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Abstract In this paper, we prove some common �xed point theorems using rational contrac-

tion in the setting of complex valued metric spaces. The results presented in this paper extend

and generalize the corresponding results given in the existing literature.

1 Introduction

Fixed point theory plays a very signi�cant role in the development of nonlinear analysis. The

Banach contraction principle [4] is a very popular tool in solving existence problems in many

branches of mathematics. This famous theorem can be stated as follows.

Theorem 1.1. ([4]) Let (X, d) be a complete metric space and T be a mapping of X into itself

satisfying:

d(Tx, Ty) ≤ k d(x, y), ∀x, y ∈ X (1.1)

where k is a constant in [0, 1). Then T has a �xed point x∗ ∈ X.

The Banach contraction principle with rational expressions have been expanded and some

�xed point and common �xed point theorems have been obtained in [5], [6].

In the existing literature, there are a great number of generalizations of the Banach contrac-

tion principle (see [1, 2] and others).

In 2011, Azam et al. [3] introduced the concept of complex valued metric space and estab-

lished some �xed point results for mappings satisfying a rational inequality. Complex-valued

metric space is useful in many branches of mathematics, including algebraic geometry, number

theory, applied mathematics; as well as in physics, including hydrodynamics, thermodynamics,

mechanical engineering and electrical engineering, for some details, see ([8, 9]).

In this paper, we prove some common �xed point theorems using rational contraction in the

framework of complex valued metric spaces.

2 Preliminaries

Let C be the set of complex numbers and z1, z2 ∈ C. De�ne a partial order - on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2). It follows that z1 - z2 if one of
the following conditions is satis�ed:

(i) Re(z1) = Re(z2), Im(z1) < Im(z2);
(ii) Re(z1) < Re(z2), Im(z1) = Im(z2);
(iii) Re(z1) < Re(z2), Im(z1) < Im(z2);
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(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we will write z1 � z2 if z1 ̸= z2 and one of (i), (ii), and (iii) is satis�ed and we

will write z1 ≺ z2 if only (iii) is satis�ed. Note that

0 . z1 � z2 ⇒ |z1| < |z2|,

z1 - z2, z2 ≺ z3 ⇒ z1 ≺ z3.

The following de�nition was introduced by Azam et al. in 2011 (see, [3]).

De�nition 2.1. ([3]) Let X be a nonempty set. Suppose that the mapping d : X × X → C
satis�es:

(C1) 0 - d(x, y) for all x, y ∈ X with x ̸= y and d(x, y) = 0 ⇔ x = y;

(C2) d(x, y) = d(y, x) for all x, y ∈ X;

(C3) d(x, y) - d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a complex valued metric on X and (X, d) is called a complex valued metric

space.

Example 2.2. Let X = C, where C is the set of complex numbers. De�ne a mapping d : X ×
X → C by d(z1, z2) = eit|z1− z2| where z1 = (x1, y1), z2 = (x2, y2) and t ∈ [0, π

2
]. Then (X, d)

is a complex valued metric space.

De�nition 2.3. (i)A point x ∈ X is called an interior point of a subset A ⊆ X whenever there

exists 0 ≺ r ∈ C such that

B(x, r) = {y ∈ X : d(x, y) ≺ r} ⊆ A.

(ii) A point x ∈ X is called a limit of A whenever for every 0 ≺ r ∈ C such that

B(x, r) ∩
(
A− {x}

)
̸= ∅.

(iii) The set A is called open whenever each element of A is an interior point of A. A subset

B is called closed whenever each limit point of B belongs to B.

(iv)The family F := {B(x, r) : x ∈ X, 0 ≺ r} is a sub-basis for a Hausdorff topology τ on

X .

De�nition 2.4. ([3]) Let (X, d) be a complex valued metric space. Let {xn} be a sequence in X
and x ∈ X . Then

(i) {xn} is called convergent, if for every c ∈ C, with 0 ≺ c there exists n0 ∈ N such that for

all n > n0, d(xn, x) ≺ c. Also, {xn} converges to x (written as, xn → x or limn→∞ xn = x)
and x is the limit of {xn}.

(ii) {xn} is called a Cauchy sequence inX, if for every c ∈ C, with 0 ≺ c there exists n0 ∈ N
such that for all n > n0, d(xn, xn+m) ≺ c. If every Cauchy sequence converges in X , then X is

called a complete complex valued metric space.

