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Abstract. With the notion of weighted sharing of values we investigate the uniqueness prob-

lems of certain type of differential-difference polynomials sharing a small function with �nite

weight. The research �ndings also include IM analogues of the theorem in which the small

function is allowed to be shared ignoring multiplicities. The results of the paper improve, sup-

plement and rectify the recent results due to K. Zhang and H.X. Yi [Acta Mathematica Scientia

34, 719-728 (2014)].

1 Introduction, De�nitions and Results

In this paper, by meromorphic functions we will always mean meromorphic functions in the

complex plane. We adopt the standard notations of the Nevanlinna theory of meromorphic func-

tions as explained in [8], [10] and [17]. It will be convenient to let E denote any set of positive

real numbers of �nite linear measure, not necessarily the same at each occurrence. For a non-

constant meromorphic function h, we denote by T (r, h) the Nevanlinna characteristic of h and

by S(r, h) any quantity satisfying S(r, h) = o{T (r, h)}(r → ∞, r ̸∈ E).

Let f and g be two nonconstant meromorphic functions and a ∈ C ∪ {∞}. If the zeros of
f − a and g − a coincide in locations and multiplicities, we say that f and g share the value a
CM (counting multiplicities). On the other hand, if the zeros of f − a and g− a coincide only in
locations, then we say that f and g share the value a IM (ignoring multiplicities). We say f and

g sharing a function h CM or IM if f −h and g−h share 0 CM or IM respectively. For a positive

integer p, we denote by Np(r, a; f) the counting function of a-points of f , where an a-point of
multiplicity m is counted m times if m ≤ p and p times if m > p. We say that a is a small

function of f , if a is a meromorphic function satisfying T (r, a) = S(r, f). We de�ne difference

operators△cf(z) = f(z + c)− f(z),△n
c f(z) = △n−1

c (△cf(z)), where c is a nonzero complex
number and n ≥ 2 is a positive integer. If c = 1, we denote △cf(z) = △f(z).

Many research works on meromorphic functions whose differential polynomials share cer-

tain value or �xed point have been done (see [5], [11], [13], [14], [16]). Now it is an increasing

interest to the difference equations and difference product in the complex plane. In 2006 R.G.

Halburd and R.J. Korhonen [6] established a version of Nevanlinna theory based on difference

operators. The difference logarithmic derivative lemma, given by R.G. Halburd and R.J. Ko-

rhonen [7] in 2006, Y.M. Chiang and S.J. Feng [3] in 2008 independently plays an important

role in considering the difference analogues of Nevanlinna theory. With the development of dif-

ference analogues of Nevanlinna theory, many mathematicians of the world paid their attention

on the distribution of zeros of difference polynomials. In this direction, we recall the following

uniqueness result of X.G. Qi, L.Z. Yang and K. Liu [12].

TheoremA. Let f and g be two transcendental entire functions of �nite order, and c be a nonzero
complex constant, and let n ≥ 6 be an integer. If fnf(z + c) and gng(z + c) share 1 CM, then

either fg = t1 or f = t2g for some constants t1 and t2 that satisfy tn+1

1
= tn+1

2
= 1.
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In 2010 J.L. Zhang [18] replaced value sharing as sharing of small function and obtained the

following result.

Theorem B. Let f and g be two transcendental entire functions of �nite order, and α(z)(̸≡ 0) be
a small function with respect to both f and g. Suppose that c is a nonzero complex constant and
n ≥ 7 is an integer. If fn(f − 1)f(z + c) and gn(g − 1)g(z + c) share α(z) CM, then f = g.

In 2012 M.R. Chen and Z.X. Chen [2] considered the zeros of the difference polynomial of

the form fn(fm − 1)
d∏

j=1

f(z + cj)
νj and obtained the following uniqueness theorem.

Theorem C. Let f and g be two transcendental entire functions of �nite order, α(z)(̸≡ 0) be
a common small function with respect to f and g, cj(j = 1, 2, ..., d) be distinct �nite complex
numbers. If n ≥ m+ 8σ, n, m, d and νj(j = 1, 2, ..., d) are integers, σ = S

d
j=1νj , and fn(fm −

1)
d∏

j=1

f(z + cj)
νj and gn(gm − 1)

d∏
j=1

g(z + cj)
νj share α(z) CM, then f = tg, where tm =

tn+σ = 1.

