On Locally ϕ -semisymmetric Kenmotsu Manifolds

Absos Ali Shaikh and Ali Akbar

Communicated by Ayman Badawi

MSC 2010 Classifications:53C25, 53D15.

Keywords and phrases: Kenmotsu manifold, locally φ- symmetric, φ-semisymmetric, manifold of constant curvature.

Abstract The object of the present paper is to study the locally ϕ - semisymmetric Kenmotsu manifolds along with the characterization of such notion.

1 Introduction

Let M be an n-dimensional, $n \geq 3$, connected smooth Riemannian manifold endowed with the Riemannian metric g. Let ∇ , R, S and r be the Levi-Civita connection, curvature tensor, Ricci tensor and the scalar curvature of M respectively. The manifold M is called locally symmetric due to Cartan ([2], [3]) if the local geodesic symmetry at $p \in M$ is an isometry, which is equivalent to the fact that $\nabla R = 0$. Generalizing the concept of local symmetry, the notion of semisymmetric manifold was introduced by Cartan [4] and fully classified by Szabo ([11], [12], [13]). The manifold M is said to be semisymmetric if (R(U,V).R)(X,Y)Z = 0, for all vector fields X, Y, Z, U, V on M, where R(U,V) is considered as the derivation of the tensor algebra at each point of M.

In 1977 Takahashi [14] introduced the notion of local ϕ - symmetry on a Sasakian manifold. A Sasakian manifold is said to be locally ϕ -symmetric if

$$\phi^{2}((\nabla_{W}R)(X,Y)Z) = 0, \tag{1.1}$$

for all horizontal vector fields X, Y, Z, W on M that is all vector fields orthogonal to ξ , where ϕ is the structure tensor of the manifold M. The concept of local ϕ - symmetry on various structures and their generalizations or extension are studied in ([6], [7], [8], [9]). By extending the notion of semisymmetry and generalizing the concept of local ϕ - symmetry of Takahashi [14], the first author and his coauthor introduced [10] the notion of local ϕ -semisymmetry on a Sasakian manifold. A Sasakian manifold $M, n \geq 3$, is said to be locally ϕ -semisymmetric if

$$\phi^2((R(U,V).R)(X,Y)Z) = 0, (1.2)$$

for all horizontal vector fields X, Y, Z, U, V on M. In the present paper we study locally ϕ -semisymmetric Kenmotsu manifolds. The paper is organized as follows:

In section 2 some rudimentary facts and curvature related properties of Kenmotsu manifolds are discussed. In section 3 we study locally ϕ -semisymmetric Kenmotsu manifolds and obtained the characterization of such notion.

2 Preliminaries

Let M be a (2n+1)-dimensional connected smooth manifold endowed with an almost contact metric structure (ϕ, ξ, η, g) , where ϕ is a tensor field of type (1,1), ξ is a vector field, η is an 1-form and g is a Riemannian metric on M such that [1]

$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1. \tag{2.1}$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \tag{2.2}$$

for all vector fields X, Y on M.

Then we have [1]

$$\phi \xi = 0, \quad \eta(\phi X) = 0, \quad \eta(X) = g(X, \xi).$$
 (2.3)

$$g(\phi X, X) = 0. \tag{2.4}$$

$$g(\phi X, Y) = -g(X, \phi Y) \tag{2.5}$$

for all vector fields X, Y on M.

Ιf

$$(\nabla_X \phi) Y = -q(X, \phi Y) \xi - \eta(Y) \phi X, \tag{2.6}$$

$$\nabla_X \xi = X - \eta(X)\xi,\tag{2.7}$$

holds on M, then it is called a Kenmotsu manifold [5]. In a Kenmotsu manifold the following relations hold [5]

$$(\nabla_X \eta) Y = g(X, Y) - \eta(X) \eta(Y), \tag{2.8}$$

$$\eta(R(X,Y)Z) = q(X,Z)\eta(Y) - q(Y,Z)\eta(X),$$
(2.9)

$$R(X,Y)\xi = \eta(X)Y - \eta(Y)X,\tag{2.10}$$

$$R(X,\xi)Z = g(X,Z)\xi - \eta(Z)X,\tag{2.11}$$

$$R(X,\xi)\xi = \eta(X)\xi - X,\tag{2.12}$$

$$S(X,\xi) = -2n\eta(X),\tag{2.13}$$

$$(\nabla_W R)(X, Y)\xi = g(X, W)Y - g(Y, W)X - R(X, Y)W, \tag{2.14}$$

$$(\nabla_W R)(X, \xi)Z = g(X, Z)W - g(W, Z)X - R(X, W)Z, \tag{2.15}$$

for all vector fields X, Y, Z and W on M.

