\left(n_{2} m_{1}\right)^{n_{2} m_{1}}}\left(4 m_{2} M_{1}\left(G_{2}\right)+n_{1} H M\left(G_{2}\right)+8 m_{1} M_{1}\left(G_{1}\right)\right)^{n_{2} m_{1}} .
\end{aligned}
$$

Proof. By the definition of the multiplicative Hyper-Zagreb index and from the above partition of the edge set in $G_{1} \boxtimes G_{2}$, we have

$$
\operatorname{HII}\left(G_{1} \boxtimes G_{2}\right)=\prod_{\left(u_{i}, v_{j}\right)\left(u_{p}, v_{q}\right) \in E\left(G_{1} \boxtimes G_{2}\right)}\left(d_{G_{1} \boxtimes G_{2}}\left(u_{i}, v_{j}\right)+d_{G_{1} \boxtimes G_{2}}\left(u_{p}, v_{q}\right)\right)^{2} .
$$

This actually can be written as

$$
\begin{aligned}
& =\prod_{u_{i} \in V\left(G_{1}\right)\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)} \prod_{G_{G_{1}}}\left(4 d_{i}^{2}\left(u_{i}\right)+\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)^{2}\right. \\
& \left.+4 d_{G_{1}}\left(u_{i}\right)\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)\right) \\
& \times \prod_{v_{j} \in V\left(G_{2}\right)} \prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)}\left(4 d_{G_{2}}^{2}\left(v_{j}\right)+\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}\right. \\
& \left.+4 d_{G_{2}}\left(v_{j}\right)\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)\right) .
\end{aligned}
$$

However, from the inequality (2.1), we get

$$
\begin{aligned}
& \leqslant\left[\sum _ { u _ { i } \in V (G _ { 1 }) } \sum _ { (v _ { j } , v _ { q }) \in E (G _ { 2 }) } \left(4 d_{G_{1}}^{2}\left(u_{i}\right)+\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)^{2}\right.\right. \\
& \left.+4 d_{G_{1}}\left(u_{i}\right)\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)\right)^{n_{1} m_{2}} \\
& \times\left[\sum _ { v _ { j } \in V (G _ { 2 }) } \sum _ { (u _ { i } , u _ { p }) \in E (G _ { 1 }) } \left(4 d_{G_{2}}^{2}\left(v_{j}\right)+\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}\right.\right. \\
& \left.\left.+4 d_{G_{2}}\left(v_{j}\right)\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)\right)\right]^{n_{2} m_{1}} \\
& \leqslant\left[\begin{array}{c}
\sum_{\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)}\left(\begin{array}{c}
4 M_{1}\left(G_{1}\right)+n_{1}\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)^{2} \\
\left.+8 m_{1}\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)\right)
\end{array}\right. \\
n_{1} m_{2}
\end{array}\right]^{n_{1} m_{2}} \\
& \times\left[\begin{array}{c}
\sum_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)}\left(4 M_{1}\left(G_{2}\right)+n_{2}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}\right. \\
\left.+8 m_{2}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)\right) \\
n_{2} m_{1}
\end{array}\right]^{n_{2} m_{1}} \\
& =\frac{1}{\left(n_{1} m_{2}\right)^{n_{1} m_{2}}}\left(4 m_{1} M_{1}\left(G_{1}\right)+n_{2} H M\left(G_{1}\right)+8 m_{2} M_{1}\left(G_{2}\right)\right)^{n_{1} m_{2}} \\
& \times \frac{1}{\left(n_{2} m_{1}\right)^{n_{2} m_{1}}}\left(4 m_{2} M_{1}\left(G_{2}\right)+n_{1} H M\left(G_{2}\right)+8 m_{1} M_{1}\left(G_{1}\right)\right)^{n_{2} m_{1}} .
\end{aligned}
$$

Remark 3.3. [1] For a cycle graph with n vertices, we have, $H M\left(C_{n}\right)=16 n, M_{1}\left(C_{n}\right)=4 n$.
Example 3.4. Let C_{p} and C_{q} be cycles with $n \geqslant 3$ vertices. Then

$$
\operatorname{HII}\left(C_{p} \boxtimes C_{q}\right)=\frac{1}{(p q)^{p q}}\left[\left(\left(16 p^{2}+16 p q+32 q^{2}\right) \times\left(16 q^{2}+16 p q+32 p^{2}\right)\right)^{p q}\right] .
$$

The corona product $G_{1} \circ G_{2}$ of two graphs G_{1} and G_{2} is defined to be the graph Γ obtained by taking one copy of G_{1} (which has n_{1} vertices) and n_{2} copies of G_{2}, and then joining the ith vertex of G_{1} to every vertex in the ith copy of $G_{2}, i=1,2, \ldots, n_{1}$. Let $G_{1}=(V, E)$ and $G_{2}=(V, E)$ be two graphs such that $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}}\right\},\left|E\left(G_{1}\right)\right|=m_{1}$ and $V\left(G_{2}\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n_{2}}\right\},\left|E\left(G_{2}\right)\right|=m_{2}$. Then it follows from the definition of the corona product that $G_{1} \circ G_{2}$ has $n_{1}\left(1+n_{2}\right)$ vertices and $m_{1}+n_{1} m_{2}+n_{1} n_{2}$ edges, where $V\left(G_{1} \circ G_{2}\right)=\left\{\left(u_{i}, v_{j}\right), i=\right.$ $\left.1,2, \ldots, n_{1} ; j=0,1,2, \ldots, n_{2}\right\}$ and $E\left(G_{1} \circ G_{2}\right)=\left\{\left(\left(u_{i}, v_{0}\right),\left(u_{k}, v_{0}\right)\right),\left(u_{i}, u_{k}\right) \in E\left(G_{1}\right)\right\} \cup$ $\left\{\left(\left(u_{i}, v_{j}\right),\left(u_{i}, v_{l}\right)\right),\left(v_{j}, v_{l}\right) \in E\left(G_{2}\right), i=1,2, \ldots, n_{1}\right\} \cup\left\{\left(\left(u_{i}, v_{0}\right),\left(u_{i}, v_{l}\right)\right), l=1,2, \ldots, n_{2}, i=\right.$ $\left.1,2, \ldots, n_{1}\right\}$. It is clear that if G_{1} is connected, then $G_{1} \circ G_{2}$ is connected, and in general $G_{1} \circ G_{2}$ is not isomorphic to $G_{1} \circ G_{2}$.

