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Abstract In this paper, we prove some common fixed point theorems using rational contrac-
tion in the setting of complex valued metric spaces. The results presented in this paper extend
and generalize the corresponding results given in the existing literature.

1 Introduction

Fixed point theory plays a very significant role in the development of nonlinear analysis. The
Banach contraction principle [4] is a very popular tool in solving existence problems in many
branches of mathematics. This famous theorem can be stated as follows.

Theorem 1.1. (/4]) Let (X, d) be a complete metric space and T be a mapping of X into itself
satisfying:

d(Tz,Ty) < kd(z,y), Vor,ye X (1.1)
where k is a constant in [0,1). Then T has a fixed point x* € X.

The Banach contraction principle with rational expressions have been expanded and some
fixed point and common fixed point theorems have been obtained in [5], [6].

In the existing literature, there are a great number of generalizations of the Banach contrac-
tion principle (see [1, 2] and others).

In 2011, Azam et al. [3] introduced the concept of complex valued metric space and estab-
lished some fixed point results for mappings satisfying a rational inequality. Complex-valued
metric space is useful in many branches of mathematics, including algebraic geometry, number
theory, applied mathematics; as well as in physics, including hydrodynamics, thermodynamics,
mechanical engineering and electrical engineering, for some details, see ([8, 9]).

In this paper, we prove some common fixed point theorems using rational contraction in the
framework of complex valued metric spaces.

2 Preliminaries

Let C be the set of complex numbers and z1, 2, € C. Define a partial order = on C as follows:

21 3z if and only if Re(21) < Re(z), Im(z1) < Im(z,). It follows that z; = 2, if one of
the following conditions is satisfied:

(i) Re(z1) = Re(z2), Im(z1) < Im(z2);

(i) Re(z1) < Re(z2), Im(z1) = Im(z2);

(iii) Re(z1) < Re(z), Im(z1) < Im(z2);
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(iv) Re(z1) = Re(z2), Im(z1) = Im(z).

In particular, we will write 21 5 22 if 21 # 22 and one of (i), (ii), and (iii) is satisfied and we
will write z; < z; if only (iii) is satisfied. Note that

05 21 5 2 = |Zl| < |Z2|7

21j227 2y < 23 = 21 < 23.

The following definition was introduced by Azam et al. in 2011 (see, [3]).

Definition 2.1. ([3]) Let X be a nonempty set. Suppose that the mapping d: X x X — C
satisfies:
(C1)0 2 d(z,y) forall z,y € X withz #yand d(z,y) =0 & x=y;

(Cy) d(z,y) = d(y,z) forall z,y € X;
(C3) d(z,y) 3 d(x,2) + d(z,y) forall x,y, z € X.

Then d is called a complex valued metric on X and (X, d) is called a complex valued metric
space.

Example 2.2.Let X = C, where C is the set of complex numbers. Define a mapping d: X x
X — Cbyd(z1, 22) = €'|z1 — 25| where 21 = (x1,41), 22 = (22,12) and ¢ € [0, 5]. Then (X, d)
is a complex valued metric space.

Definition 2.3. (i)A point z € X is called an interior point of a subset A C X whenever there
exists 0 < r € C such that

B(z,r)={ye X : d(z,y) <r} C A.

(ii) A point z € X is called a limit of A whenever for every 0 < r € C such that

B(z,7) N (A - {x}) £10.

(iii) The set A is called open whenever each element of A is an interior point of A. A subset
B is called closed whenever each limit point of B belongs to B.

(iv)The family F := {B(z,r) : « € X,0 < r} is a sub-basis for a Hausdorff topology 7 on
X.

Definition 2.4. ([3]) Let (X, d) be a complex valued metric space. Let {z,,} be a sequence in X
and z € X. Then

(i) {z,, } is called convergent, if for every ¢ € C, with 0 < ¢ there exists ng € N such that for
all n > ng, d(zy,z) < c. Also, {z,} converges to x (written as, x,, — x or lim, o0 T, = x)
and z is the limit of {z,}.

