SPACELIKE CURVES OF CONSTANT BREADTH IN SEMI-RIEMANNIAN SPACE E_{2}^{4}

Sezin Aykurt Sepet and Hülya Gün Bozok
Communicated by Zafar Ahsan

MSC 2010 Classifications: Primary 53C40, 53C50.
Keywords and phrases: Curves of constant breadth, spacelike curves, semi-Riemannian space.

Abstract

In this paper, we investigate curves of constant breadth in E_{2}^{4}. Also, we obtain some characterizations according to the state of the spacelike curve in semi-Riemannian space E_{2}^{4}.

1 Introduction

The curves of constant breadth were first defined in 1778 by Euler. Then, Solow [12] and Blascke [1] investigated the curves of constant breadth. In Euclidean spaces E^{3} and E^{4}, plane curves of constant breadth were studied by Kose [7], Magden and Yilmaz [8]. In [14], some geometric properties of plane curves of constant breadth in Minkowski 3-space were given. Also, these curves in Minkowski 4-space were obtained by Kazaz, Onder and Kocayigit [5]. A number of authors have, recently, studied the curves of constant breadth under different conditions (see $[4,6]$).
In this study, we investigate the spacelike curves of constant breadth with timelike normal and first binormal and with timelike binormal and second binormal in E_{2}^{4}. Then we give some differential equations for these curves in semi-Riemannian space.

2 Preliminaries

In this section, we provide a brief view of the theory of curves in the semi-Riemannian space E_{2}^{4}. This space is an Euclidean space E^{4} provided with the standard flat metric given by

$$
g=-d x_{1}^{2}-d x_{2}^{2}+d x_{3}^{2}+d x_{4}^{2}
$$

where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is rectangular coordinate system in E_{2}^{4}, [14]. An any vector $\vec{v} \in E_{2}^{4}$ can have one of the three causal characters; it is spacelike if $g(\vec{v}, \vec{v})>0$ or $\vec{v}=0$, timelike if $g(\vec{v}, \vec{v})<0$ and null or lightlike if $g(\vec{v}, \vec{v})=0$ and $\vec{v} \neq 0$. Similarly, an any curve $\vec{\alpha}=\vec{\alpha}(s)$ in E_{2}^{4} can locally be spacelike, timelike or null if its velocity vectors $\alpha^{\prime}(s)$ are spacelike, timelike or null, respectively. Furthermore, the norm of a vector \vec{v} is given by $\|$ $\vec{v} \|=\sqrt{|g(\vec{v}, \vec{v})|}$. Thus, \vec{v} is a unit vector if $g(\vec{v}, \vec{v})= \pm 1$. The velocity of the curve $\vec{\alpha}$ is given by $\left\|\vec{\alpha}^{\prime}\right\|$. Thus, a spacelike or a timelike $\vec{\alpha}$ is said to be parametrized by arclength function s, if $g\left(\vec{\alpha}^{\prime}, \vec{\alpha}^{\prime}\right)= \pm 1$. Let $\left\{\vec{T}, \vec{N}, \overrightarrow{B_{1}}, \overrightarrow{B_{2}}\right\}$ be the moving Frenet frame along the curve α in E_{2}^{4}. Here $\vec{T}, \vec{N}, \overrightarrow{B_{1}}, \overrightarrow{B_{2}}$ are the tangent, the principal normal, the first binormal and the second binormal vector fields, respectively. Recall that a spacelike curve $\vec{\alpha}$ with timelike principal normal \vec{N} and second binormal B_{2}. Then the following Frenet equations for the curve α are given by

$$
\left[\begin{array}{c}
T^{\prime} \\
N^{\prime} \\
B_{1}^{\prime} \\
B_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
k_{1} & 0 & k_{2} & 0 \\
0 & k_{2} & 0 & k_{3} \\
0 & 0 & k_{3} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right]
$$

where T, N, B_{1} and B_{2} are mutually orthogonal vectors satisfying equation $g(T, T)=1, g(N, N)=$ $-1, g\left(B_{1}, B_{1}\right)=1, g\left(B_{2}, B_{2}\right)=-1$ and $g(T, N)=0, g\left(T, B_{1}\right)=0, g\left(T, B_{2}\right)=0, g\left(N, B_{1}\right)=$ $0, g\left(N, B_{2}\right)=0, g\left(B_{1}, B_{2}\right)=0$.