Theorem 3.5. Let G_{1} and G_{2} be two graphs with n_{1} and n_{2} vertices, m_{1} and m_{2} edges respectively. Then

$$
\begin{aligned}
\operatorname{HII}\left(G_{1} \circ G_{2}\right) & =\frac{1}{m_{1}^{m_{1}}}\left(H M\left(G_{1}\right)+4 n_{1} n_{2}^{2}+4 n_{2} M_{1}\left(G_{1}\right)\right)^{m_{1}} \\
& \times \frac{1}{\left(n_{1} n_{2}\right)^{n_{1} n_{2}}}\left(n_{2} M_{1}\left(G_{1}\right)+n_{1} M_{1}\left(G_{2}\right)+8 m_{1} m_{2}+n_{1} n_{2}\left(n_{2}+1\right)^{2}\right. \\
& \left.+4 n_{2} m_{1}\left(n_{2}+1\right)+4 n_{1} m_{2}\left(n_{2}+1\right)\right)^{n_{1} n_{2}} \\
& \times \frac{1}{\left(n_{1} m_{2}\right)^{n_{1} m_{2}}}\left(n_{1} H M\left(G_{2}\right)+4 n_{1} m_{2}+4 n_{1} M_{1}\left(G_{2}\right)\right)^{n_{1} m_{1}}
\end{aligned}
$$

Proof. By the definition of the multiplicative Hyper-Zagreb index and from the above partition of the edge set in $G_{1} \circ G_{2}$, we have

$$
\begin{aligned}
\operatorname{HII}\left(G_{1} \circ G_{2}\right)= & \prod_{\left(u_{i}, v_{j}\right)\left(u_{p}, v_{q}\right) \in E\left(G_{1} \circ G_{2}\right)}\left(d_{G_{1} \circ G_{2}}\left(u_{i}, v_{j}\right)+d_{G_{1} \circ G_{2}}\left(u_{p}, v_{q}\right)\right)^{2} \\
& \prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)}\left(\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)+2 n_{2}\right)^{2} \\
& \left.\times \prod_{u_{i} \in V\left(G_{1}\right)} \prod_{v_{j} \in V\left(G_{2}\right)}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)\right)+\left(n_{2}+1\right)\right)^{2} \\
& \times \prod_{u_{i} \in V\left(G_{1}\right)} \prod_{\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)}\left(\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)+2\right)^{2} \\
& =\prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)}\left(\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}+4 n_{2}^{2}+4 n_{2}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)\right) \\
& \times \prod_{u_{i} \in V\left(G_{1}\right)} \prod_{v_{j} \in V\left(G_{2}\right)}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)\right)^{2}+\left(n_{2}+1\right)^{2} \\
& \left.+2\left(n_{2}+1\right)\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)\right)\right) \\
& \times \prod_{u_{i} \in V\left(G_{1}\right)} \prod_{\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)}\left(\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)^{2}+4+4\left(\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)\right) .\right.
\end{aligned}
$$

However, from the inequality (2.1), we get

$$
\leqslant\left[\frac{\sum_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)}\left(\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}+4 n_{2}^{2}+4 n_{2}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)\right)}{m_{1}}\right]^{m_{1}}
$$

$$
\begin{aligned}
& \times\left[\begin{array}{c}
\sum_{u_{i} \in V\left(G_{1}\right)} \sum_{v_{j} \in V\left(G_{2}\right)}\left(d_{G_{1}}^{2}\left(u_{i}\right)+d_{G_{2}}^{2}\left(v_{j}\right)+2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)+\left(n_{2}+1\right)^{2}\right. \\
\left.+2\left(n_{2}+1\right)\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)\right)\right)
\end{array} n_{1} n_{2} \quad n^{n_{1} n_{2}}\right. \\
& \times\left[\begin{array}{c}
\sum_{u_{i} \in V\left(G_{1}\right)} \sum_{\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)}\left(\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)^{2}+4\right. \\
+4\left(\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)\right) \\
n_{1} m_{2}
\end{array}\right] \\
& =\frac{1}{m_{1}^{m_{1}}}\left(H M\left(G_{1}\right)+4 n_{1} n_{2}^{2}+4 n_{2} M_{1}\left(G_{1}\right)\right)^{m_{1}} \\
& \times \frac{1}{\left(n_{1} n_{2}\right)^{n_{1} n_{2}}}\left(n_{2} M_{1}\left(G_{1}\right)+n_{1} M_{1}\left(G_{2}+8 m_{1} m_{2}\right)+n_{1} n_{2}\left(n_{2}+1\right)^{2}\right. \\
& \left.+4 n_{2} m_{1}\left(n_{2}+1\right)+4 n_{1} m_{2}\left(n_{2}+1\right)\right)^{n_{1} n_{2}} \\
& \times \frac{1}{\left(n_{1} m_{2}\right)^{n_{1} m_{2}}}\left(n_{1} H M\left(G_{2}\right)+4 n_{1} m_{2}+4 n_{1} M_{1}\left(G_{2}\right)\right)^{n_{1} m_{2}} .
\end{aligned}
$$

Remark 3.6. [1] For a path with n vertices, we have: $H M\left(P_{n}\right)=16 n-30, M_{1}\left(P_{n}\right)=4 n-6$.
Example 3.7. Let C_{q} and P_{n} be a cycle and path with $n \geqslant 3$ vertices. Then

$$
\begin{aligned}
\operatorname{HII}\left(C_{q} \circ P_{n}\right) & =\frac{1}{q^{q}}\left(16 n+4 q n^{2}+4 n(4 n-6)\right)^{q} \times \frac{1}{(q n)^{q n}}(16 q n+q(4 n-6) \\
& \left.+8 q(n-1))+q(n-1)(n)^{2}+4 q(n-1)(n)+4 q(n-1)(n)\right)^{q n} \\
& \times \frac{1}{(q(n-1))^{q(n-1)}}(q(16 n-30)+4 q(n-1)+4 q(4 n-6))^{q(n-1)}
\end{aligned}
$$