(ii) {x,, } is called a Cauchy sequence in X, if for every ¢ € C, with 0 < ¢ there exists ng € N
such that for all n > ng, d(zn, Tnm) < c. If every Cauchy sequence converges in X, then X is
called a complete complex valued metric space.

Definition 2.5. ([7]) Two families of self-mappings {7;}", and {S;}? , are said to be pairwise
commuting if () T;T; = T,;T;, 4,5 € {1,2,...,m}; (i) Sk.S; = SiSk, k,l € {1,2,...,n}; (iii)
T;Sx = SiT;, 1 € {1,2,...,77’1,} and k € {],2,...,71}.

Lemma 2.6. (/3]) Let (X, d) be a complex valued metric space and let {x,,} be a sequence in
X. Then {x,} converges to z if and only if lim,, . |d(2y, z)| = 0.

Lemma 2.7. ([3]) Let (X, d) be a complex valued metric space and let {z,} be a sequence in
X. Then {z,} is a Cauchy sequence if and only if lim,,_, o |d(xy, Tpim)| = 0.
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3 Main Results

In this section we shall prove some common fixed point theorems using rational contraction in
the framework of complex valued metric spaces.

Theorem 3.1. Let (X, d) be a complete complex valued metric space. Suppose that the mappings
S, T: X — X satisfy:

d(Sz,Ty) =< k [d(x, Sz)d(z, Ty) i[d(m,y)]z +d(z, Sz)d(x, y)}

d(z,Sz) + d(z,y) + d(z, Ty)

Yy
forall z,y € X such that x # vy, d(x,Sz) + d(z,y) + d(z,Ty) # 0, where k € [0,1) is a
d(x y) = 0. Then S and T have a unique

3.1

common fixed point in X.
Proof. Let x( be an arbitrary point in X and define

Toptl = STan, Topsr =Txopni1, n=0,1,2,....
Then from (3.1), we have

d($2n+1,$2n+2) = d(S$2n7Tx2n+l)

k |:<d(.132n, SxZn)d(QQna Tx2n+1) + [d(m}m x2n+1)]2

1SN

+d(xan, Sx2p)d(z2n, $2n+1))
—1
X (d(fczm Sxan) + d(@2n, ant1) + d(22n, va2n+1)) }
= k Kd(l‘zm$2n+1)d(l‘2n,l‘2n+2) + [d(z20, T2n11)]*
+d(x2n, Tont1)d(T2n, 2172n+1))

—1
X (d(ﬂfzm Tong1) + d(Ton, Tong1) + d(z2y, $2n+2)) }

= kd(xm, x2n41)

» [d(ffzm Tont2) + 2d(z2n, Tont1)
d(Ton, Tont2) + 2d(T2n, Tont1)

= kd(zm, Tont1)- (3.2)

Similarly, we have
d(@2m, Tont1) = d(Swon_1,Tr2p)

k {(d(zzn—l, Swon_1)d(x2n—1, Tran) + [d(220—1, 220)]?

1N

+d(x2n—1, STon—_1)d(x20—1, wzn))
—1
X (d(xanly Sxan—1) + d(Tan—1,T2m) + d(x25—1, Twzn)) }
= k |:(d(1‘2n_1, z2n)d(x2n—l7 x2n+1) + [d(xZn—h xZn)]2
+d(xon—1, x2p)d(z2n_1, xzn))

—1
X (d(x2n717 Ton) + d(@2n—1, T2n) + d(z2n—1, $2n+1)> }

= k’ d(l’znfl, xzn)
o [d(wznq, Tan+1) + 2d(z2n—1, T2n)
d(xan—1, Tant+1) + 2d(xan—1, T2n)
= kd(zan1, 7). (3.3)
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By induction, we have

d(l’n.H,ﬂ?n) ,-—j k‘d(xn,.fn,l) ,-—j kz d(xn,1,$n,2)
2 k™ d(w1, m0). 3.4)

A

Let m,n > 1 and m > n, we have
d(x'ruxm) :j d(xnuxTH»l) + d(xn+laxn+2) + d(xn+27$n+3)

+- 4+ d(xn+m—la xm)
;\<./ [kn + kn+1 + kn+2 R kn+m—l]d(x1’ $0)

[1Iilk}d(x1’x°)

1N

and so
kn
|[d(xn, m)| < [17} |d(x1,x0)] — 0as m,n — oo.