In a Kenmotsu manifold we also have [5]

$$R(X,Y)\phi W = g(Y,W)\phi X - g(X,W)\phi Y + g(X,\phi W)Y - g(Y,\phi W)X + \phi R(X,Y)W.$$
 (2.16)

Applying ϕ and using (2.1) we get from (2.16)

$$\phi R(X,Y)\phi W = -g(Y,W)X + g(X,W)Y + g(X,\phi W)\phi Y - g(Y,\phi W)\phi X
- R(X,Y)W.$$
(2.17)

In view of (2.17) we obtain from (2.14)

$$(\nabla_W R)(X, Y)\xi = g(Y, \phi W)\phi X - g(X, \phi W)\phi Y + \phi R(X, Y)\phi W. \tag{2.18}$$

3 Locally ϕ -semisymmetric Kenmotsu Manifolds

Definition 3.1. A Kenmotsu manifold M is said to be locally ϕ -semisymmetric if

$$\phi^2((R(U,V).R)(X,Y)Z) = 0, (3.1)$$

for all horizontal vector fields X, Y, Z, U, V on M.

First we suppose that M is a Kenmotsu manifold such that

$$\phi^2((R(U,V).R)(X,Y)\xi) = 0, (3.2)$$

for all horizontal vector fields X, Y, U and V on M.

Differentiating (2.18) covariantly with respect to a horizontal vector field U, we get

$$(\nabla_{U}\nabla_{V}R)(X,Y)\xi$$

$$= [g(X,\phi V)g(U,\phi Y) - g(Y,\phi V)g(U,\phi X) + g(\phi U,R(X,Y)\phi V)]\xi$$

$$+ \phi(\nabla_{U}R)(X,Y)\phi V.$$
(3.3)

Using (2.16) we obtain from (3.3)

$$(\nabla_{U}\nabla_{V}R)(X,Y)\xi = [g(Y,V)g(U,X) - g(X,V)g(U,Y) + g(R(X,Y)V,U)]\xi + \phi(\nabla_{U}R)(X,Y)\phi V.$$
(3.4)

Interchanging U and V on (3.4) we get

$$(\nabla_{V}\nabla_{U}R)(X,Y)\xi = [g(Y,U)g(V,X) - g(X,U)g(V,Y) + g(R(X,Y)U,V)]\xi + \phi(\nabla_{V}R)(X,Y)\phi U.$$
(3.5)

From (3.4) and (3.5) it follows that

$$(R(U,V).R)(X,Y)\xi = 2[g(Y,V)g(U,X) - g(X,V)g(U,Y) - R(X,Y,U,V)]\xi + \phi\{(\nabla_{U}R)(X,Y)\phi V - (\nabla_{V}R)(X,Y)\phi U\}.$$
(3.6)

Again from (3.2) we have

$$(R(U,V).R)(X,Y)\xi = 0,$$
 (3.7)

From (3.6) and (3.7) we have

$$2[g(Y,V)g(U,X) - g(X,V)g(U,Y) - R(X,Y,U,V)]\xi + \phi\{(\nabla_{U}R)(X,Y)\phi V - (\nabla_{V}R)(X,Y)\phi U\} = 0.$$
(3.8)