Theorem 3.8. Let G_{1} and G_{2} be two graphs with n_{1} and n_{2} vertices, m_{1} and m_{2} edges respectively. Then

$$
\begin{aligned}
& \operatorname{HII}\left(G_{1}\left[G_{2}\right]\right) \leqslant \frac{1}{\left(m_{2}\right)^{n_{1} m_{2}}}\left[\frac{\left(4 M_{1}\left(G_{1}\right) n_{2}^{3}+n_{1} H M\left(G_{2}\right)+4 m_{1} n_{2} M_{1}\left(G_{2}\right)\right)}{n_{1}}\right]^{n_{1} m_{2}} \\
& \quad \times \frac{1}{\left(n_{2}\right)^{m_{1} n_{2}^{2}}}\left[\frac{\left(n_{2}^{3} H M\left(G_{1}\right)+4 m_{1} M_{1}\left(G_{2}\right)+8 n_{2} m_{2} M_{1}\left(G_{1}\right)\right.}{m_{1}}\right]^{n_{2}^{2} m_{1}}
\end{aligned}
$$

Proof. By the definition of the multiplicative Hyper-Zagreb index and from the above partition of the edge set in $G_{1}\left[G_{2}\right]$, we have

$$
\begin{aligned}
\operatorname{HII}\left(G_{1}\left[G_{2}\right]\right)= & \prod_{\left(u_{i}, v_{j}\right)\left(u_{p}, v_{q}\right) \in E\left(G_{1}\left[G_{2}\right]\right)}\left(d_{G_{1}\left[G_{2}\right]}\left(u_{i}, v_{j}\right)+d_{G_{1}\left[G_{2}\right]}\left(u_{p}, v_{q}\right)\right)^{2} \\
= & \prod_{u_{i} \in V\left(G_{1}\right)} \prod_{\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)}\left(\left(d_{G_{1}}\left(u_{i}\right) n_{2}+d_{G_{2}}\left(v_{j}\right)\right)+\left(d_{G_{1}}\left(u_{i}\right) n_{2}+d_{G_{2}}\left(v_{q}\right)\right)\right)^{2} \\
& \times \prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)} \prod_{v_{j} \in V\left(G_{2}\right)}\left[\left(\left(d_{G_{1}}\left(u_{i}\right) n_{2}+d_{G_{2}}\left(v_{j}\right)\right)+\left(d_{G_{1}}\left(u_{p}\right) n_{2}+d_{G_{2}}\left(v_{j}\right)\right)^{2}\right)^{n_{2}}\right]^{n_{2}} \\
= & \prod_{u_{i} \in V\left(G_{1}\right)\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)} \prod_{1}\left(4 d_{G_{1}}^{2}\left(u_{i}\right) n_{2}^{2}+\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)^{2}\right. \\
+ & \left.4 d_{G_{1}}\left(u_{i}\right) n_{2}\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)\right) \\
& \times \prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)} \prod_{v_{j} \in V\left(G_{2}\right)}\left(n_{2}^{2}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}+4 d_{d}^{2} G_{2}\left(v_{j}\right)\right. \\
+ & 4 n_{2} d G_{2}\left(v_{j}\right)\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{n_{2}} .
\end{aligned}
$$

However, from the inequality (2.1), we get

$$
\left.\left.\left.\left.\begin{array}{l}
\leqslant \prod_{u_{i} \in V\left(G_{1}\right)}\left[\frac{\left.\left(4 d_{G_{1}}^{2}\left(u_{i}\right) n_{2}^{3}+H M\left(G_{2}\right)+4 d_{G_{1}}\left(u_{i}\right) n_{2} M_{(} G_{2}\right)\right)}{m_{2}}\right]^{m_{2}} \\
\\
\times \prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)}\left[\frac{\left(n_{2}^{3}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}+4 M_{1}\left(G_{2}\right)\right.}{+8 n_{2} m_{2}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)}\right. \\
n_{2}
\end{array}\right]^{n_{2}^{2}}\right]^{n_{1}}\right]^{m_{1}^{2}}\right]^{m_{2}^{2} m_{1}} .
$$

Example 3.9. Let C_{p} and C_{q} be cycles with $n \geqslant 3$ vertices. Then

$$
\operatorname{HII}\left(C_{p}\left[C_{q}\right]\right)=\leqslant \frac{1}{(p q)^{p q}}\left(16 p q^{3}+16 p q^{2}+16 p q\right)^{p q} \times \frac{1}{(p q)^{p q^{2}}}\left(4^{2 p} q^{3}+16 p q+32 p q^{2}\right)^{p q^{2}}
$$

The disjunction $G_{1} \otimes G_{2}$ of graphs G_{1} and G_{2} is the graphwith a vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $\left(u_{i}, v_{j}\right)$ is adjacent to $\left(u_{k}, v_{l}\right)$ whenever $u_{i} u_{k} \in E\left(G_{1}\right)$ or $v_{j} v_{l} \in E\left(G_{2}\right)$. The degree of a vertex $\left(u_{i}, v_{j}\right)$ of $G_{1} \otimes G_{2}$ is given by $d_{G_{1} \otimes G_{2}}\left(u_{i}, v_{j}\right)=n_{2} d_{G_{1}}\left(u_{i}\right)+n_{1} d_{G_{2}}\left(v_{j}\right)-d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)$.