This implies that {z,, } is a Cauchy sequence. Since X is complete, there exists p € X such that
xn, — p asn — oo. It follows that p = Sp, otherwise d(p, Sp) = z > 0 and we would then have
z 3 d(p,xany2) + d(z2n42, Sp)
= (p7 x2n+2) + d(Spv Tx2n+l)
é d(p7 x2n+2)

(p7 Sp)d(pa T$2n+1) + [d(pa m2n+1)]2 + d(p7 Sp)d(p7 x2n+1):|
d(p, Sp) + d(p, v2n+1) + d(p, TT2041)

+k{

d(]% 962n+2)

d(p7 Sp)d(p7 x2n+2) + [d(pa m2n+1)]2 + d(p7 Sp)d(p7 x2n+1):|
d(p, Sp) + d(p, v2n+1) + d(p, T2n12) '

+k |
This implies that

|zl < |d(p, 22n+42)|

‘ZHd(pv I]S'2n+2)| + Hd(p, z2n+1)|]2 + |Z||d(pa x2n+1)|i|
2] + [d(p, z2n+1)| + |d(p, T2n+2)]

+k |
Letting n — oo, it follows that
2] <0
which is a contradiction and so |z| = 0, that is, p = Sp.

In an exactly the similar way, we can prove that p = T'p. Hence Sp = T'p = p. This shows
that p is a common fixed point of .S and 7.

To prove uniqueness of common fixed point of S and 7', assume that p* is another common
fixed point of S and T, that is, Sp* = T'p* = p* such that p # p*. Then

d(p,p*) = d(Sp,Tp")
. {d(n Sp)d(p, Tp*) + [d(p,p*)]* + d(p, Sp)d(p,p*)}
d(p, Sp) + d(p, p*) + d(p, Tp*)
_ {d(pyp)d(p,p*) + [d(p,p*)]* + d(p,p)d(p,p*)}
d(p,p) + d(p, p*) + d(p, p*)
so that |d(p,p*)| < §|d(p,p*)| < kl|d(p,p*)| < |d(p,p*)|, since 0 < k < 1, which is a contra-

diction and hence d(p,p*) = 0. Thus p = p*, which proves the uniqueness of common fixed
point.

A
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Secondly, we consider the case: d(x2y,, STan) + d(T2n, Tan+1) +d(22n, TT2541) = O (for any
n) implies d(SfL‘Qn,T{Ezn+1) = 0, so that x5, = ST, = Toptr1 = Txons1 = Tonan. Thus, we
have x3,+1 = Sz, = z2,, so there exist k; and [; such that k; = SI; = [;. Using the same
arguments as above, one can also show that there exist k; and I, such that ky = Tl = 5. As
d(ly, Sly) + d(l1,12) + d(l1,Tly) = 0 (according to the definition) implies d(Siy,Tl,) = 0, so
that k; = Sl; = T'l, = k, which in turn yields that k; = Sl; = Sk;. Similarly, one can also have
ko = Tky. As k; = kp implies Sk; = Tk = k), therefore k) = k; is a common fixed point of S
and 7.

We now prove that S and T" have unique common fixed point. For this, assume that k] in
X is another common fixed point of S and T, that is, Ski = Tkj = kj such that k1 # ki. As
d(ky, Sk1) + d(k1, k7) + d(k1, Tk}) = 0, therefore d(ki, k}) = d(Ski, Tk}) = 0. This implies
that kf = k. This completes the proof. O

Putting S = T in Theorem 3.1, we have the following result.