Recently K. Zhang and H.X. Yi [20] considered the zeros of more general difference polyno-

mials of the form (fn(fm−1)
d∏

j=1

f(z+cj)
νj )(k) and (fn(f−1)m

d∏
j=1

f(z+cj)
νj )(k) where f is

a transcendental entire function of �nite order, n, m, d, k and νj(j = 1, 2, ..., d) are nonnegative
integers and cj(j = 1, 2, ..., d) are distinct �nite complex numbers. They proved the following

uniqueness results which extend and improve many previous results in this direction.

Theorem D. Let f and g be two transcendental entire functions of �nite order, α(z)(̸≡ 0) be
a common small function with respect to f and g, cj(j = 1, 2, ..., d) be distinct �nite complex
numbers, and n,m, d, k and νj(j = 1, 2, ..., d) be nonnegative integers. If n ≥ 2k+m+σ+5 and

the differential-difference polynomials (fn(fm−1)
d∏

j=1

f(z+cj)
νj )(k) and (gn(gm−1)

d∏
j=1

g(z+

cj)
νj )(k) share α(z) CM, then f = tg, where tm = tn+σ = 1.

Theorem E. Let f and g be two transcendental entire functions of �nite order, α(z)(̸≡ 0) be
a common small function with respect to f and g, cj(j = 1, 2, ..., d) be distinct �nite complex
numbers, and n,m, d, k and νj(j = 1, 2, ..., d) be nonnegative integers. If n ≥ 4k−m+σ+9 and

the differential-difference polynomials (fn(f−1)m
d∏

j=1

f(z+cj)
νj )(k) and (gn(g−1)m

d∏
j=1

g(z+

cj)
νj )(k) share α(z) CM, then f = g.

Note 1. There are some mistakes in case of lower bound of n in Theorems D and E. One can

check it for m = 1, say. In addition to this it is not possible to conclude always that f = g in

Theorem E. It may happen under certain extra condition.

An increment to uniqueness theory has been to considering weighted sharing instead of shar-

ing IM or CM, this implies a gradual change from sharing IM to sharing CM. This notion of

weighted sharing has been introduced by I. Lahiri around 2001, which measure how close a

shared value is to being shared CM or to being shared IM. The de�nition is as follows.

De�nition 1.1. [9] Let k be a nonnegative integer or in�nity. For a ∈ C ∪ {∞} we denote by

Ek(a; f) the set of all a-points of f where an a-point of multiplicity m is counted m times if

m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g share the value a with

weight k.

The de�nition implies that if f , g share a value a with weight k, then z0 is an a-point of f
with multiplicitym(≤ k) if and only if it is an a-point of g with multiplicitym(≤ k) and z0 is an
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a-point of f with multiplicitym(> k) if and only if it is an a-point of g with multiplicity n(> k),
where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly if f , g
share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note that f , g share a

value a IM or CM if and only if f , g share (a, 0) or (a,∞) respectively.

If α(z) is a small function of f and g, then f , g share α(z) with weight k means that f − α,
g − α share the value 0 with weight k. Naturally one may ask the following questions which are
the motivation of the paper.

Question 1. Is it possible to relax in any way the nature of sharing the small function in Theorems

D and E keeping the lower bound of n �xed ?

Question 2.What will be the IM analogue of Theorems D and E ?

In the paper, our main concern is to �nd the possible answer of the above questions. We

prove following two theorems �rst one of which improves Theorem D and second one improves

Theorem E. Moreover, the results of the paper rectify Theorems D and E. The following are the

main results of the paper.

Theorem 1.2. Let f and g be two transcendental entire functions of �nite order, α(z)(̸≡ 0) be

a common small function with respect to f and g with �nitely many zeros, cj(j = 1, 2, ..., d)
be distinct �nite complex numbers, and n, m, l, d, k and νj(j = 1, 2, ..., d) be nonnegative

integers. If the differential-difference polynomials (fn(fm−1)
d∏

j=1

f(z+cj)
νj )(k) and (gn(gm−

1)
d∏

j=1

g(z + cj)
νj )(k) share (α, l), and one of

(a) l ≥ 2 and n ≥ max{m+ 5σ, 2k +m+ σ + 5};
(b) l = 1 and n ≥ max{m+ 5σ, 5k/2+ 3m/2+ 3σ/2+ 5};
(c) l = 0 and n ≥ max{m+ 5σ, 5k + 4m+ 4σ + 8},

holds, then f = tg, where tm = tn+σ = 1.

