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Abstract In this paper, we study the ruled sufaces in the 3-dimensional isotropic space I3
whose the rulings are the lines associated to the Frenet vectors of the base curve. We obtain

those ruled surfaces in I3 with zero relative curvature (analogue of the Gaussian curvature) and

isotropic mean curvature.

1 Introduction

The ruled surfaces form an extensive class of surfaces in classical geometry and this fact gives

rise to observe the ruled surfaces in different ambient spaces of arbitrary dimension. For ex-

ample, see [2, 6, 7]. As well-known, the ruled surfaces are generated by a pair of the curves,

so-called base curve and director curve. Explicitly, a ruled surface M2 in a 3-dimensional Eu-

clidean space E3 has locally the form ([9])

r(s, t) = α(s) + tβ(s), (1.1)

where α and β are the base and director curves for a coordinate pair (s, t) . The lines t −→
α (s0) + tβ (s0) are called rulings of S. In particular; if we select the director curve to be a

Frenet vector of α in (1.1), then a special class of ruled surfaces occurs. We call those tangent

developable, principal normal surface, binormal surface of α, [1], [11]-[13]. Similarly such a

surface is said to be rectifying developable, if the director curve is a Darboux vector of α, that is,
τV1 + κV3, where κ, τ are curvature and torsion, V1, V3 the tangent and binormal vectors.

On the other hand, the isotropic geometry naturally appears when properties of functions

shall be geometrically visualized and interpreted via their graph surfaces [18]. As applications

of isotropic geometry, the Image Processing, architectural design and microeconomics appear,

[8, 19, 20].

Differential geometry of isotropic spaces have been introduced by K. Strubecker [22], H.

Sachs [21], D. Palman [17] and others. Especially the reader can �nd a well bibliography for

isotropic planes and isotropic 3-spaces in [21].

In this paper, we present several results relating to the zero curvature ruled surfaces in a

3-dimensional isotropic space whose the rulings are the Frenet vectors of the base curve.

2 Preliminaries

Isotropic space based on the following group G6 of af�ne transformations (so-called isotropic

congruence transformations or i-motions) is a Cayley-Klein space: (see [3]-[5], [14]-[16])

x′ = a+ x cosϕ− y sinϕ,

y′ = b+ x sinϕ− y cosϕ,

z′ = c+ dx+ ey+ z.

Consider the points x = (x1, x2, x3) and y = (y1, y2, y3) . The projection in z−direction onto

R2, (x1, x2, x3) 7−→ (x1, x2, 0) , is called the top view. In the sequel, many of metric properties

in isotropic geometry (invariants under G6) are Euclidean invariants in the top view such as
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the isotropic distance, so-called i-distance. I-distance of two points x and y is de�ned as the

Euclidean distance of their top views, i.e.,

∥x− y∥i =

√√√√ 2∑
j=1

(yj − xj)
2
.

Two points having the same top view are called parallel points. The i-metric is degenerate

along the lines in z−direction, and such lines are called isotropic lines. The plane containing an

isotropic line is called an isotropic plane.

Let γ : I ⊆ R −→ I3 be an admissible curve (i.e. without isotropic tangents) parametrized

by arc-length s ∈ I. In coordinate form, one can be written as

γ (s) = (x (s) , y (s) , z (s)) ,

where x, y and z are smooth functions of one variable. Denote the �rst derivative with respect to

s by a prime, etc. Then the curvature and torsion functions of γ are respectively de�ned by

κ (s) = x′ (s) y′′ (s)− x′′ (s) y′ (s) (2.1)

and

τ (s) =
1

κ (s)
det (γ′ (s) , γ′′ (s) , γ′′′ (s)) . (2.2)

Morever, the associated trihedron of γ is given by

V1(s) = (x′ (s) , y′ (s) , z′ (s)) ,

V2(s) =
1

κ (x′′ (s) , y′′ (s) , z′′ (s)) ,

V3(s) = (0, 0, 1) .

(2.3)

In the sequel, the Frenet's formulas of such vectors are

V ′
1 = κV2, V

′
2 = −κV1 + τV2, V

′
3 = 0.

Let M 2 be a surface immersed in I3 which has no isotropic tangent planes. Such a surface

M2 is said to be admissible and can be parametrized by

X : D ⊆ R2 −→ I3 : (u1, u2) 7−→ (X1 (u1, u2) , X2 (u1, u2) , X3 (u1, u2)) ,

where X1, X2 and X3 are smooth and real-valued functions on a domain D ⊆ R2. Denote g
the metric on M2 induced from I3. The components of the �rst fundamental form of M 2 can be

calculated via the induced metric g as follows:

E = g (Xu1
, Xu1

) , F = g (Xu1
, Xu2

) , G = g (Xu2
, Xu2

) ,

where Xui = ∂X
∂ui

, i, j ∈ {1, 2} . The unit normal vector �eld of M2 is completely isotropic.