If α is a spacelike curve with a timelike first binormal B_{1} and second binormal B_{2}, then we write

$$
\left[\begin{array}{c}
T^{\prime} \\
N^{\prime} \\
B_{1}^{\prime} \\
B_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
-k_{1} & 0 & k_{2} & 0 \\
0 & k_{2} & 0 & k_{3} \\
0 & 0 & -k_{3} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right]
$$

where $g(T, T)=1, g(N, N)=1, g\left(B_{1}, B_{1}\right)=-1, g\left(B_{2}, B_{2}\right)=-1$ and $g(T, N)=0, g\left(T, B_{1}\right)=$ $0, g\left(T, B_{2}\right)=0, g\left(N, B_{1}\right)=0, g\left(N, B_{2}\right)=0, g\left(B_{1}, B_{2}\right)=0$. Also, here, k_{1}, k_{2} and k_{3} are first, second and third curvature of the curve α, respectively.

3 Some characterizations of spacelike curves of constant breadth in \boldsymbol{E}_{2}^{4}

Let (C) be a unit speed regular spacelike curve in E_{2}^{4}, and $\overrightarrow{X(s)}$ position vector of the curve (C). The normal plane at every point $X(s)$ on the curve meets the curve at a single point $X^{*}(s)$. If the curve (C) has parallel tangents \vec{T} and \vec{T}^{*} in opposite direction at the opposite points X and X^{*} of the curve and the distance between opposite points is always constant then the curve (C) is named a spacelike curve of constant breadth in E_{2}^{4}. Furthermore, a pair of spacelike curves (C) and $\left(C^{*}\right)$, for which the tangent vectors at the corresponding points are in opposite directions and parallel, and the distance between corresponding points is always constant, is called a spacelike curve pair of constant breadth in E_{2}^{4}.

Assume that C and C^{*} be a pair of unit speed spacelike curves in E_{2}^{4} with position vectors $\overrightarrow{X(s)}$ and $\vec{X}^{*}\left(s^{*}\right)$, where s and s^{*} are length parameters of the curves, respectively, and let C and C^{*} have parallel tangents in opposite directions at the opposite points. Then the curve C^{*} can be written by the following equation

$$
\begin{equation*}
X^{*}(s)=X(s)+m_{1}(s) T(s)+m_{2}(s) N(s)+m_{3}(s) B_{1}(s)+m_{4}(s) B_{2}(s) \tag{3.1}
\end{equation*}
$$

where $m_{i}(s),(1 \leq i \leq 4)$ are differentiable functions of s. Differentiating equation (3.1) with respect to s , we obtain

$$
\begin{aligned}
T^{*} \frac{d s^{*}}{d s}= & \left(1+\frac{d m_{1}}{d s}+m_{2} k_{1}\right) T+\left(m_{1} k_{1}+\frac{d m_{2}}{d s}+m_{3} k_{2}\right) N \\
& +\left(m_{2} k_{2}+\frac{d m_{3}}{d s}+m_{4} k_{3}\right) B_{1}+\left(m_{3} k_{3}+\frac{d m_{4}}{d s}\right) B_{2}
\end{aligned}
$$

If we consider $T^{*}=-T$ at the corresponding points of C and C^{*}, we have

$$
\begin{align*}
1+\frac{d m_{1}}{d s}+m_{2} k_{1} & =-\frac{d s^{*}}{d s} \\
m_{1} k_{1}+\frac{d m_{2}}{d s}+m_{3} k_{2} & =0 \\
m_{2} k_{2}+\frac{d m_{3}}{d s}+m_{4} k_{3} & =0 \tag{3.2}\\
m_{3} k_{3}+\frac{d m_{4}}{d s} & =0
\end{align*}
$$

Since the curvature of the curve C is $\frac{d \phi}{d s}=k_{1}(s)$, where $\phi(s)=\int_{0}^{s} k_{1} d s$ is the angle between
tangent vectors of the curve C and a given fixed direction at the point $\alpha(s)$, from (3.2) we get

$$
\begin{align*}
\frac{d m_{1}}{d \phi} & =-m_{2}-f(\phi) \\
\frac{d m_{2}}{d \phi} & =-m_{1}-m_{3} \sigma k_{2} \\
\frac{d m_{3}}{d \phi} & =-m_{2} \sigma k_{2}-m_{4} \sigma k_{3} \tag{3.3}\\
\frac{d m_{4}}{d \phi} & =-m_{3} \sigma k_{3}
\end{align*}
$$