Theorem 1.3. Let f and g be two transcendental entire functions of �nite order, α(z)(̸≡ 0) be

a common small function with respect to f and g with �nitely many zeros, cj(j = 1, 2, ..., d)
be distinct �nite complex numbers, and n, m, l, d, k and νj(j = 1, 2, ..., d) be nonnegative

integers. Suppose that the differential-difference polynomials (fn(f − 1)m
d∏

j=1

f(z + cj)
νj )(k)

and (gn(g − 1)m
d∏

j=1

g(z + cj)
νj )(k) share (α, l). If m ≤ k + 1 and one of

(a) l ≥ 2 and n ≥ 2k +m+ σ + 5;

(b) l = 1 and n ≥ 5k/2+ 3m/2+ 3σ/2+ 5;

(c) l = 0 and n ≥ 5k + 4m+ 4σ + 8,

holds or if m > k + 1 and one of

(a) l ≥ 2 and n ≥ 4k −m+ σ + 9;

(b) l = 1 and n ≥ 5k −m+ 3σ/2+ 10;

(c) l = 0 and n ≥ 10k −m+ 4σ + 15,

holds, then either f = g or f and g satisfy the algebraic equation R(f, g) = 0 where R(f, g) is
given by

R(w1, w2) = wn
1 (w1 − 1)m

d∏
j=1

w1(z + cj)
νj − wn

2 (w2 − 1)m
d∏

j=1

w2(z + cj)
νj .
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2 Lemmas

Let F and G be two nonconstant meromorphic functions de�ned in the complex plane C. We

denote by H the following function:

H =

(
F ′′

F ′ − 2F ′

F − 1

)
−

(
G′′

G′ − 2G′

G− 1

)
.

Lemma 2.1. [15] Let f be a transcendental meromorphic function, and let Pn(f) be a polyno-

mial in f of the form

Pn(f) = anf
n(z) + an−1f

n−1(z) + ...+ a1f(z) + a0,

where an(̸= 0), an−1, ... , a1, a0 are complex numbers. Then

T (r, Pn(f)) = nT (r, f) +O(1).

Lemma 2.2. [19] Let f be a nonconstant meromorphic function, and p, k be positive integers.

Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f), (2.1)

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f). (2.2)

Lemma 2.3. [3] Let f be a meromorphic function of �nite order ρ, c ̸= 0 be �xed. Then for each

ε > 0, we have

T (r, f(z + c)) = T (r, f) +O{rρ−1+ε}+O{log r}.

Lemma 2.4. [2] Let f be an entire function of �nite order and F = fn(fm − 1)
d∏

j=1

f(z+ cj)
νj .

Then

T (r, F ) = (n+m+ σ)T (r, f) + S(r, f).

Arguing in a like manner as in Lemma 2.6 [2] we obtain the following lemma.

Lemma 2.5. Let f be an entire function of �nite order and F = fn(f − 1)m
d∏

j=1

f(z + cj)
νj .

Then

T (r, F ) = (n+m+ σ)T (r, f) + S(r, f).

Lemma 2.6. [9] Let f and g be two nonconstant meromorphic functions sharing (1, 2). Then

one of the following cases holds:

(i) T (r) ≤ N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g) + S(r),
(ii) f = g,
(iii) fg = 1,

where T (r) = max{T (r, f), T (r, g)} and S(r) = o{T (r)}.

Lemma 2.7. [1] Let F and G be two nonconstant meromorphic functions sharing (1, 1) and

H ̸≡ 0. Then

T (r, F ) ≤ N2(r, 0;F )+N2(r, 0;G)+N2(r,∞;F )+N2(r,∞;G)+ 1

2
N(r, 0;F )+ 1

2
N(r,∞;F )+

S(r, F ) + S(r,G),
and the same inequality holds for T (r,G).

Lemma 2.8. [1] Let F and G be two nonconstant meromorphic functions sharing (1, 0) and

H ̸≡ 0. Then

T (r, F ) ≤ N2(r, 0;F )+N2(r, 0;G)+N2(r,∞;F )+N2(r,∞;G)+2N(r, 0;F )+N(r, 0;G)+
2N(r,∞;F ) +N(r,∞;G) + S(r, F ) + S(r,G),
and the same inequality holds for T (r,G).
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Lemma 2.9. Let f and g be entire functions, n, m, k be positive integers, and let

F = (fn(fm − 1)
d∏

j=1

f(z + cj)
νj )(k), G = (gn(gm − 1)

d∏
j=1

g(z + cj)
νj )(k).