De�nition 2.5. ([7]) Two families of self-mappings {Ti}mi=1
and {Si}ni=1

are said to be pairwise

commuting if (i) TiTj = TjTi, i, j ∈ {1, 2, . . . ,m}; (ii) SkSl = SlSk, k, l ∈ {1, 2, . . . , n}; (iii)
TiSk = SkTi, i ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , n}.

Lemma 2.6. ([3]) Let (X, d) be a complex valued metric space and let {xn} be a sequence in

X . Then {xn} converges to x if and only if limn→∞ |d(xn, x)| = 0.

Lemma 2.7. ([3]) Let (X, d) be a complex valued metric space and let {xn} be a sequence in

X . Then {xn} is a Cauchy sequence if and only if limn→∞ |d(xn, xn+m)| = 0.
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3 Main Results

In this section we shall prove some common �xed point theorems using rational contraction in

the framework of complex valued metric spaces.

Theorem 3.1. Let (X, d) be a complete complex valued metric space. Suppose that the mappings

S, T : X → X satisfy:

d(Sx, Ty) - k
[d(x, Sx)d(x, Ty) + [d(x, y)]2 + d(x, Sx)d(x, y)

d(x, Sx) + d(x, y) + d(x, Ty)

]
(3.1)

for all x, y ∈ X such that x ̸= y, d(x, Sx) + d(x, y) + d(x, Ty) ̸= 0, where k ∈ [0, 1) is a

constant or d(Sx, Ty) = 0 if d(x, Sx) + d(x, y) + d(x, Ty) = 0. Then S and T have a unique

common �xed point in X .

Proof. Let x0 be an arbitrary point in X and de�ne

x2n+1 = Sx2n, x2n+2 = Tx2n+1, n = 0, 1, 2, . . . .

Then from (3.1), we have

d(x2n+1, x2n+2) = d(Sx2n, Tx2n+1)

- k
[(

d(x2n, Sx2n)d(x2n, Tx2n+1) + [d(x2n, x2n+1)]
2

+d(x2n, Sx2n)d(x2n, x2n+1)
)

×
(
d(x2n, Sx2n) + d(x2n, x2n+1) + d(x2n, Tx2n+1)

)−1]
= k

[(
d(x2n, x2n+1)d(x2n, x2n+2) + [d(x2n, x2n+1)]

2

+d(x2n, x2n+1)d(x2n, x2n+1)
)

×
(
d(x2n, x2n+1) + d(x2n, x2n+1) + d(x2n, x2n+2)

)−1]
= k d(x2n, x2n+1)

×
[d(x2n, x2n+2) + 2d(x2n, x2n+1)

d(x2n, x2n+2) + 2d(x2n, x2n+1)

= k d(x2n, x2n+1). (3.2)

Similarly, we have

d(x2n, x2n+1) = d(Sx2n−1, Tx2n)

- k
[(

d(x2n−1, Sx2n−1)d(x2n−1, Tx2n) + [d(x2n−1, x2n)]
2

+d(x2n−1, Sx2n−1)d(x2n−1, x2n)
)

×
(
d(x2n−1, Sx2n−1) + d(x2n−1, x2n) + d(x2n−1, Tx2n)

)−1]
= k

[(
d(x2n−1, x2n)d(x2n−1, x2n+1) + [d(x2n−1, x2n)]

2

+d(x2n−1, x2n)d(x2n−1, x2n)
)

×
(
d(x2n−1, x2n) + d(x2n−1, x2n) + d(x2n−1, x2n+1)

)−1]
= k d(x2n−1, x2n)

×
[d(x2n−1, x2n+1) + 2d(x2n−1, x2n)

d(x2n−1, x2n+1) + 2d(x2n−1, x2n)

= k d(x2n−1, x2n). (3.3)
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By induction, we have

d(xn+1, xn) - k d(xn, xn−1) - k2 d(xn−1, xn−2) - . . .

- kn d(x1, x0). (3.4)

Let m,n ≥ 1 and m > n, we have

d(xn, xm) - d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3)

+ · · ·+ d(xn+m−1, xm)

- [kn + kn+1 + kn+2 + · · ·+ kn+m−1]d(x1, x0)

-
[ kn

1− k

]
d(x1, x0)

and so

|d(xn, xm)| ≤
[ kn

1− k

]
|d(x1, x0)| → 0 as m,n → ∞.