Applying ϕ on (3.8) and using (2.16), (2.18) and (2.3) we get

$$(\nabla_U R)(X, Y)\phi V - (\nabla_V R)(X, Y)\phi U = 0. \tag{3.9}$$

In view of (3.8) and (3.9) we get

$$R(X, Y, U, V) = g(Y, V)g(U, Y) - g(X, V)g(U, Y),$$
(3.10)

$$R(X,Y,U,V) = -\{g(X,V)g(U,Y) - g(Y,V)g(U,X)\},\tag{3.11}$$

for all horizontal vector fields X, Y, U and V on M. Hence M is of constant ϕ -holomorphic sectional curvature -1 and hence of constant curvature -1. This leads to the following:

Theorem 3.2. If a Kenmotsu manifold M satisfies the condition $\phi^2((R(U,V).R)(X,Y)\xi) = 0$, for all horizontal vector fields X, Y, Z, U and V on M, then M is a manifold of constant curvature -1.

We consider a Kenmotsu manifold which is locally ϕ -semisymmetric. Then from (3.1) we have

$$(R(U,V).R)(X,Y)Z = g((R(U,V).R)(X,Y)Z,\xi)\xi,$$
(3.12)

from which we get

$$(R(U,V).R)(X,Y)Z = -g((R(U,V).R)(X,Y)\xi,Z)\xi$$
(3.13)

for all horizontal vector fields X, Y, Z, U, V on M.

Now taking inner product on both side of (3.6) with a horizontal vector field Z, we obtain

$$g((R(U,V).R)(X,Y)\xi,Z) = g(\phi(\nabla_{U}R)(X,Y)\phi V,Z) - g(\phi(\nabla_{V}R)(X,Y)\phi U,Z).$$
(3.14)

Using (2.5) and (3.13) we get from (3.14)

$$(R(U,V).R)(X,Y)Z = [q((\nabla_{U}R)(X,Y)\phi V, \phi Z) - q((\nabla_{V}R)(X,Y)\phi U, \phi Z)]\xi$$
(3.15)

Differentiating (2.16) covariantly with respect to a horizontal vector field V, we get

$$(\nabla_{V}R)(X,Y)\phi Z = [-g(Y,Z)g(V,\phi X) + g(X,Z)g(V,\phi Y) - g(V,R(X,Y)Z)]\xi + \phi(\nabla_{V}R)(X,Y)Z.$$
 (3.16)

Taking inner product on both sides of (3.16) with a horizontal vector field U, we obtain

$$g\{(\nabla_{V}R)(X,Y)\phi Z,U\} = g\{\phi(\nabla_{V}R)(X,Y)Z,U\}.$$
(3.17)

Using (2.5) we get from above

$$g\{(\nabla_V R)(X, Y)\phi Z, U\} = -g\{(\nabla_V R)(X, Y)Z, \phi U\}. \tag{3.18}$$

In view of (3.18) we obtain from (3.15)

$$(R(U,V).R)(X,Y)Z = [-g((\nabla_U R)(X,Y)V,\phi^2 Z) + g((\nabla_V R)(X,Y)U,\phi^2 Z)]\xi, \quad (3.19)$$

which implies that

$$(R(U,V).R)(X,Y)Z = [g((\nabla_U R)(X,Y)V,Z) - g((\nabla_V R)(X,Y)U,Z)]\xi, \tag{3.20}$$

i.e.

$$(R(U,V).R)(X,Y)Z = [-(\nabla_U R)(X,Y,Z,V) + (\nabla_V R)(X,Y,Z,U)]\xi, \tag{3.21}$$

for any horizontal vector field X, Y, Z, U, V on M. Hence we can state the following:

Theorem 3.3. A Kenmotsu manifold M, $n \geq 3$, is locally ϕ -semisymmetric if and only if the relation (3.21) holds for all horizontal vector fields X, Y, Z, U, V on M.

4 Characterization of Locally ϕ -semisymmetric Kenmotsu Manifolds

In this section we investigate the condition of local ϕ -semisymmetry of a Kenmotsu manifold for arbitrary vector fields on M. To find this we need the following results.