Theorem 3.10. Let G_{1} and G_{2} be two graphs with n_{1} and n_{2} vertices, m_{1} and m_{2} edges respectively. Then

$$
\begin{aligned}
\operatorname{HII}\left(G_{1} \otimes G_{2}\right) & \leqslant \frac{1}{\left(n_{1} m_{2}\right)^{n_{1} m_{2}}}\left[4 m_{2} n_{2}^{2} M_{1}\left(G_{1}\right)+n_{1}^{3} H M\left(G_{2}\right)-4 M_{1}\left(G_{1}\right) H M\left(G_{2}\right)\right. \\
& \left.+8 n_{1} n_{2} m_{1} M_{1}\left(G_{2}\right)-8 n_{2} M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)-8 n_{1} m_{1} H M\left(G_{2}\right)\right]^{n_{1} m_{2}} \\
& \times \frac{1}{\left(n_{2} m_{1}\right)^{n_{2} m_{1}}}\left[4 n_{1}^{2} m_{1} M_{1}\left(G_{2}\right)+n_{2}^{3} H M\left(G_{1}\right)-4 M_{1}\left(G_{2}\right) H M\left(G_{1}\right)\right. \\
& \left.\left.+8 n_{1} n_{2} m_{2} M_{1}\left(G_{1}\right)-8 n_{1} M_{1}\left(G_{2}\right) M_{1}\left(G_{1}\right)-8 n_{1} m_{2} H M\left(G_{1}\right)\right]^{n_{2}^{2} m_{1}}\right]^{n_{2} m_{1}} \\
& \times \frac{1}{\left(n_{1} n_{2}\right)^{n_{1} n_{2}}}\left[4 n_{2}^{3} M_{1}\left(G_{1}\right)+4 n_{1}^{3} M_{1}\left(G_{2}\right)-4 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+32 n_{1} n_{2} m_{1} m_{2}\right. \\
& \left.\left.-8 n_{2} m_{2} M_{1}\left(G_{1}\right)-8 n_{1} m_{1} M_{1}\left(G_{2}\right)\right]\right]^{n_{1} n_{2}}
\end{aligned}
$$

Proof. By the definition of the multiplicative Hyper-Zagreb index and from the above partition of the edge set in $G_{1} \otimes G_{2}$, we have

$$
\begin{aligned}
\operatorname{HII}\left(G_{1} \otimes G_{2}\right)= & \prod_{u_{i} \in V\left(G_{1}\right)\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)}\left(\left(2 n_{2} d_{G_{1}}\left(u_{i}\right)+n_{1}\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)\right)\right. \\
& -2 d_{G_{1}}\left(u_{i}\right)\left(\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)\right)^{2} \\
& \times \prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right) v_{j} \in V\left(G_{2}\right)}\left(\left(2 n_{1} d_{G_{2}}\left(v_{j}\right)+n_{2}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)\right)\right. \\
& -2 d_{G_{2}}\left(v_{j}\right)\left(\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)\right)^{2} \\
& \times \prod_{u_{i} \in V\left(G_{1}\right) v_{j} \in V\left(G_{2}\right)}\left(\left(2 n_{2} d_{G_{1}}\left(u_{i}\right)+2 n_{1} d_{G_{2}}\left(v_{j}\right)-2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)\right)\right)^{2} \\
& =\prod_{u_{i} \in V\left(G_{1}\right)\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)}\left(\left(4 n_{2}^{2} d_{G_{1}}^{2}\left(u_{i}\right)+n_{1}^{2}\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)^{2}\right)\right. \\
& -4 d_{G_{1}}^{2}\left(u_{i}\right)\left(\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)^{2}+4 n_{1} n_{2} d_{G_{1}}\left(u_{i}\right)\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)\right. \\
& \left.-8 n_{2} d_{G_{1}}^{2}\left(u_{i}\right)\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)-4 n_{1} d_{G_{1}}\left(u_{i}\right)\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)^{2}\right) \\
& \times \prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right) v_{j} \in V\left(G_{2}\right)}\left(\left(4 n_{1}^{2} d_{G_{2}}^{2}\left(v_{j}\right)+n_{2}^{2}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}\right)\right. \\
& -4 d_{G_{2}}^{2}\left(v_{j}\right)\left(\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}+4 n_{1} n_{2} d_{G_{1}}\left(v_{j}\right)\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(u_{p}\right)\right)\right. \\
& \left.-8 n_{1} d_{G_{2}}^{2}\left(v_{j}\right)\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)-4 n_{2} d_{G_{2}}\left(v_{j}\right)\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}\right) \\
& \times \prod_{u_{i} \in V\left(G_{1}\right)} \prod_{v_{j} \in V\left(G_{2}\right)}\left(\left(4 n_{2}^{2} d_{G_{1}}^{2}\left(u_{i}\right)+4 n_{1}^{2} d_{G_{2}}^{2}\left(v_{j}\right)-4 d_{G_{1}}^{2}\left(u_{i}\right) d_{G_{2}}^{2}\left(v_{j}\right)\right)\right. \\
& \left.\left(u_{G_{1}}\right) d_{G_{2}}\left(v_{j}\right)-4 n_{2} d_{G_{1}}^{2}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)-4 n_{1} d_{G_{1}}\left(u_{i}\right) d_{G_{2}}^{2}\left(v_{j}\right)\right) .
\end{aligned}
$$