This implies that {xn} is a Cauchy sequence. Since X is complete, there exists p ∈ X such that

xn → p as n → ∞. It follows that p = Sp, otherwise d(p, Sp) = z > 0 and we would then have

z - d(p, x2n+2) + d(x2n+2, Sp)

= d(p, x2n+2) + d(Sp, Tx2n+1)

- d(p, x2n+2)

+k
[d(p, Sp)d(p, Tx2n+1) + [d(p, x2n+1)]2 + d(p, Sp)d(p, x2n+1)

d(p, Sp) + d(p, x2n+1) + d(p, Tx2n+1)

]
= d(p, x2n+2)

+k
[d(p, Sp)d(p, x2n+2) + [d(p, x2n+1)]2 + d(p, Sp)d(p, x2n+1)

d(p, Sp) + d(p, x2n+1) + d(p, x2n+2)

]
.

This implies that

|z| ≤ |d(p, x2n+2)|

+k
[ |z||d(p, x2n+2)|+ [|d(p, x2n+1)|]2 + |z||d(p, x2n+1)|

|z|+ |d(p, x2n+1)|+ |d(p, x2n+2)|

]
.

Letting n → ∞, it follows that

|z| ≤ 0

which is a contradiction and so |z| = 0, that is, p = Sp.

In an exactly the similar way, we can prove that p = Tp. Hence Sp = Tp = p. This shows
that p is a common �xed point of S and T .

To prove uniqueness of common �xed point of S and T , assume that p∗ is another common

�xed point of S and T , that is, Sp∗ = Tp∗ = p∗ such that p ̸= p∗. Then

d(p, p∗) = d(Sp, Tp∗)

- k
[d(p, Sp)d(p, Tp∗) + [d(p, p∗)]2 + d(p, Sp)d(p, p∗)

d(p, Sp) + d(p, p∗) + d(p, Tp∗)

]
= k

[d(p, p)d(p, p∗) + [d(p, p∗)]2 + d(p, p)d(p, p∗)

d(p, p) + d(p, p∗) + d(p, p∗)

]
so that |d(p, p∗)| ≤ k

2
|d(p, p∗)| ≤ k |d(p, p∗)| < |d(p, p∗)|, since 0 < k < 1, which is a contra-

diction and hence d(p, p∗) = 0. Thus p = p∗, which proves the uniqueness of common �xed

point.
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Secondly, we consider the case: d(x2n, Sx2n)+d(x2n, x2n+1)+d(x2n, Tx2n+1) = 0 (for any

n) implies d(Sx2n, Tx2n+1) = 0, so that x2n = Sx2n = x2n+1 = Tx2n+1 = x2n+2. Thus, we

have x2n+1 = Sx2n = x2n, so there exist k1 and l1 such that k1 = Sl1 = l1. Using the same

arguments as above, one can also show that there exist k2 and l2 such that k2 = T l2 = l2. As
d(l1, Sl1) + d(l1, l2) + d(l1, T l2) = 0 (according to the de�nition) implies d(Sl1, T l2) = 0, so

that k1 = Sl1 = T l2 = k2 which in turn yields that k1 = Sl1 = Sk1. Similarly, one can also have

k2 = Tk2. As k1 = k2 implies Sk1 = Tk1 = k1, therefore k1 = k2 is a common �xed point of S
and T .

We now prove that S and T have unique common �xed point. For this, assume that k∗
1
in

X is another common �xed point of S and T , that is, Sk∗
1
= Tk∗

1
= k∗

1
such that k1 ̸= k∗

1
. As

d(k1, Sk1) + d(k1, k∗1 ) + d(k1, Tk∗1 ) = 0, therefore d(k1, k∗1 ) = d(Sk1, Tk∗1 ) = 0. This implies

that k∗
1
= k1. This completes the proof.

Putting S = T in Theorem 3.1, we have the following result.

Corollary 3.2. Let (X, d) be a complete complex valued metric space. Suppose that the mapping

T : X → X satis�es:

d(Tx, Ty) - k
[d(x, Tx)d(x, Ty) + [d(x, y)]2 + d(x, Tx)d(x, y)

d(x, Tx) + d(x, y) + d(x, Ty)

]
for all x, y ∈ X such that x ̸= y, d(x, Tx) + d(x, y) + d(x, Ty) ̸= 0, where k ∈ [0, 1) is a

constant or d(Tx, Ty) = 0 if d(x, Tx) + d(x, y) + d(x, Ty) = 0. Then T has a unique �xed

point in X.