Lemma 4.1. For any horizontal vector field X, Y and Z on a Kenmotsu manifold M, we have

$$(\nabla_{\varepsilon}R)(X,Y)Z = (\ell_{\varepsilon}R)(X,Y)Z + 2R(X,Y)Z.$$

Proof. Let X^* , Y^* and Z^* be ξ - invariant horizontal vector field extensions on X, Y and Z respectively. Since X^* is ξ - invariant of X, we get by using (2.7)

$$\nabla_{\xi} X^* = \nabla_X^* \xi = X^* \tag{4.2}$$

Now making use of invariance of X^* , Y^* and Z^* by ξ and using (4.2) we get

$$(\ell_{\xi}R)(X^{*},Y^{*})Z^{*} = [\xi, R(X^{*},Y^{*})Z^{*}]$$

$$= \nabla_{\xi}(R(X^{*},Y^{*})Z^{*}) - \nabla_{R(X^{*},Y^{*})Z^{*}}\xi$$

$$= (\nabla_{\xi}R)(X^{*},Y^{*})Z^{*} + R(\nabla_{\xi}X^{*},Y^{*})Z^{*} + R(X^{*},\nabla_{\xi}Y^{*})Z^{*}$$

$$+ R(X^{*},Y^{*})\nabla_{\xi}Z^{*} - R(X^{*},Y^{*})Z^{*}$$

$$= (\nabla_{\xi}R)(X^{*},Y^{*})Z^{*} + R(X^{*},Y^{*})Z^{*} + R(X^{*},Y^{*})Z^{*}$$

$$+ R(X^{*},Y^{*})Z^{*} - R(X^{*},Y^{*})Z^{*}$$

$$= (\nabla_{\xi}R)(X^{*},Y^{*})Z^{*} + 2R(X^{*},Y^{*})Z^{*}$$

$$= (\nabla_{\xi}R)(X^{*},Y^{*})Z^{*} + 2R(X^{*},Y^{*})Z^{*}$$

Hence we get the conclusion.

Lemma 4.2. For any vector field X, Y and Z on a Kenmotsu manifold M we have

$$R(\phi^{2}X, \phi^{2}Y)\phi^{2}Z = -R(X, Y)Z + \eta(Z)\{\eta(X)Y - \eta(Y)X\} + \{\eta(Y)g(X, Z) - \eta(X)g(Y, Z)\}\xi$$
(4.4)

Now lemma (4.1) and lemma (4.2) together imply the following:

Lemma 4.3. For any vector field X, Y, Z and U on a Kenmotsu manifold M, we have $(\nabla_{\phi^2 U} R)(\phi^2 X, \phi^2 Y)\phi^2 Z$

$$= (\nabla_U R)(X, Y)Z - \eta(X)H_1(Y, U)Z + \eta(Y)H_1(X, U)Z + \eta(Z)H_1(X, Y)U$$

- + $\eta(U)[\eta(Z)\{\eta(X)\ell_{\xi}Y \eta(Y)\ell_{\xi}X\} (\ell_{\xi}R)(X,Y)Z]$
- + $2\eta(U)[R(X,Y)Z \eta(Z)\{\eta(X)Y \eta(Y)X\}$
- $\{\eta(Y)g(X,Z) \eta(X)g(Y,Z)\}\xi].$

where the tensor field H_1 of type (1, 3) is given by

$$H_1(X,Y)Z = R(X,Y)Z - g(X,Z)Y + g(Y,Z)X,$$
 (4.5)

for all vector fields X, Y, Z on M.

Now let X, Y, Z, U, V be arbitrary vector fields on M.

Now we compute $(R(\phi^2U, \phi^2V).R)(\phi^2X, \phi^2Y)\phi^2Z$ in two different ways. Firstly from (3.21), (2.1) and (4.3) we get

$$(R(\phi^{2}U,\phi^{2}V).R)(\phi^{2}X,\phi^{2}Y)\phi^{2}Z$$

$$= \{(\nabla_{U}R)(X,Y,Z,V) - (\nabla_{V}R)(X,Y,Z,U)\}\xi$$

$$+ \{\eta(U)\eta\{(\nabla_{V}R)(X,Y)Z)\} - \eta(V)\eta\{(\nabla_{U}R)(X,Y)Z)\}\}\xi$$