Corollary 3.2. Let (X, d) be a complete complex valued metric space. Suppose that the mapping
T: X — X satisfies:

d(x, Tx)d(x, Ty) + [d(z,y)]* + d(x, Tx)d(x, y)}
d(z, Tx) + d(x,y) + d(x, Ty)

forall z,y € X such that x # vy, d(z,Tz) + d(z,y) + d(x

constant or d(Tx,Ty) = 0 if d(z,Tx) + d(z,y) + d(z,Ty)

point in X.

d(Tz,Ty) =< k [

Ty) # 0, where k € [0,1) is a
= 0. Then T has a unique fixed

Corollary 3.3. Let (X, d) be a complete complex valued metric space. Suppose that the mapping
T: X — X satisfies (for fixed n):

k [d(a:,T"z) (z, T™y) + [d(x,y)])* + d(z, Tz )d(x,y)}
d(z, Trx) + d(z, y) +d(z,Ty)
forall x,y € X such that x # y, d(x,T"z) + d(z,y) + d(z,T"y) # 0, where k € [0,1) is a

constant or d(T"z, T™y) = 0ifd(x, T"x) +d(z,y) + d(x, T"™y) = 0. Then T has a unique fixed
point in X.

d(T"z, T"y) =

~

Proof. By Corollary 3.2, there exists v € X such that 7"v = v. Then
d(Tv,v) = dTT"v, T"v) =d(T"Tv,T"v)
. {d(TU,T"T?})d(T@,T"v) + [d(Tv,v)]* + d(Tw, T"TU)d(Tuv)]

d(Tv, T"Tv) + d(Tv,v) + d(Tv, T"v)

_ i [d(TU,TT”v)d(TU,T"v) + [d(Tv,v)]* + d(Tw, TT"’U)d(T’U,’U):|
d(Tv, TT™) 4+ d(Tv,v) + d(Tv, T™v)

f {d(TU, Tv)d(Tv,v) + [d(Tv,v)]> + d(Tv, Tv)d(Tv, v)}

d(Tv,Tv) + d(Tv,v) + d(Tv,v)

N

= gd(Tv,v)

2 kd(Tv,v)

so that |d(Tv,v)| < k|d(Tv,v)| < |d(Tv,v)|, since 0 < k < 1, which is a contradiction and so
d(Tv,v) = 0, that is, Tv = v. This shows that T has a unique fixed point in X. This completes
the proof. O

As an application of Theorem 3.1, we prove the following theorem for two finite families of
mappings.
Theorem 3.4. If {T;}" | and {S;}!' | are two finite pairwise commuting finite families of self-
mappings defined on a complete complex valued metric space (X, d) such that S and T (with
T=NT,...T,, and S = 515, ...5,) satisfy the condition (3.1), then the component maps of
the two families {T;}!" ; and {S;}}" | have a unique common fixed point.



Some common fixed point theorems using rational. ... .. 97

Proof. In view of Theorem 3.1 one can conclude that 7" and S have a unique common fixed point
p, that is, T'(p) = S(p) = p. Now we are required to show that p is a common fixed point of
all the components maps of both the families. In view of pairwise commutativity of the families
{T;}7, and {S,}"_,, (for every 1 < k < m) we can write

Ti(p) = TiS(p) = STx(p) and Ty(p) = TxT(p) = TTk(p)

which show that Ty (p) (for every k) is also a common fixed point of 7" and S. By using the
uniqueness of common fixed point, we can write Ty (p1) = p1 (for every k) which shows that p;
is a common fixed point of the family {7}/ ,. Using the same arguments as above, one can also
show that (for every 1 < k < n) Si(p1) = p1. This completes the proof. i

BytakingTy, =T =--- =1, =Gand S; = S, =--- =85, = F, in Theorem 3.4, we
derive the following result involving iterates of mappings.

Corollary 3.5. If F and G are two commuting self-mappings defined on a complete complex
valued metric space (X, d) satisfying the condition:

S d(z, F"z)d(z, G™y) + [d(z,y)* + d(x, F"z)d(x, y)
d(F"z,G™y) 3 k‘{ d(x, Frx) + d(x,y) + d(z, G™y) }

forall z,y € X such that v # vy, d(z, F"z) + d(x,y) + d(z,G™y) # 0, where k € [0,1) is a
constant or d(F"x,G™y) = 0 if d(z, F"z) + d(z,y) + d(z, G™y) = 0. Then F and G have a
unique common fixed point in X.