Also, the components of the second fundamental form are

L =
det (Xu1u1

, Xu1
, Xu2

)√
g11g22 − g2

12

, M =
det (Xu1u2

, Xu1
, Xu2

)√
g11g22 − g2

12

, N =
det (Xu2u2

, Xu1
, Xu2

)√
g11g22 − g2

12

, (2.4)

where Xuiuj =
∂2X

∂ui∂uj
, i, j ∈ {1, 2} . Thus the relative curvature (so-called the isotropic curva-

ture or isotropic Gaussian curvature) and the isotropic mean curvature are respectively de�ned

by

K =
LN −M2

EG− F 2
(2.5)

and

H =
EN − 2FM +GL

2 (EG− F 2)
. (2.6)
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3 Ruled Surfaces in Isotropic 3-Space

In this section, we consider the ruled surfaces in I3 whose rulings are the Frenet vectors of the
base curve. For this, let α = α(s) be an arc-length curve in I3 and {V1, V2, V3} the Frenet

trihedron of α. Thus we have three types of the ruled surfaces:

r(s, t) = α(s) + tV1(s), (3.1)

r(s, t) = α(s) + tV2(s), (3.2)

r(s, t) = α(s) + tV3(s). (3.3)

The ruled surfaces given by (3.1) and (3.2) are respectively called the tangent developable

and the principal normal surface of α. We remark that the ruled surfaces given by (3.3) are not
admissible. That is why we consider the following ruled surface instead of these given by

r(s, t) = tα(s) + V3(s), (3.4)

which is indeed a generalized cone with the vertex at the end point of V3.
Let M2 be a tangent developable surface of the arc-length curve α = α(s) in I3. Then we

write

r(s, t) = α(s) + tV1(s) (3.5)

The components of the �rst and the second fundamental form ofM are

E = 1+ (tκ)2, F = G = 1 (3.6)

and

L = −tκτ, M = N = 0. (3.7)

From (3.6) and (3.7), we get

K = 0 and H = − τ

2tκ
. (3.8)

Therefore, we obtain below results.

Theorem 3.1. Let M 2 be a ruled surface given by (3.1) in I3. Then the following items hold:

(i) M2 is isotropic �at, K = 0,

(ii) M2 is isotropic minimal if and only if the base curve is contained in a non-isotropic plane.

(iii) M2 cannot have nonzero constant isotropic mean curvature.

Proof. The �rst item is clear. From (3.8), we have H = 0 if and only if τ = 0. This implies the

second item of the theorem. For the last item, since t is an independent variable, H is never a

nonzero constant for all values (s, t).

Suppose that M2 is a principal surface of an arc-length curve α = α(s) in I3. Thus we have

r(s, t) = α(s) + tV2(s). (3.9)

The components of the fundamental forms are

E = (1− tκ)2 + (tτ)2, F = 0, G = 1 (3.10)

and

L =
1

W

[
tτ ′ − t2(

τ

κ
)
′
κ2
]
, M =

τ

W
, N = 0, (3.11)

where W 2 = EG− F 2 = (1− tκ)2 + (tτ)2. By (3.10) and (3.11), we have

K =
τ 2

W 4
and H = − t

2W 3

[
t(
τ

κ
)
′
κ2 − τ

′
]
. (3.12)
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Theorem 3.2. For a principal normal surface M2 given by (3.2) in I3, we have:

(i) M2 is isotropic �at if and only if its base curve is contained in a non-isotropic plane.

(ii) M2 is isotropic minimal if and only if its base curve is a constant curvature curve.

Proof. (3.12) immediately follows the �rst item of the theorem. For the second item of the

theorem, we have from (3.12)

t(
τ

κ
)
′
κ2 − τ

′
= 0. (3.13)

If we differentiate (3.13) with respect to t, then

(
τ

κ
)
′
= 0,

τ

κ
= const. (3.14)

If we take into consideration (3.14) in (3.13), then we �nd τ = const. From (3.14), we obtain

κ = const. and τ = const. This completes the proof.

Let M2 be a generalized cone in I3 parametrized by

r(s, t) = tα(s) + V3(s). (3.15)

Denote

α(s) =
3∑

i=1

λi(s)Vi(s), λi(s) ∈ C∞. (3.16)

Then the components of the �rst and the second fundamental form ofM2 are

E = t2, F = tλ1, G =
3∑

i=1

λ2

i (3.17)

and

L = −λ3t
2κ

W
, M = N = 0, (3.18)

where W 2 = t2(λ2

2
+ λ2

3
). It follows from (3.17) and (3.18) that

K = 0 and H = − 1

2W 3

[
λ3t

2κ

3∑
i=1

λ2

i

]
. (3.19)

Theorem 3.3. Let M 2 be a ruled surface given by (3.15) in I3. Then

(i) M2 is isotropic �at.

(ii) M2 is isotropic minimal if and only if the base curve is an osculating curve.

Proof. (3.19) immediately implies the �rst item of the theorem. Also, ifH = 0 then we get from

(3.19) that λ3 = 0. By considering it into (3.16) , we write

α(s) = λ1(s)V1(s) + λ2(s)V2(s)

which means that the base curve α(s) is contained in the osculating plane of α. This proves the
theorem.
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