However, from the inequality (2.1), we get
$\leqslant\left[\begin{array}{r}\sum_{u_{i} \in V\left(G_{1}\right)} \sum_{\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)}\left(\left(4 n_{2}^{2} d_{G_{1}}^{2}\left(u_{i}\right)+n_{1}^{2}\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)^{2}\right)\right. \\ -4 d_{G_{1}}^{2}\left(u_{i}\right)\left(\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)^{2}+4 n_{1} n_{2} d_{G_{1}}\left(u_{i}\right)\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)\right. \\ \left.-8 n_{2} d_{G_{1}}^{2}\left(u_{i}\right)\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)-4 n_{1} d_{G_{1}}\left(u_{i}\right)\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)^{2}\right) \\ n_{1} m_{2}\end{array}\right]$
$\times\left[\begin{array}{c}\sum_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)} \sum_{v_{j} \in V\left(G_{2}\right)}\left(\left(4 n_{1}^{2} d_{G_{2}}^{2}\left(v_{j}\right)+n_{2}^{2}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}\right)\right. \\ -4 d_{G_{2}}^{2}\left(v_{j}\right)\left(\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}+4 n_{1} n_{2} d_{G_{2}}\left(v_{j}\right)\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)\right. \\ \left.-8 n_{1} d_{G_{2}}^{2}\left(v_{j}\right)\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)-4 n_{2} d_{G_{2}}\left(v_{j}\right)\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}\right) \\ n_{2} m_{1}\end{array}\right]$

$$
\leqslant \frac{1}{\left(n_{1} m_{2}\right)^{n_{1} m_{2}}}\left[4 m_{2} n_{2}^{2} M_{1}\left(G_{1}\right)+n_{1}^{3} H M\left(G_{2}\right)-4 M_{1}\left(G_{1}\right) H M\left(G_{2}\right)+8 n_{1} n_{2} m_{1} M_{1}\left(G_{2}\right)\right.
$$

$$
\left.-8 n_{2} M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)-8 n_{1} m_{1} H M\left(G_{2}\right)\right]^{n_{1} m_{2}}
$$

$$
\times \frac{1}{\left(n_{2} m_{1}\right)^{n_{2} m_{1}}}\left[4 n_{1}^{2} m_{1} M_{1}\left(G_{2}\right)+n_{2}^{3} H M\left(G_{1}\right)-4 M_{1}\left(G_{2}\right) H M\left(G_{1}\right)+8 n_{1} n_{2} m_{2} M_{1}\left(G_{1}\right)\right.
$$

$$
\left.-8 n_{1} M_{1}\left(G_{2}\right) M_{1}\left(G_{1}\right)-8 n_{2} m_{2} H M\left(G_{1}\right)\right]^{n_{2} m_{1}}
$$

$$
\times \frac{1}{\left(n_{1} n_{2}\right)^{n_{1} n_{2}}}\left[4 n_{2}^{3} M_{1}\left(G_{1}\right)+4 n_{1}^{3} M_{1}\left(G_{2}\right)-4 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+32 n_{1} n_{2} m_{1} m_{2}\right.
$$

$$
\left.-8 n_{2} m_{2} M_{1}\left(G_{1}\right)-8 n_{1} m_{1} M_{1}\left(G_{2}\right)\right]^{n_{1} n_{2}}
$$

Example 3.11. Let C_{p} and C_{q} be cycles with $n \geqslant 3$ vertices. Then

$$
\begin{aligned}
\operatorname{HII}\left(C_{p} \otimes C_{q}\right) & \leqslant \frac{1}{(p q)^{p q}}\left[16 p q^{3}+4 p^{3} q-256 p q+32 p^{2} q^{2}-128 q^{2} p-128 p^{2} q\right]^{p q} \\
& \times \frac{1}{(p q)^{p q}}\left[16 p^{3} q+16 q^{3} p-256 p q+32 p^{2} q^{2}-128 p^{2} q-128 q^{2} p\right]^{p q} \\
& \times \frac{1}{(p q)^{p q}}\left[16 q^{3} p+16 p^{3} q-256 p q+32 p^{2} q^{2}-128 q^{2} p-128 p^{2} q\right]^{p q}
\end{aligned}
$$

Let G_{1} and G_{2} be two graphs with n_{1} and n_{2} vertices and m_{1} and 2_{2} edges, respectively. The join $G_{1} \vee G_{2}$ of graphs G_{1} and G_{2} with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$ is the graph union $G_{1} \cup G_{2}$ together with all the edges joining $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$.

Theorem 3.12. Let G_{1} and G_{2} be two graphs with n_{1} and n_{2} vertices, m_{1} and m_{2} edges respectively. Then

$$
\begin{aligned}
\operatorname{HII}\left(G_{1} \vee G_{2}\right) & \left.=\frac{1}{m_{1}^{m_{1}}}\left[H M\left(G_{1}\right)+4 n_{1}^{2} m_{1}+4 n_{1} M_{(} G_{1}\right)\right]^{m_{1}} \\
& \left.\times \frac{1}{m_{2}^{m_{2}}}\left[H M\left(G_{2}\right)+4 n_{2}^{2} m_{2}+4 n_{1} M_{(} G_{1}\right)\right]^{m_{1}} \\
& \left.\times \frac{1}{\left(n_{1} n_{2}\right)^{n_{1} n_{2}}}\left[n_{2} M_{(} G_{1}\right)+n_{1} M_{(} G_{2}\right)+8 m_{1} m_{2}+n_{1} n_{2}\left(n_{1}+n_{2}\right)^{2} \\
& \left.+4 m_{1}\left(n_{1}+n_{2}\right)+4 m_{2}\left(n_{1}+n_{2}\right)\right]^{n_{1} n_{2}} .
\end{aligned}
$$

Proof. By the definition of the multiplicative Hyper-Zagreb index and from the above partition of the edge set in $G_{1} \vee G_{2}$, we have