Here, $f(\phi)=\sigma+\sigma^{*}$ and $\sigma=\frac{1}{k_{1}}$ and $\sigma^{*}=\frac{1}{k_{1}^{*}}$ are the radius of curvatures at the points $X(s)$ and $X^{*}\left(s^{*}\right)$, respectively. Using (3.3), we have following equation

$$
\begin{align*}
& \frac{d}{d \phi}\left(\frac{1}{\sigma^{2} k_{2} k_{3}}\left(\frac{d^{3} m_{1}}{d \phi^{3}}+\frac{d^{2} f}{d \phi^{2}}-\frac{d m_{1}}{d \phi}\right)\right) \\
& -\frac{d}{d \phi}\left(\frac{1}{\sigma^{3} k_{2}^{2} k_{3}} \frac{d\left(\sigma k_{2}\right)}{d \phi}\left(\frac{d^{2} m_{1}}{d_{\phi}^{2}}+\frac{d f}{d \phi}-m_{1}\right)\right) \\
& -\frac{d}{d \phi}\left(\frac{k_{2}}{k_{3}}\left(\frac{d m_{1}}{d \phi}+f\right)\right)-\frac{k_{3}}{k_{2}}\left(\frac{d^{2} m_{1}}{d \phi^{2}}+\frac{d f}{d \phi}-m_{1}\right)=0 \tag{3.4}
\end{align*}
$$

This differential equation is a characterization of constant breadth spacelike curves with timelike principal normal and second binormal in E_{2}^{4}

If the distance between the opposite points of C and C^{*} is constant, from (3.1) we have

$$
\left\|X^{*}-X\right\|^{2}=m_{1}^{2}-m_{2}^{2}+m_{3}^{2}-m_{4}^{2}=k^{2}, k \in \mathbb{R}
$$

Thus, we write

$$
m_{1} \frac{d m_{1}}{d \phi}-m_{2} \frac{d m_{2}}{d \phi}+m_{3} \frac{d m_{3}}{d \phi}-m_{4} \frac{d m_{4}}{d \phi}=0
$$

By using (3.3) we obtain

$$
m_{1}\left(\frac{d m_{1}}{d \phi}+m_{2}\right)=0
$$

Then we have $m_{1}=0$ or $\frac{d m_{1}}{d \phi}=-m_{2}$. Hence we can write following system of equations

$$
\begin{align*}
m_{1} & =0 \\
\frac{d m_{2}}{d \phi} & =-m_{3} \sigma k_{2} \\
\frac{d m_{3}}{d \phi} & =-m_{2} \sigma k_{2}-m_{4} \sigma k_{3} \tag{3.5}\\
\frac{d m_{4}}{d \phi} & =-m_{3} \sigma k_{3}
\end{align*}
$$

or

$$
\begin{align*}
\frac{d m_{1}}{d \phi} & =-m_{2} \\
\frac{d m_{2}}{d \phi} & =-m_{1}-m_{3} \sigma k_{2} \\
\frac{d m_{3}}{d \phi} & =-m_{2} \sigma k_{2}-m_{4} \sigma k_{3} \tag{3.6}\\
\frac{d m_{4}}{d \phi} & =-m_{3} \sigma k_{3}
\end{align*}
$$

Suppose that m_{1} is a constant in the system (3.6). Then we write following linear differential equations

$$
\begin{align*}
& \sigma k_{3} \frac{d^{2} m_{3}}{d \phi^{2}}-\frac{d\left(\sigma k_{3}\right)}{d \phi} \frac{d m_{3}}{d \phi}-m_{3}\left(\sigma k_{3}\right)^{3}=0 \tag{3.7}\\
& \sigma k_{3} \frac{d^{2} m_{4}}{d \phi^{2}}-\frac{d\left(\sigma k_{3}\right)}{d \phi} \frac{d m_{4}}{d \phi}-m_{4}\left(\sigma k_{3}\right)^{3}=0 \tag{3.8}
\end{align*}
$$

Changing the variable ϕ of the form $\delta=\int_{0}^{\phi} \sigma k_{3} d t$, we have

$$
\begin{equation*}
\frac{d^{2} m_{3}}{d \delta^{2}}-m_{3}=0 \tag{3.9}
\end{equation*}
$$

Thus, general solution of m_{3} is

$$
\begin{equation*}
m_{3}=c_{1} \cosh \int_{0}^{\phi} \sigma k_{3} d t+c_{2} \sinh \int_{0}^{\phi} \sigma k_{3} d t \tag{3.10}
\end{equation*}
$$