$$- \eta(X)\{H(Y,U,Z,V) - H(Y,V,Z,U)\}\xi$$

$$+ \eta(Y)\{H(X,U,Z,V) - H(X,V,Z,U)\}\xi$$

$$+ \eta(Z)\{H(X,Y,U,V) - H(X,Y,V,U)\}\xi$$

$$+ \eta(X)\eta(Z)\{\eta(U)g(\ell_{\xi}Y,V) - \eta(V)g(\ell_{\xi}Y,U)\}\xi$$

$$- \eta(Y)\eta(Z)\{\eta(U)g(\ell_{\xi}X,V) - \eta(V)g(\ell_{\xi}X,U)\}\xi$$

$$+ 2\{\eta(U)R(X,Y,Z,V) - \eta(V)R(X,Y,Z,U)\}\xi$$

$$+ 2\eta(Z)\eta(V)\{\eta(X)g(Y,U) - \eta(Y)g(X,U)\}\xi$$

$$- 2\eta(Z)\eta(U)\{\eta(X)g(Y,V) - \eta(Y)g(X,V)\}\xi,$$

where $H(X,Y,Z,U) = g(H_1(X,Y)Z,U)$ and the tensor field H_1 of type (1,3) is given by (4.5) Secondly we have

$$(R(\phi^{2}U, \phi^{2}V).R)(\phi^{2}X, \phi^{2}Y)\phi^{2}Z = R(\phi^{2}U, \phi^{2}V)R(\phi^{2}X, \phi^{2}Y)\phi^{2}Z - R(R(\phi^{2}U, \phi^{2}V)\phi^{2}X, \phi^{2}Y)\phi^{2}Z - R(\phi^{2}X, R(\phi^{2}U, \phi^{2}V)\phi^{2}Y)\phi^{2}Z - R(\phi^{2}X, \phi^{2}Y)R(\phi^{2}U, \phi^{2}V)\phi^{2}Z.$$

$$(4.7)$$

By straightforward calculation from (4.7) we get

$$(R(\phi^{2}U, \phi^{2}V).R)(\phi^{2}X, \phi^{2}Y)\phi^{2}Z$$

$$= -(R(U, V).R)(X, Y)Z$$

$$+ \eta(X)\{\eta(V)H_{1}(U, Y)Z - \eta(U)H_{1}(V, Y)Z\}$$

$$+ \eta(Y)\{\eta(V)H_{1}(X, U)Z - \eta(U)H_{1}(X, V)Z\}$$

$$+ \eta(Z)\{\eta(V)H_{1}(X, Y)U - \eta(U)H_{1}(X, Y)V\}$$

$$+ \{\eta(V)g(H(X, Y, Z, U) - \eta(U)g(H(X, Y, Z, V))\}\xi,$$

$$(4.8)$$

where $H(X, Y, Z, U) = g(H_1(X, Y)Z, U)$ and the tensor field H_1 of type (1, 3) is given by (4.5) From (4.6) and (4.8) we obtain

```
(R(U,V).R)(X,Y)Z = [-(\nabla_{U}R)(X,Y,Z,V) + (\nabla_{V}R)(X,Y,Z,U)]\xi 
+ [\eta(V)\eta\{(\nabla_{U}R)(X,Y)Z)\} - \eta(U)\eta\{(\nabla_{V}R)(X,Y)Z)\}]\xi 
+ \eta(X)[\{H(Y,U,Z,V) - H(Y,V,Z,U)\}\xi + \eta(V)H_{1}(U,Y)Z - \eta(U)H_{1}(V,Y)Z] 
- \eta(Y)[\{H(X,U,Z,V) - H(X,V,Z,U)\}\xi - \eta(V)H_{1}(X,U)Z + \eta(U)H_{1}(X,V)Z] 
- \eta(Z)[\{H(X,Y,U,V) - H(X,Y,V,U)\}\xi + \eta(V)H_{1}(X,U)Z - \eta(U)H_{1}(X,V)Z] 
+ \{\eta(V)H(X,Y,Z,U) - \eta(U)H(X,Y,Z,V)\}\xi 
- 2\{\eta(U)R(X,Y,Z,V) - \eta(V)R(X,Y,Z,U)\}\xi 
+ .\{\eta(U)(\ell_{\xi}R)(X,Y,Z,V) - \eta(V)(\ell_{\xi}R)(X,Y,Z,U)\}\xi 
- \eta(Z)\eta(X)\{\eta(U)g(\ell_{\xi}Y,V) - \eta(V)g(\ell_{\xi}Y,U)\}\xi 
+ \eta(Z)\eta(Y)\{\eta(U)g(\ell_{\xi}X,V) - \eta(Y)g(\ell_{\xi}X,U)\}\xi 
- 2\eta(Z)\eta(V)\{\eta(X)g(Y,U) - \eta(Y)g(X,U)\}\xi 
+ 2\eta(Z)\eta(U)\{\eta(X)g(Y,V) - \eta(Y)g(X,V)\}\xi. 
(4.9)
```