$$
\begin{aligned}
& \operatorname{HII}\left(G_{1} \vee G_{2}\right)= \prod_{\left(u_{i}, v_{j}\right)\left(u_{p}, v_{q}\right) \in E\left(G_{1} \vee G_{2}\right)}\left(d_{G_{1} \vee G_{2}}\left(u_{i}, v_{j}\right)+d_{G_{1} \vee G_{2}}\left(u_{p}, v_{q}\right)\right)^{2} \\
&=\prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)}\left(\left(d_{G_{1}}\left(u_{i}\right)+n_{2}\right)+\left(d_{G_{1}}\left(u_{p}\right)+n_{2}\right)\right)^{2} \\
& \prod_{\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)}\left(\left(d_{G_{2}}\left(v_{j}\right)+n_{1}\right)+\left(d_{G_{2}}\left(v_{q}\right)+n_{1}\right)\right)^{2} \\
& \times \prod_{u_{i} \in V\left(G_{1}\right)} \prod_{v_{j} \in V\left(G_{2}\right)}\left(\left(d_{G_{1}}\left(u_{i}\right)+n_{2}\right)+\left(d_{G_{2}}\left(v_{j}\right)+n_{1}\right)\right)^{2} \\
& \prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)}\left(\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}+4 n_{1}^{2}+4 n_{1}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)\right) \\
& \prod_{\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)}{\left(\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)^{2}+4 n_{2}^{2}+4 n_{2}\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)\right.}^{\times \prod_{u_{i} \in V\left(G_{1}\right)} \prod_{v_{j} \in V\left(G_{2}\right)}\left(\left(d_{G_{1}}^{2}\left(u_{i}\right)+d_{G_{2}}^{2}\left(v_{j}\right)+2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)+\left(n_{1}+n_{2}\right)^{2}\right.\right.} \\
&\left.\quad+2\left(n_{1}+n_{2}\right) d_{G_{1}}\left(u_{i}\right)+2\left(n_{1}+n_{2}\right) d_{G_{2}}\left(v_{j}\right)\right) .
\end{aligned}
$$

However, from the inequality (2.1), we get

$$
\begin{aligned}
& \left.=\left[\frac{\sum_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)}\left(\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}+4 n_{1}^{2}+4 n_{1}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)\right)}{m_{1}}\right]\right]^{m_{1}} \\
& \times\left[\frac{\sum_{\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)}\left(\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)^{2}+4 n_{2}^{2}+4 n_{2}\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)\right.}{m_{2}}\right]^{m_{2}} \\
& \times\left[\begin{array}{c}
\sum_{u_{i} \in V\left(G_{1}\right)} \sum_{v_{j} \in V\left(G_{2}\right)}\left(\left(d_{G_{1}}^{2}\left(u_{i}\right)+d_{G_{2}}^{2}\left(v_{j}\right)+2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)+\left(n_{1}+n_{2}\right)^{2}\right.\right. \\
\left.+2\left(n_{1}+n_{2}\right) d_{G_{1}}\left(u_{i}\right)+2\left(n_{1}+n_{2}\right) d_{G_{2}}\left(v_{j}\right)\right) \\
n_{1} n_{2}
\end{array}\right] \\
& =\frac{1}{m_{1}^{m_{1}}}\left[H M\left(G_{1}\right)+4 n_{1}^{2} m_{1}+4 n_{1} M_{1}\left(G_{1}\right)\right]^{m_{1}} \times \frac{1}{m_{2}^{m_{2}}}\left[H M\left(G_{2}\right)+4 n_{2}^{2} m_{2}+4 n_{2} M_{1}\left(G_{2}\right)\right]^{m_{1}} \\
& \times \frac{1}{\left(n_{1} n_{2}\right)^{n_{1} n_{2}}}\left[n_{2} M_{(} G_{1}\right)+n_{1} M_{1}\left(G_{2}\right)+8 m_{1} m_{2}+n_{1} n_{2}\left(n_{1}+n_{2}\right)^{2}+4 m_{1}\left(n_{1}+n_{2}\right) \\
& \left.+4 m_{2}\left(n_{1}+n_{2}\right)\right]^{n_{1} n_{2}} \text {. }
\end{aligned}
$$

Example 3.13. Let C_{p} and C_{q} be cycles with $n \geqslant 3$ vertices. Then

$$
\begin{aligned}
\operatorname{HII}\left(C_{p} \vee C_{q}\right) & \leqslant \frac{1}{p^{p}}\left[16 p+4 p^{3}+16 p^{2}\right]^{p} \times \frac{1}{q^{q}}\left[16 q+4 q^{3}+16 q^{2}\right]^{q} \\
& \times \frac{1}{(p q)^{p q}}\left[16 p q+p q(p+q)^{2}+4 p(p+q)+4 q(p+q)\right]^{p q}
\end{aligned}
$$

The symmetric difference $G_{1} \oplus G_{2}$ of two graphs G_{1} and G_{2} is the graph with a vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ in which $\left(u_{1} i, v_{j}\right)$ is adjacent to $\left(u_{k}, v_{l}\right)$ whenever u_{i} is adjacent to u_{k} in G_{1} or v_{i} is adjacent to v_{l} in G_{2}, but not both. The degree of a vertex $\left(u_{i}, v_{j}\right)$ of $G_{1} \oplus G_{2}$ is given by $d_{G_{1} \oplus G_{2}}\left(u_{i}, v_{j}\right)=n_{2} d_{G_{1}}\left(u_{i}\right)+n_{1} d_{G_{2}}\left(v_{j}\right)-2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)$.

Theorem 3.14. Let G_{1} and G_{2} be two graphs with n_{1} and n_{2} vertices, m_{1} and m_{2} edges respec-
tively. Then

$$
\begin{aligned}
\operatorname{HII}\left(G_{1} \oplus G_{2}\right) & =\frac{1}{\left(n_{1} m_{2}\right)^{n_{1} m_{2}}}\left[4 m_{2} n_{2}^{2} M_{1}\left(G_{1}\right)+n_{1}^{3} H M\left(G_{2}\right)-16 M_{1}\left(G_{1}\right) H M\left(G_{2}\right)\right. \\
& \left.+8 n_{1} n_{2} m_{1} M_{1}\left(G_{2}\right)-16 n_{2} M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)-16 n_{1} m_{1} H M\left(G_{2}\right)\right]^{n_{1} m_{2}} \\
& \times \frac{1}{\left(n_{2} m_{1}\right)^{n_{2}^{2} m_{1}}}\left[4 n_{1}^{2} m_{1} M_{1}\left(G_{2}\right)+n_{2}^{3} H M\left(G_{1}\right)-16 M_{1}\left(G_{2}\right) H M\left(G_{1}\right)\right. \\
& \left.+8 n_{1} n_{2} m_{2} M_{1}\left(G_{1}\right)-16 n_{1} M_{1}\left(G_{2}\right) M_{1}\left(G_{1}\right)-16 n_{1} m_{2} H M\left(G_{1}\right)\right]^{n_{2}^{2} m_{1}} \\
& \times \frac{1}{\left(n_{1} n_{2}\right)^{n_{1} n_{2}}}\left[4 n_{2}^{3} M_{1}\left(G_{1}\right)+4 n_{1}^{3} M_{1}\left(G_{2}\right)-16 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+32 n_{1} n_{2} m_{1} m_{2}\right. \\
& \left.\left.-32 n_{2} m_{2} M_{1}\left(G_{1}\right)-32 n_{1} m_{1} M_{1}\left(G_{2}\right)\right]\right]^{n_{1} n_{2}}
\end{aligned}
$$