Also, if we consider m_{4}, we obtain

$$
\begin{equation*}
m_{4}=-c_{2} \cosh \int_{0}^{\phi} \sigma k_{3} d t-c_{1} \sinh \int_{0}^{\phi} \sigma k_{3} d t \tag{3.11}
\end{equation*}
$$

where c_{1} and c_{2} are arbitrary constants. Thus the general solution is given by

$$
\begin{aligned}
& m_{1}=c, m_{2}=0 \\
& m_{3}=c_{1} \cosh \int_{0}^{\phi} \sigma k_{3} d t+c_{2} \sinh \int_{0}^{\phi} \sigma k_{3} d t \\
& m_{4}=-c_{2} \cosh \int_{0}^{\phi} \sigma k_{3} d t-c_{1} \sinh \int_{0}^{\phi} \sigma k_{3} d t
\end{aligned}
$$

Therefore, the breadth of the curve is denoted with $k^{2}=c^{2}+c_{1}^{2}-c_{2}^{2}$.
Suppose that $m_{1}=0$. By changing the variable ϕ of the form $\xi=\int_{0}^{\phi} \sigma k_{3} d t$, we obtain the following linear differential equation

$$
\begin{equation*}
\frac{d^{2} m_{3}}{d \xi^{2}}+m_{3}=\left(f \frac{k_{2}}{k_{3}}\right)^{\prime} \tag{3.12}
\end{equation*}
$$

which has the solutions as

$$
\begin{equation*}
m_{3}=c_{1} \cos \int_{0}^{\phi} \sigma k_{3} d t+c_{2} \sin \int_{0}^{\phi} \sigma k_{3} d t+\int_{0}^{\phi} \cos [\xi(\phi)-\xi(t)] \sigma k_{2} f(t) d t \tag{3.13}
\end{equation*}
$$

In a similar manner, we have

$$
\begin{equation*}
m_{4}=c_{2} \cos \int_{0}^{\phi} \sigma k_{3} d t-c_{1} \sin \int_{0}^{\phi} \sigma k_{3} d t-\int_{0}^{\phi} \sin [\xi(\phi)-\xi(t)] \sigma k_{2} f(t) d t \tag{3.14}
\end{equation*}
$$

Furthermore, from (3.4) we can write

$$
\begin{align*}
\frac{d}{d \phi}\left(\frac{1}{\sigma^{2} k_{2} k_{3}}\left(\frac{d^{2} f}{d \phi^{2}}\right)\right)- & \frac{d}{d \phi}\left(\frac{1}{\sigma^{3} k_{2}^{2} k_{3}} \frac{d\left(\sigma k_{2}\right)}{d \phi}\left(\frac{d f}{d \phi}\right)\right) \\
& -\frac{d}{d \phi}\left(\frac{k_{2}}{k_{3}} f\right)-\frac{k_{3}}{k_{2}}\left(\frac{d f}{d \phi}\right)=0 \tag{3.15}
\end{align*}
$$

Remark 3.1. If $\frac{k_{2}}{k_{3}}$ is a constant in equation (3.15), we get

$$
\begin{array}{r}
\frac{d}{d \phi}\left(\frac{1}{\sigma^{2} k_{2} k_{3}}\left(\frac{d^{2} f}{d \phi^{2}}\right)\right)-\frac{d}{d \phi}\left(\frac{1}{\sigma^{3} k_{2}^{2} k_{3}} \frac{d\left(\sigma k_{2}\right)}{d \phi}\left(\frac{d f}{d \phi}\right)\right) \\
-\left(\frac{a^{2}+1}{a}\right) \frac{d f}{d \phi}=0 \tag{3.16}
\end{array}
$$

where $\frac{k_{2}}{k_{3}}=a$.

Now, suppose that α is a spacelike curve with timelike first binormal and second binormal, then we obtain

$$
\begin{align*}
\frac{d m_{1}}{d \phi} & =m_{2}-f(\phi) \\
\frac{d m_{2}}{d \phi} & =-m_{1}-m_{3} k_{2} \sigma \\
\frac{d m_{3}}{d \phi} & =-m_{2} k_{2} \sigma+m_{4} k_{3} \sigma \tag{3.17}\\
\frac{d m_{4}}{d \phi} & =-m_{3} k_{3} \sigma
\end{align*}
$$

From (3.17), we arrive at the following differential equation characterizing constant breadth spacelike curves in E_{2}^{4}.