By setting m = n and F' = G = T in Corollary 3.5, we deduce the following result.

Corollary 3.6. Let (X,d) be a complete complex valued metric space and let the mapping
T: X — X satisfies (for fixed n):

ATz, T™) =<k [

~

d(z, T"z)d(x, T"y)
T’VL

[d(z, )]2+d($aT"9€)d($7y)}
d(z, Trx)

d(z,y) + d(z, T"y)

++

forall z,y € X such that v # y, d(z,T"z) + d(x
constant or d(T"z, T™y) = 0 if d(z, T"x) + d(x,y) +
pointin X.

y) + d(z,T"y) # 0, where k € [0,1) is a
d(z,T"y) = 0. Then T has a unique fixed

7

Proof. By Corollary 3.2, we obtain w € X such that T™w = w. The rest of the proof is same as
that of Corollary 3.3. This completes the proof. O

Example 3.7. Let X = {0, 1 3 2} and partial order ' =’ is defined as = 3 y iff z > y. Let the
complex valued metric d be given as

d(z,y) = |z — y|vV2e'F = |z —y|(1 +4) for z,y € X.

Let T: X — X be defined as follows:

7(0) = O,T(%) _0,7(2) = %

Case L. Take z = 1,y = 0, T(0) = 0 and T() = 0 in Corollary 3.2, then we have

(T, Ty) :ng.(1+i).

This implies that £ > 0. If we take O < k < 1, then all the conditions of Corollary 3.2 are
satisfied and of course O is the unique fixed point of 7.

CaseIL Take = 2,y = 1, T'(2) = § and T'(}) = 0 in Corollary 3.2, then we have

1+ 1+
d(Tz, Ty) = jzgﬁ( 2“).
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This implies that & > % If we take 0 < k < 1, then all the conditions of Corollary 3.2 are
satisfied and of course O is the unique fixed point of 7.

CaseIIL. Take z = 2,y = 0, T'(2) = % and 7'(0) = 0 in Corollary 3.2, then we have

1+14 20(1 ++
d(Tz,Ty) = _2'—1§k. (11+Z)'

This implies that k£ > %. If we take 0 < k < 1, then all the conditions of Corollary 3.2 are

satisfied and of course O is the unique fixed point of 7.

Example 3.8. Let X = {0, §,2} and partial order 3’ is defined as z 3 y iff > y. Let the
complex valued metric d be given as

d(z,y) = |z — y|V2e'T = |z —y|(1+4) for z,y € X.

Let S, T: X — X be defined as follows:

5(0)=0,5(3)=0.5(2) = 3
7(0) = 0, T(%) —2,7(2) =0.

Case L Take z = 1,y =0, S(}) = 0 and 7(0) = 0 in Theorem 3.1, then we have

d(Sw, Ty) =0 < k.(l ;”)

This implies that £ > 0. If we take 0 < k£ < 1, then all the conditions of Theorem 3.1 are
satisfied and of course O is the unique common fixed point of .S and 7.

CaseILl. Take z = 2,y = % S(2) = % and T(%) = 2 in Theorem 3.1, then we have

3(1+1)
2

d(Sz,Ty) = < k.3(1+14).

This implies that & > % If we take O < k& < 1, then all the conditions of Theorem 3.1 are
satisfied and of course O is the unique common fixed point of S and T'.

Case III. Take = = 2, y = 0, S(2) =  and 7'(0) = 0 in Theorem 3.1, then we have
d(S2,Ty) = 5 < k21 +9)

This implies that k& > %. If we take 0 < k < 1, then all the conditions of Theorem 3.1 are
satisfied and of course O is the unique common fixed point of .S and T'.

4 Conclusion

In this paper, we establish some common fixed point theorems using rational contraction in the
setting of complex-valued metric spaces. Our results extend and generalize several known results
from the current existing literature.
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