Proof. By the definition of the multiplicative Hyper-Zagreb index and from the above partition of the edge set in $G_{1} \oplus G_{2}$, we have

$$
\begin{aligned}
& \operatorname{HII}\left(G_{1} \oplus G_{2}\right)=\prod_{\left(u_{i}, v_{j}\right)\left(u_{p}, v_{q}\right) \in E\left(G_{1} \oplus G_{2}\right)}\left(d_{G_{1} \oplus G_{2}}\left(u_{i}, v_{j}\right)+d_{G_{1} \oplus G_{2}}\left(u_{p}, v_{q}\right)\right)^{2} \\
& =\prod_{u_{i} \in V\left(G_{1}\right)} \prod_{\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)}\left(\left(n_{2} d_{G_{1}}\left(u_{i}\right)+n_{1} d_{G_{2}}\left(v_{j}\right)-2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)\right)\right. \\
& \left.+\left(n_{2} d_{G_{1}}\left(u_{i}\right)+n_{1} d_{G_{2}}\left(v_{q}\right)-2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{q}\right)\right)\right)^{2} \\
& \times \prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)} \prod_{v_{j} \in V\left(G_{2}\right)}\left[\left(\left(n_{2} d_{G_{1}}\left(u_{i}\right)+n_{1} d_{G_{2}}\left(v_{j}\right)-2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)\right)\right.\right. \\
& \left.\left.+\left(n_{2} d_{G_{1}}\left(u_{p}\right)+n_{1} d_{G_{2}}\left(v_{j}\right)-2 d_{G_{1}}\left(u_{p}\right) d_{G_{2}}\left(v_{j}\right)\right)\right)^{2}\right]^{n_{2}} \\
& \times \prod_{u_{i} \in V\left(G_{1}\right)} \prod_{v_{j} \in V\left(G_{2}\right)}\left(\left(n_{2} d_{G_{1}}\left(u_{i}\right)+n_{1} d_{G_{2}}\left(v_{j}\right)-2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)\right)\right. \\
& \left.+\left(n_{2} d_{G_{1}}\left(u_{i}\right)+n_{1} d_{G_{2}}\left(v_{j}\right)-2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)\right)\right)^{2} \\
& =\prod_{u_{i} \in V\left(G_{1}\right)} \prod_{\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)}\left(\left(2 n_{2} d_{G_{1}}\left(u_{i}\right)+n_{1}\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)\right)\right. \\
& -4 d_{G_{1}}\left(u_{i}\right)\left(\left(d_{G_{2}}\left(v_{j}\right)+d_{G_{2}}\left(v_{q}\right)\right)\right)^{2} \\
& \prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)} \prod_{v_{j} \in V\left(G_{2}\right)}\left[\left(\left(2 n_{1} d_{G_{2}}\left(v_{j}\right)+n_{2}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)\right)\right.\right. \\
& \left.-4 d_{G_{2}}\left(v_{j}\right)\left(\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)\right)^{2}\right]^{n_{2}}
\end{aligned}
$$

$$
\times \prod_{u_{i} \in V\left(G_{1}\right)} \prod_{v_{j} \in V\left(G_{2}\right)}\left(\left(2 n_{2} d_{G_{1}}\left(u_{i}\right)+2 n_{1} d_{G_{2}}\left(v_{j}\right)-4 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)\right)\right)^{2}
$$

$$
\times \prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)} \prod_{v_{j} \in V\left(G_{2}\right)}\left[\left(\left(4 n_{1}^{2} d_{G_{2}}^{2}\left(v_{j}\right)+n_{2}^{2}\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}\right)\right.\right.
$$

$$
-16 d_{G_{2}}^{2}\left(v_{j}\right)\left(\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}+4 n_{1} n_{2} d_{G_{1}}\left(v_{j}\right)\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(u_{p}\right)\right)\right.
$$

$$
\left.\left.-16 n_{1} d_{G_{2}}^{2}\left(v_{j}\right)\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)-8 n_{2} d_{G_{2}}\left(v_{j}\right)\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{p}\right)\right)^{2}\right)\right]^{n_{2}}
$$

$$
\times \prod_{u_{i} \in V\left(G_{1}\right)} \prod_{v_{j} \in V\left(G_{2}\right)}\left(\left(4 n_{2}^{2} d_{G_{1}}^{2}\left(u_{i}\right)+4 n_{1}^{2} d_{G_{2}}^{2}\left(v_{j}\right)-16 d_{G_{1}}^{2}\left(u_{i}\right) d_{G_{2}}^{2}\left(v_{j}\right)\right)\right.
$$

$$
\left.+8 n_{1} n_{2} d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)-16 n_{2} d_{G_{1}}^{2}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)-16 n_{1} d_{G_{1}}\left(u_{i}\right) d_{G_{2}}^{2}\left(v_{j}\right)\right)
$$