$$
\begin{align*}
& -\frac{d}{d \phi}\left(\frac{1}{\sigma^{2} k_{2} k_{3}}\left(\frac{d^{3} m_{1}}{d \phi^{3}}+\frac{d^{2} f}{d \phi^{2}}+\frac{d m_{1}}{d \phi}\right)\right) \\
& +\frac{d}{d \phi}\left(\frac{1}{\sigma^{3} k_{2}^{2} k_{3}} \frac{d\left(\sigma k_{2}\right)}{d \phi}\left(\frac{d^{2} m_{1}}{d \phi^{2}}+\frac{d f}{d \phi}+m_{1}\right)\right) \\
& +\frac{d}{d \phi}\left(\frac{k_{2}}{k_{3}}\left(\frac{d m_{1}}{d \phi}+f\right)\right)-\frac{k_{3}}{k_{2}}\left(\frac{d^{2} m_{1}}{d \phi^{2}}+\frac{d f}{d \phi}+m_{1}\right)=0 . \tag{3.18}
\end{align*}
$$

Also from (3.1), we can write

$$
m_{1}=0, \frac{d m_{2}}{d \phi}=-m_{3} k_{2} \sigma, \frac{d m_{3}}{d \phi}=-m_{2} k_{2} \sigma+m_{4} k_{3} \sigma, \frac{d m_{4}}{d \phi}=-m_{3} k_{3} \sigma
$$

and

$$
\frac{d m_{1}}{d \phi}=m_{2}, \frac{d m_{2}}{d \phi}=-m_{1}-m_{3} k_{2} \sigma, \frac{d m_{3}}{d \phi}=-m_{2} k_{2} \sigma+m_{4} k_{3} \sigma, \frac{d m_{4}}{d \phi}=-m_{3} k_{3} \sigma
$$

Therefore we get

$$
\begin{equation*}
\sigma k_{3} \frac{d^{2} m_{3}}{d \phi^{2}}-\frac{d\left(\sigma k_{3}\right)}{d \phi} \frac{d m_{3}}{d \phi}+m_{3}\left(\sigma k_{3}\right)^{3}=0 \tag{3.19}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma k_{3} \frac{d^{2} m_{4}}{d \phi^{2}}-\frac{d\left(\sigma k_{3}\right)}{d \phi} \frac{d m_{4}}{d \phi}+m_{4}\left(\sigma k_{3}\right)^{3}=0 \tag{3.20}
\end{equation*}
$$

Changing the variable ϕ of the form ξ, we have

$$
\begin{equation*}
\frac{d^{2} m_{3}}{d \xi^{2}}+m_{3}=0 \text { and } \frac{d^{2} m_{4}}{d \xi^{2}}+m_{4}=0 \tag{3.21}
\end{equation*}
$$

Using (3.21), the general solutions of the differential equations are

$$
\begin{aligned}
& m_{3}=c_{1} \cos \left(\int_{0}^{\phi} \sigma k_{3} d t\right)+c_{2} \sin \left(\int_{0}^{\phi} \sigma k_{3} d t\right) \\
& m_{4}=-c_{1} \cos \left(\int_{0}^{\phi} \sigma k_{3} d t\right)+c_{2} \sin \left(\int_{0}^{\phi} \sigma k_{3} d t\right)
\end{aligned}
$$

Thus, the solution of the system (3.21) can be written as

$$
\begin{aligned}
& m_{1}=c=\text { constant }, m_{2}=0 \\
& m_{3}=c_{1} \cos \left(\int_{0}^{\phi} \sigma k_{3} d t\right)+c_{2} \sin \left(\int_{0}^{\phi} \sigma k_{3} d t\right) \\
& m_{4}=-c_{1} \cos \left(\int_{0}^{\phi} \sigma k_{3} d t\right)+c_{2} \sin \left(\int_{0}^{\phi} \sigma k_{3} d t\right)
\end{aligned}
$$

Here the breadth of the curve is denoted with $k^{2}=c^{2}-c_{1}^{2}-c_{2}^{2}$.
Also, for $m_{1}=0$, we arrive the following linear differential equation

$$
\frac{d^{2} m_{3}}{d \xi^{2}}+m_{3}=\left(f \frac{k_{2}}{k_{3}}\right)^{\prime}
$$

having the solution as

$$
m_{3}=c_{1} \cosh \int_{0}^{\phi} \sigma k_{3} d t+c_{2} \sinh \int_{0}^{\phi} \sigma k_{3} d t-\int_{0}^{\phi} \cosh [\xi(\phi)-\xi(t)] \sigma k_{2} f(t) d t
$$