Thus in a locally ϕ -semisymmetric Kenmotsu manifold the relation (4.9) holds for all arbitrary vector fields X, Y, Z, U, V on M. Next if the relation (4.9) holds in a Kenmotsu manifold, then for any horizontal vector field X, Y, Z, U, V on M, we get the relation (3.21) and hence the manifold is locally ϕ -semisymmetric.

Thus we can state the following:

Theorem 4.4. A Kenmotsu manifold M is locally ϕ -semisymmetric if and only if the relation (4.9) holds for any arbitrary vector field X, Y, Z, U, V on M.

References

- [1] Blair, D. E., Contact manifolds in Riemannian geometry. Lecture Notes in Math. No. 509. Springer 1976.
- [2] Cartan, E., Sur une class remarquable despace de Riemann, I, Bull. de la Soc. Math. de France, 54(1926), 214-216.
- [3] Cartan, E., Sur une class remarquable despace de Riemann, II, Bull. de la Soc. Math. de France, 55(1927), 114-134.
- [4] Cartan, E., Lecons sur la geometric des espaces de Riemann, 2nd ed., Paris 1946.
- [5] Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(1972), 93-102.
- [6] Shaikh, A. A., Baishya, K. K., On ϕ -Symmetric LP- Sasakian manifolds, Yokohama Math. J., 52(2005), 97-112.
- [7] Shaikh, A. A., Baishya, K. K. and Eyasmin, S., On ϕ -recurrent generalized (k, μ) -contact metric manifolds, Lobachevski J. Math., 27(2007), 3-13.
- [8] Shaikh, A. A., Basu, T. and Eyasmin, S., On locally ϕ -symmetric $(LCS)_n$ -manifolds, Int. J. of Pure and Appl. Math., 41(8)(2007), 1161-1170.
- [9] Shaikh, A. A., Basu, T. and Eyasmin, S., On the existence of ϕ -recurrent $(LCS)_n$ -manifolds, Extracta Mathematica, 23(1)(2008), 71-83.
- [10] Shaikh, A. A., Mondal, C.K. and Ahmad, H., On locally ϕ -semisymmetric Sasakian manifolds, arxive: 1302. 2139v3 [math.DG] 11 Feb 2017.
- [11] Szabó, Z. I., Structure theorems on Riemannian spaces satisfying R(X,Y).R=0, I, The local version, J. Diff. Geom. 17(1982), 531-582.
- [12] Szabó, Z. I., Structure theorems on Riemannian spaces satisfying R(X,Y).R=0, II, Global version, Geom. Dedicata, 19(1983), 65-108.
- [13] Szabó, Z. I., Classification and construction of complete hypersurfaces satisfying R(X,Y).R=0, Acta. Sci. Math., 47(1984), 321-348.
- [14] Takahashi. T., Sasakian ϕ -symmetric spaces, Tohoku Math. J., 29(1977), 91-113.

Author information

Absos Ali Shaikh, Department of Mathematics, Aligarh Muslim University, Aligarh, Uttar Pradesh, India. E-mail: aask2003@yahoo.co.in, aashaikh@math.buruniv.ac.in

Ali Akbar, Department of Mathematics, Rampurhat College, Birbhum, West Bengal 731224, India. E-mail: aliakbar.akbar@rediffmail.com

Received: April 27, 2016.

Accepted: March 12, 2017.