Corollary 3.3. Let (X, d) be a complete complex valued metric space. Suppose that the mapping

T : X → X satis�es (for �xed n):

d(Tnx, Tny) - k
[d(x, Tnx)d(x, Tny) + [d(x, y)]2 + d(x, Tnx)d(x, y)

d(x, Tnx) + d(x, y) + d(x, Tny)

]
for all x, y ∈ X such that x ̸= y, d(x, Tnx) + d(x, y) + d(x, Tny) ̸= 0, where k ∈ [0, 1) is a

constant or d(Tnx, Tny) = 0 if d(x, Tnx)+d(x, y)+d(x, Tny) = 0. Then T has a unique �xed

point in X.

Proof. By Corollary 3.2, there exists v ∈ X such that Tnv = v. Then

d(Tv, v) = d(TTnv, Tnv) = d(TnTv, Tnv)

- k
[d(Tv, TnTv)d(Tv, Tnv) + [d(Tv, v)]2 + d(Tv, TnTv)d(Tv, v)

d(Tv, TnTv) + d(Tv, v) + d(Tv, Tnv)

]
= k

[d(Tv, TTnv)d(Tv, Tnv) + [d(Tv, v)]2 + d(Tv, TTnv)d(Tv, v)

d(Tv, TTnv) + d(Tv, v) + d(Tv, Tnv)

]
= k

[d(Tv, Tv)d(Tv, v) + [d(Tv, v)]2 + d(Tv, Tv)d(Tv, v)

d(Tv, Tv) + d(Tv, v) + d(Tv, v)

]
=

k

2
d(Tv, v)

- k d(Tv, v)

so that |d(Tv, v)| ≤ k |d(Tv, v)| < |d(Tv, v)|, since 0 < k < 1, which is a contradiction and so

d(Tv, v) = 0, that is, Tv = v. This shows that T has a unique �xed point in X . This completes

the proof.

As an application of Theorem 3.1, we prove the following theorem for two �nite families of

mappings.

Theorem 3.4. If {Ti}mi=1
and {Si}ni=1

are two �nite pairwise commuting �nite families of self-

mappings de�ned on a complete complex valued metric space (X, d) such that S and T (with

T = T1T2 . . . Tm and S = S1S2 . . . Sn) satisfy the condition (3.1), then the component maps of

the two families {Ti}mi=1
and {Si}ni=1

have a unique common �xed point.
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Proof. In view of Theorem 3.1 one can conclude that T and S have a unique common �xed point

p, that is, T (p) = S(p) = p. Now we are required to show that p is a common �xed point of

all the components maps of both the families. In view of pairwise commutativity of the families

{Ti}mi=1
and {Si}ni=1

, (for every 1 ≤ k ≤ m) we can write

Tk(p) = TkS(p) = STk(p) and Tk(p) = TkT (p) = TTk(p)

which show that Tk(p) (for every k) is also a common �xed point of T and S. By using the

uniqueness of common �xed point, we can write Tk(p1) = p1 (for every k) which shows that p1
is a common �xed point of the family {Ti}mi=1

. Using the same arguments as above, one can also

show that (for every 1 ≤ k ≤ n) Sk(p1) = p1. This completes the proof.

By taking T1 = T2 = · · · = Tm = G and S1 = S2 = · · · = Sn = F , in Theorem 3.4, we

derive the following result involving iterates of mappings.

Corollary 3.5. If F and G are two commuting self-mappings de�ned on a complete complex

valued metric space (X, d) satisfying the condition:

d(Fnx,Gmy) - k
[d(x, Fnx)d(x,Gmy) + [d(x, y)]2 + d(x, Fnx)d(x, y)

d(x, Fnx) + d(x, y) + d(x,Gmy)

]
for all x, y ∈ X such that x ̸= y, d(x, Fnx) + d(x, y) + d(x,Gmy) ̸= 0, where k ∈ [0, 1) is a

constant or d(Fnx,Gmy) = 0 if d(x, Fnx) + d(x, y) + d(x,Gmy) = 0. Then F and G have a

unique common �xed point in X.