If there exists nonzero constants a1 and a2 such thatN(r, a1;F ) = N(r, 0;G) andN(r, a2;G) =
N(r, 0;F ), then n ≤ 2k +m+ σ + 2.

Proof. We put F1 = fn(fm − 1)
d∏

j=1

f(z + cj)
νj and G1 = gn(gm − 1)

d∏
j=1

g(z + cj)
νj . By the

second fundamental theorem of Nevanlinna we have

T (r, F ) ≤ N(r, 0;F ) +N(r, a1;F ) + S(r, F )

≤ N(r, 0;F ) +N(r, 0;G) + S(r, F ). (2.3)

Using (2.1), (2.2), (2.3) and Lemma 2.4 we obtain

(n+m+ σ)T (r, f) ≤ T (r, F )−N(r, 0;F ) +Nk+1(r, 0;F1) + S(r, f)

≤ N(r, 0;G) +Nk+1(r, 0;F1) + S(r, f)

≤ Nk+1(r, 0;F1) +Nk+1(r, 0;G1) + S(r, f) + S(r, g)

≤ (k +m+ σ + 1)(T (r, f) + T (r, g)) + S(r, f) + S(r, g). (2.4)

Similarly we obtain

(n+m+ σ)T (r, g) ≤ (k +m+ σ + 1)(T (r, f) + T (r, g)) + S(r, f) + S(r, g). (2.5)

Combining (2.4) and (2.5) we obtain

(n− 2k −m− σ − 2)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which gives n ≤ 2k +m+ σ + 2. This proves the lemma.

Lemma 2.10. Let f and g be entire functions, n, m, k be positive integers, and let

F = (fn(f − 1)m
d∏

j=1

f(z + cj)
νj )(k), G = (gn(g − 1)m

d∏
j=1

g(z + cj)
νj )(k).

If there exists nonzero constants c1 and c2 such that N(r, c1;F ) = N(r, 0;G) and N(r, c2;G) =
N(r, 0;F ), then n ≤ 2k +m+ σ + 2 for m ≤ k + 1 and n ≤ 4k −m+ σ + 4 for m > k + 1.

Proof. Arguing similarly as in the proof of Lemma 2.9 above we can deduce the result. Here

we omit the details.

Lemma 2.11. [2] Suppose that f and g are transcendental entire functions of �nite order, cj(j =
1, 2, ..., d) are distinct �nite complex numbers, and n, m, d, νj(j = 1, 2, ..., d) are integers. If

n ≥ m+ 5σ and

fn(fm − 1)
d∏

j=1

f(z + cj)
νj = gn(gm − 1)

d∏
j=1

g(z + cj)
νj

then f = tg, where tm = tn+σ = 1.
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3 Proof of the Theorem

Proof of Theorem 1.2. Let F1 = fn(fm−1)
d∏

j=1

f(z+ cj)
νj , G1 = gn(gm−1)

d∏
j=1

g(z+ cj)
νj ,

F = (F1)
(k)

α(z) and G = (G1)
(k)

α(z) . Then F and G are transcendental meromorphic functions that share

(1, l) except the zeros and poles of α(z). Using (2.1) and Lemma 2.4 we get

N2(r, 0;F ) ≤ N2(r, 0; (F1)
(k)) + S(r, f)

≤ T (r, (F1)
(k))− (n+m+ σ)T (r, f) +Nk+2(r, 0;F1) + S(r, f)

≤ T (r, F )− (n+m+ σ)T (r, f) +Nk+2(r, 0;F1) + S(r, f). (3.1)

Again by (2.2) we have

N2(r, 0;F ) ≤ N2(r, 0; (F1)
(k)) + S(r, f)

≤ Nk+2(r, 0;F1) + S(r, f). (3.2)

From (3.1) we get

(n+m+ σ)T (r, f) ≤ T (r, F ) +Nk+2(r, 0;F1)−N2(r, 0;F ) + S(r, f). (3.3)

We now discuss the following three cases separately.