In a similar manner, we have

$$
m_{4}=-c_{2} \cosh \int_{0}^{\phi} \sigma k_{3} d t-c_{1} \sinh \int_{0}^{\phi} \sigma k_{3} d t+\int_{0}^{\phi} \sinh [\xi(\phi)-\xi(t)] \sigma k_{2} f(t) d t
$$

Furthermore, since $m_{1}=0$, we can write

$$
\begin{align*}
-\frac{d}{d \phi}\left(\frac{1}{\sigma^{2} k_{2} k_{3}}\left(\frac{d^{2} f}{d \phi^{2}}\right)\right) & +\frac{d}{d \phi}\left(\frac{1}{\sigma^{3} k_{2}^{2} k_{3}} \frac{d\left(\sigma k_{2}\right)}{d \phi}\left(\frac{d f}{d \phi}\right)\right) \\
& +\frac{d}{d \phi}\left(\frac{k_{2}}{k_{3}}(f)\right)-\frac{k_{3}}{k_{2}}\left(\frac{d f}{d \phi}\right)=0 \tag{3.22}
\end{align*}
$$

Remark 3.2. If $\frac{k_{2}}{k_{3}}$ is a constant in equation (3.22), then we write

$$
\begin{array}{r}
-\frac{d}{d \phi}\left(\frac{1}{\sigma^{2} k_{2} k_{3}}\left(\frac{d^{2} f}{d \phi^{2}}\right)\right)+\frac{d}{d \phi}\left(\frac{1}{\sigma^{3} k_{2}^{2} k_{3}} \frac{d\left(\sigma k_{2}\right)}{d \phi}\left(\frac{d f}{d \phi}\right)\right) \\
+\left(\frac{a^{2}-1}{a}\right) \frac{d f}{d \phi}=0
\end{array}
$$

where $\frac{k_{2}}{k_{3}}=a$.

References

[1] W. Blascke, Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts, Math. Ann. 76, 504-513 (1915).
[2] L. Euler, De Curvis Trangularibus, Acta Acad Petropol, 3-30 (1870).
[3] M. Fujivara, On Space Curves of Constant Breadth, Tohoku Math. J., 5, 180-184 (1914).
[4] H. Gun Bozok and H. Oztekin, Some characterization of curves of constant breadth according to Bishop frame in E_{3} space, i-managers Journal on Mathematics, 2, 7-11, (2013).
[5] M. Kazaz, M. Onder and H. Kocayigit, Spacelike curves of constant breadth in Minkowski 4-space, Int. J. Math. Anal., 2, 1061-1068, (2008).
[6] H. Kocayigit and M. Onder, Space curve of constant breadth in Minkowski 3-space, Annali di Matematica, 192, 805-814, (2013).
[7] O. Kose, Some properties of ovals and curves of constant width in a plane, Doga Sci. J. Serial B (8), 2, 119-126 (1984).
[8] A. Magden and O. Kose, On the curves of constant breadth in E^{4} space, Turkish J. Math., 21, 277-284 (1997).
[9] A. Magden and S. Yilmaz, On the curves of constant breadth in four dimensional Galilean space, Int. Math. For., 9, 1229-1236, (2014).
[10] A. P. Mellish, Notes on differential geometry, Ann. of Math., 32, 181-190, (1931).
[11] M. Sezer, Differential equations characterizing space curves of constant breadth and a criterion for these curves, Doga Mat., 13, 70-78 (1989).
[12] R. M. Solow, Quarterly Journal of Economics, 70, 65-94 (1956).
[13] E. Soyturk, K. Ilarslan and D. Saglam, Osculating spheres and osculating circles of a curve in semiRiemannian space, 54, 39-48, (2005).
[14] S. Yilmaz and M. Turgut, Partially null curves of constant breadth in semi-Riemannian space, Modern Applied Science, 3, 60-63, (2009).
[15] S. Yilmaz, E. Ozyilmaz and U. Z. Savci, Contributions to Differential Geometry of Partially Null Curves in Semi Euclidean space, International J. Math. Combin., 1, 6-12, (2014).
[16] D. W. Yoon, Curves of constant breadth in Galilean 3-space, Applied Mathematical Sciences, 8, 70137018, (2014).

Author information

Sezin Aykurt Sepet and Hülya Gün Bozok, Department of Mathematics, Art and Science Faculty, Ahi Evran University, Kirsehir 37996-1320, TURKEY.
E-mail: sezinaykurt@hotmail.com
Received: January 26, 2016.
Accepted: April 21, 2016.