However, from the inequality (2.1), we get

$\times\left[\begin{array}{c}\sum_{u_{i} \in V\left(G_{1}\right)} \sum_{v_{j} \in V\left(G_{2}\right)}\left(\left(4 n_{2}^{2} d_{G_{1}}^{2}\left(u_{i}\right)+4 n_{1}^{2} d_{G_{2}}^{2}\left(v_{j}\right)-16 d_{G_{1}}^{2}\left(u_{i}\right) d_{G_{2}}^{2}\left(v_{j}\right)\right)\right. \\ \left.+8 n_{1} n_{2} d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)-16 n_{2} d_{G_{1}}^{2}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)-16 n_{1} d_{G_{1}}\left(u_{i}\right) d_{G_{2}}^{2}\left(v_{j}\right)\right) \\ n_{1} n_{2}\end{array}\right]^{n_{1} n_{2}}$

$$
\begin{aligned}
& \leqslant \frac{1}{\left(n_{1} m_{2}\right)^{n_{1} m_{2}}}\left[4 m_{2} n_{2}^{2} M_{1}\left(G_{1}\right)+n_{1}^{3} H M\left(G_{2}\right)-16 M_{1}\left(G_{1}\right) H M\left(G_{2}\right)+8 n_{1} n_{2} m_{1} M_{1}\left(G_{2}\right)\right. \\
& \left.-16 n_{2} M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)-16 n_{1} m_{1} H M\left(G_{2}\right)\right]^{n_{1} m_{2}} \\
& \times \frac{1}{\left(n_{2} m_{1}\right)^{n_{2}^{2} m_{1}}}\left[4 n_{1}^{2} m_{1} M_{1}\left(G_{2}\right)+n_{2}^{3} H M\left(G_{1}\right)-16 M_{1}\left(G_{2}\right) H M\left(G_{1}\right)+8 n_{1} n_{2} m_{2} M_{1}\left(G_{1}\right)\right. \\
& \left.-16 n_{1} M_{1}\left(G_{2}\right) M_{1}\left(G_{1}\right)-16 n_{2} m_{2} H M\left(G_{1}\right)\right]^{n_{2}^{2} m_{1}} \\
& \times \frac{1}{\left(n_{1} n_{2}\right)^{n_{1} n_{2}}}\left[4 n_{2}^{3} M_{1}\left(G_{1}\right)+4 n_{1}^{3} M_{1}\left(G_{2}\right)-16 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+32 n_{1} n_{2} m_{1} m_{2}\right. \\
& \left.\left.-32 n_{2} m_{2} M_{1}\left(G_{1}\right)-32 n_{1} m_{1} M_{1}\left(G_{2}\right)\right]\right]_{1}^{n_{1} n_{2}} .
\end{aligned}
$$

Example 3.15. Let C_{p} and C_{q} be cycles with $n \geqslant 3$ vertices. Then

$$
\begin{aligned}
\operatorname{HII}\left(C_{p} \oplus C_{q}\right) & \leqslant \frac{1}{(p q)^{p q}}\left[16 q^{3} p+16 p^{3} q-1024 p q+32 p^{2} q^{2}-256 q^{2} p-256 p^{2} q\right]^{p q} \\
& \left.\times \frac{1}{(p q)^{q^{2} p}}\left[16 p^{3} q+4 q^{3} p-1024 p q\right)+32 p^{2} q^{2}-256 p^{2} q-256 q^{2} p\right]^{q^{2} p} \\
& \left.\times \frac{1}{(p q)^{p q}}\left[16 q^{3} p+16 p^{3} q-256 p q+32 p^{2} q^{2}-128 q^{2} p-128 p^{2} q\right]\right]^{p q} .
\end{aligned}
$$

References

[1] B. Basavanagou, S. Patil, A note on Hyper-Zagreb index of graph operations, Iranian Journal of Mathematical Chemistry. 7, 89-92 (2016).
[2] M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative versions of first Zagreb index,MATCH Commun. Math. Comput. Chem. 68, 217-230 (2012) .
[3] W. Gao, W. Wang, M. R. Farahani, Topological Indices Study of Molecular Structure in Anticancer Drugs, Hindawi Publishing Corporation Journal of Chemistry, 3216327, (2016), 8 pages.
[4] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 83-92 (2004).
[5] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, 535-538 (1972).
[6] I. Gutman, Degree-based topological indices, Croat. Chem. Acta. 86, 351-361 (2013).
[7] Y. Huang. B. Liu, M. Zhang, On Comparing the variable Zagreb indices, MATCH Commun. Math. Comput. Chem. 63, 453-460 (2010).
[8] W. Imrich, S. Klavzar, Product Graphs: Structure and Recognition,John Wiley Sons, New York, USA, (2000).
[9] B. Liu, Z. You, A survey on comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 65, 581-593 (2011).
[10] N. Jafari. Rad, A. Jahanbani, I. Gutman, Zagreb Energy and Zagreb Estrada Index of Graphs,MATCH Commun. Math. Comput. Chem. 79, 371-386 (2018).
[11] A Jahanbani, S. Ediz, The sigma index of graph operations, Sigma Journal of Engineering and Natural Sciences. 37, 155-162 (2019).
[12] A. Jahanbani, H. Shooshtary, Nano-Zagreb index and multiplicative Nano-Zagreb index of some graph operations, INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS. 5, 15-22 (2019).
[13] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The Hyper-Wiener index of graph operations, Comput. Math. Appl. 56,1402-1407 (2008).
[14] G. H. Shirdel, H. Rezapour, A. M. Sayadi, The Hyper-Zagreb Index of Graph Operations, Iranian Journal of Mathematical Chemistry. 2, 213-220 (2013).
[15] V. R. Kulli, multplcative Hyper- Zagreb index and coindices of graphs: computing these indices of some nanostructures, International Research Journal of Pure Algebra. 7, 342-347 (2016).
[16] J. Liu, Q. Zhang, Sharp upper bounds on multiplicative Zagreb indices. MATCH Commun. Math. Comput. Chem. 68, 231-240 (2012).
[17] H. Wang, H. Bao, A note on multiplicative sum Zagreb index, South Asian J. Math. 6, 578-583 (2012).
[18] K. Xu, K.C. Das, K. Tang, On the multiplicative Zagreb coindex of graphs, Opuscula Math. 1, 191-204 (2013).

Author information

Akbar. Jahanbani, Department of Mathematics, Shahrood University of Technology, Iran. E-mail: Akbar.jahanbani92@gmail.com

Received: April 18, 2018.
Accepted: December 22, 2018