Case 1. Let l ≥ 2. Suppose, if possible, that (i) of Lemma 2.6 holds. Then using (3.2) we obtain

from (3.3)

(n+m+ σ)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +Nk+2(r, 0;F1)

+S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + S(r, f) + S(r, g)

≤ (k +m+ σ + 2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (3.4)

In a similar way we obtain

(n+m+ σ)T (r, g) ≤ (k +m+ σ + 2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (3.5)

From (3.4) and (3.5) we obtain

(n− 2k −m− σ − 4){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

contradicting with the fact that n ≥ 2k+m+σ+5. So by Lemma 2.6 either FG = 1 or F = G.
Let FG = 1. Then

(fn(fm − 1)
d∏

j=1

f(z + cj)
νj )(k)(gn(gm − 1)

d∏
j=1

g(z + cj)
νj )(k) = α2.

Since the number of zeros of α(z) is �nite, it follows that f as well as g has �nitely many

zeros. We put f(z) = h(z)eβ(z), where h(z) is a nonzero polynomial and β(z) is a nonconstant

polynomial. Now replacing
∑d

j=1
νjβ(z+ cj) by γ(z) and

∏d
j=1

h(z+ cj)νj by µ(z) we deduce
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that

(fn(fm − 1)
d∏

j=1

f(z + cj)
νj )(k)

= (hn(z)enβ(z)(hm(z)emβ(z) − 1)
d∏

j=1

h(z + cj)
νjeνjβ(z+cj))(k)

= (hn(z)µ(z)enβ(z)+γ(z)(hm(z)emβ(z) − 1))(k)

= (hn+m(z)µ(z)e(n+m)β(z)+γ(z) − hn(z)µ(z)enβ(z)+γ(z))(k)

= e(n+m)β(z)+γ(z)P1(β(z), γ(z), h(z), µ(z), . . . , β
(k)(z), γ(k)(z), h(k)(z), µ(k)(z))

−enβ(z)+γ(z)P2(β(z), γ(z), h(z), µ(z), . . . , β
(k)(z), γ(k)(z), h(k)(z), µ(k)(z))

= enβ(z)+γ(z)(P1e
mβ(z) − P2).

Obviously P1e
mβ(z) − P2 has in�nite number of zeros, which contradicts with the fact that g is

an entire function. Now we assume that F = G. Then

(fn(fm − 1)
d∏

j=1

f(z + cj)
νj )(k) = (gn(gm − 1)

d∏
j=1

g(z + cj)
νj )(k).

Integrating we get

(fn(fm − 1)
d∏

j=1

f(z + cj)
νj )(k−1) = (gn(gm − 1)

d∏
j=1

g(z + cj)
νj )(k−1) + ck−1,

where ck−1 is a constant. If ck−1 ̸= 0, from Lemma 2.9 we obtain n ≤ 2k+m+ σ, a contradic-
tion. Hence ck−1 = 0. Repeating the process k-times, we obtain

fn(fm − 1)
d∏

j=1

f(z + cj)
νj = gn(gm − 1)

d∏
j=1

g(z + cj)
νj ,

which by Lemma 2.11 gives f = tg, where tm = tn+σ = 1.

Case 2. Let l = 1 and H ̸≡ 0. Using Lemma 2.7 and (3.2) we obtain from (3.3)

(n+m+ σ)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +
1

2
N(r, 0;F )

+
1

2
N(r,∞;F ) +Nk+2(r, 0;F1) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) +
1

2
Nk+1(r, 0;F1)

+S(r, f) + S(r, g)

≤ 1

2
(3k + 3m+ 3σ + 5)T (r, f) + (k +m+ σ + 2)T (r, g)

+S(r, f) + S(r, g)

≤ 1

2
(5k + 5m+ 5σ + 9)T (r) + S(r). (3.6)

In a similar way we obtain

(n+m+ σ)T (r, g) ≤ 1

2
(5k + 5m+ 5σ + 9)T (r) + S(r). (3.7)

Combining (3.6) and (3.7) we obtain(
n− 5k + 3m+ 3σ + 9

2

)
T (r) ≤ S(r),
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contradicting with the fact that n ≥ 5k/2 + 3m/2 + 3σ/2 + 5. We now assume that H = 0.

Then (
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
= 0.

Integrating both sides of the above equality twice we get

1

F − 1
=

A

G− 1
+B, (3.8)

where A(̸= 0) and B are constants. From (3.8) it is obvious that F , G share the value 1 CM and

so they share (1, 2). Hence we have n ≥ 2k +m+ σ + 5. Now we discuss the following three

subcases.