By setting m = n and F = G = T in Corollary 3.5, we deduce the following result.

Corollary 3.6. Let (X, d) be a complete complex valued metric space and let the mapping

T : X → X satis�es (for �xed n):

d(Tnx, Tny) - k
[d(x, Tnx)d(x, Tny) + [d(x, y)]2 + d(x, Tnx)d(x, y)

d(x, Tnx) + d(x, y) + d(x, Tny)

]
for all x, y ∈ X such that x ̸= y, d(x, Tnx) + d(x, y) + d(x, Tny) ̸= 0, where k ∈ [0, 1) is a

constant or d(Tnx, Tny) = 0 if d(x, Tnx)+d(x, y)+d(x, Tny) = 0. Then T has a unique �xed

point in X.

Proof. By Corollary 3.2, we obtain w ∈ X such that Tnw = w. The rest of the proof is same as

that of Corollary 3.3. This completes the proof.

Example 3.7. Let X = {0, 1
2
, 2} and partial order ′ -′ is de�ned as x - y iff x ≥ y. Let the

complex valued metric d be given as

d(x, y) = |x− y|
√
2ei

π
4 = |x− y|(1+ i) for x, y ∈ X.

Let T : X → X be de�ned as follows:

T (0) = 0, T (
1

2
) = 0, T (2) =

1

2
.

Case I. Take x = 1

2
, y = 0, T (0) = 0 and T ( 1

2
) = 0 in Corollary 3.2, then we have

d(Tx, Ty) = 0 ≤ k.
(1+ i

2

)
.

This implies that k ≥ 0. If we take 0 < k < 1, then all the conditions of Corollary 3.2 are

satis�ed and of course 0 is the unique �xed point of T .

Case II. Take x = 2, y = 1

2
, T (2) = 1

2
and T ( 1

2
) = 0 in Corollary 3.2, then we have

d(Tx, Ty) =
1+ i

2
≤ k.

3(1+ i)

2
.
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This implies that k ≥ 1

3
. If we take 0 < k < 1, then all the conditions of Corollary 3.2 are

satis�ed and of course 0 is the unique �xed point of T .

Case III. Take x = 2, y = 0, T (2) = 1

2
and T (0) = 0 in Corollary 3.2, then we have

d(Tx, Ty) =
1+ i

2
≤ k.

20(1+ i)

11
.

This implies that k ≥ 11

40
. If we take 0 < k < 1, then all the conditions of Corollary 3.2 are

satis�ed and of course 0 is the unique �xed point of T .

Example 3.8. Let X = {0, 1
2
, 2} and partial order ′ -′ is de�ned as x - y iff x ≥ y. Let the

complex valued metric d be given as

d(x, y) = |x− y|
√
2ei

π
4 = |x− y|(1+ i) for x, y ∈ X.

Let S, T : X → X be de�ned as follows:

S(0) = 0, S(
1

2
) = 0, S(2) =

1

2
;

T (0) = 0, T (
1

2
) = 2, T (2) = 0.

Case I. Take x = 1

2
, y = 0, S( 1

2
) = 0 and T (0) = 0 in Theorem 3.1, then we have

d(Sx, Ty) = 0 ≤ k.
(1+ i

2

)
.

This implies that k ≥ 0. If we take 0 < k < 1, then all the conditions of Theorem 3.1 are

satis�ed and of course 0 is the unique common �xed point of S and T .

Case II. Take x = 2, y = 1

2
, S(2) = 1

2
and T ( 1

2
) = 2 in Theorem 3.1, then we have

d(Sx, Ty) =
3(1+ i)

2
≤ k.3(1+ i).

This implies that k ≥ 1

2
. If we take 0 < k < 1, then all the conditions of Theorem 3.1 are

satis�ed and of course 0 is the unique common �xed point of S and T .

Case III. Take x = 2, y = 0, S(2) = 1

2
and T (0) = 0 in Theorem 3.1, then we have

d(Sx, Ty) =
1+ i

2
≤ k.2(1+ i).

This implies that k ≥ 1

4
. If we take 0 < k < 1, then all the conditions of Theorem 3.1 are

satis�ed and of course 0 is the unique common �xed point of S and T .

4 Conclusion

In this paper, we establish some common �xed point theorems using rational contraction in the

setting of complex-valued metric spaces. Our results extend and generalize several known results

from the current existing literature.
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