Subcase 1. Let B ̸= 0 and A = B. Then from (3.8) we get

1

F − 1
=

BG

G− 1
. (3.9)

If B = −1, then from (3.9) we obtain FG = 1, a contradiction as in Case 1. If B ̸= −1,
from (3.9), we have 1

F = BG
(1+B)G−1

and so N(r, 1

1+B ;G) = N(r, 0;F ). Now from the second

fundamental theorem of Nevanlinna, we get

T (r,G) ≤ N(r, 0;G) +N

(
r,

1

1+B
;G

)
+N(r,∞;G) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G).

Using (2.1) and (2.2) we obtain from above inequality

T (r,G) ≤ Nk+1(r, 0;F1) + T (r,G) +Nk+1(r, 0;G1)

−(n+m+ σ)T (r, g) + S(r, g).

Hence

(n+m+ σ)T (r, g) ≤ (k +m+ σ + 1){T (r, f) + T (r, g)}+ S(r, g).

Thus we obtain

(n− 2k −m− σ − 2){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction as n ≥ 2k +m+ σ + 5.

Subcase 2. Let B ̸= 0 and A ̸= B. Then from (3.8) we get F = (B+1)G−(B−A+1)
BG+(A−B) and so

N(r, B−A+1

B+1
;G) = N(r, 0;F ). Proceeding in a manner similar to Subcase 1 we arrive at a

contradiction.

Subcase 3. Let B = 0 and A ̸= 0. Then from (3.8) we get F = G+A−1

A and G = AF − (A− 1).

If A ̸= 1, we have N(r, A−1

A ;F ) = N(r, 0;G) and N(r, 1− A;G) = N(r, 0;F ). Now applying

Lemma 2.9 it can be shown that n ≤ 2k + m + σ + 2, a contradiction. Thus A = 1 and then

F = G. Now the result follows from Case 1.

Case 3. Let l = 0 and H ̸≡ 0. Using Lemma 2.8 and (3.2) we obtain from (3.3)

(n+m+ σ)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + 2N(r, 0;F )

+N(r, 0;G) +Nk+2(r, 0;F1) + 2N(r,∞;F )

+N(r,∞;G) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + 2Nk+1(r, 0;F1)

+Nk+1(r, 0;G1) + S(r, f) + S(r, g)

≤ (3k + 3m+ 3σ + 4)T (r, f) + (2k + 2m+ 2σ + 3)T (r, g)

+S(r, f) + S(r, g)

≤ (5k + 5m+ 5σ + 7)T (r) + S(r). (3.10)
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Similarly it follows that

(n+m+ σ)T (r, g) ≤ (5k + 5m+ 5σ + 7)T (r) + S(r). (3.11)

From (3.10) and (3.11) we get

(n− 5k − 4m− 4σ − 7)T (r) ≤ S(r),

contradicts with the assumption that n ≥ 5k+4m+4σ+8. ThereforeH = 0 and then proceeding

in a manner similar to Case 2 the result follows.

This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Let F2 = fn(f −1)m
d∏

j=1

f(z+ cj)
νj , G2 = gn(g−1)m

d∏
j=1

g(z+ cj)
νj ,

F = (F2)
(k)

α(z) and G = (G2)
(k)

α(z) . Then F and G are transcendental meromorphic functions that share

(1, l) except the zeros and poles of α(z). Arguing in a manner similar to the proof of Theorem
1.2 we obtain either FG = 1 or F = G. If F = G, then applying the same method of Theorem
1.2 and using Lemma 2.10 we get

fn(f − 1)m
d∏

j=1

f(z + cj)
νj = gn(g − 1)m

d∏
j=1

g(z + cj)
νj . (3.12)

Set h = f
g . If h is a constant, then substituting f = gh in (3.12), we deduce that

gm(hn+m+σ − 1)− mC1g
m−1(hn+m+σ−1 − 1) + ...+ (−1)m(hn+σ − 1) = 0,

which implies h = 1 and hence f = g. If h is not a constant, then we know by (3.12) that f and

g satisfy the algebraic equation R(f, g) = 0 where R(f, g) is given by

R(w1, w2) = wn
1 (w1 − 1)m

d∏
j=1

w1(z + cj)
νj − wn

2 (w2 − 1)m
d∏

j=1

w2(z + cj)
νj .

If FG = 1, using the samemethod as in Theorem 1.2 we arrive at a contradiction. This completes

the proof of Theorem 1.3.
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