Vol. 7(1)(2018), 131–140

Strong Forms of $\alpha_{[\gamma,\gamma']}$ - θ -semiopen Sets and $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous Functions

Hariwan Z. Ibrahim and Alias B. Khalaf

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary: 54A05, 54A10; Secondary: 54C05.

Keywords and phrases: $\alpha_{[\gamma,\gamma']}$ -semiopen sets, $\alpha_{[\gamma,\gamma']}$ - θ -semiopen sets, $\alpha_{[\gamma,\gamma']}$ -semiregular sets, $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous functions.

Abstract In this paper, we introduce two strong forms of $\alpha_{[\gamma,\gamma']}$ -semiopen sets called $\alpha_{[\gamma,\gamma']}$ -semiregular sets and $\alpha_{[\gamma,\gamma']}$ - θ -semiopen sets. we also introduce a new class of functions called $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous functions. Moreover, we obtain some characterizations and several properties of such functions.

1 Introduction

In 1965, Njastad [4] defined α -open sets in a space X and discussed many of its properties. Ibrahim [3] defined the concept of an operation γ on $\alpha O(X, \tau)$ and introduced α_{γ} -open sets in topological spaces and studied some of their basic properties. Khalaf, et. al. [1] introduced the notion of $\alpha O(X, \tau)_{[\gamma, \gamma']}$, which is the collection of all $\alpha_{[\gamma, \gamma']}$ -open sets in a topological space (X, τ) . In [2] the authors, introduced the notion of $\alpha_{[\gamma, \gamma']}$ -semiopen sets in a topological space and studied some of its properties. In this paper, we introduce and study the notion of $\alpha_{[\gamma, \gamma']}$ - θ -semiclosed sets. We also introduce $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ - θ -semicontinuous functions and investigate some important properties.

2 Preliminaries

Throughout the present paper, (X, τ) and (Y, σ) represent nonempty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. The closure and the interior of a subset A of X are denoted by Cl(A) and Int(A), respectively.

Definition 2.1. [4] A subset A of a topological space (X, τ) is called α -open if $A \subseteq Int(Cl(Int(A)))$.

The family of all α -open sets in a topological space (X, τ) is denoted by $\alpha O(X, \tau)$ (or $\alpha O(X)$).

Definition 2.2. [3] Let (X, τ) be a topological space. An operation γ on the topology $\alpha O(X)$ is a mapping from $\alpha O(X)$ into the power set P(X) of X such that $V \subseteq V^{\gamma}$ for each $V \in \alpha O(X)$, where V^{γ} denotes the value of γ at V. It is denoted by $\gamma : \alpha O(X) \to P(X)$.

Definition 2.3. [3] An operation γ on $\alpha O(X, \tau)$ is said to be α -regular if for every α -open sets U and V containing $x \in X$, there exists an α -open set W of X containing x such that $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma}$.

Definition 2.4. [1] Let (X, τ) be a topological space and γ, γ' be operations on $\alpha O(X, \tau)$. A subset A of X is said to be $\alpha_{[\gamma,\gamma']}$ -open if for each $x \in A$ there exist α -open sets U and V of X containing x such that $U^{\gamma} \cap V^{\gamma'} \subseteq A$. A subset of (X, τ) is said to be $\alpha_{[\gamma,\gamma']}$ -closed if its complement is $\alpha_{[\gamma,\gamma']}$ -open.

The family of all $\alpha_{[\gamma,\gamma']}$ -open sets of (X,τ) is denoted by $\alpha O(X,\tau)_{[\gamma,\gamma']}$.

Definition 2.5. [2] A subset A of X is said to be $\alpha_{[\gamma,\gamma']}$ -semiopen, if there exists an $\alpha_{[\gamma,\gamma']}$ -open set U of X such that $U \subseteq A \subseteq \alpha_{[\gamma,\gamma']}$ -Cl(U). A subset A of X is $\alpha_{[\gamma,\gamma']}$ -semiclosed if and only if $X \setminus A$ is $\alpha_{[\gamma,\gamma']}$ -semiopen.

The family of all $\alpha_{[\gamma,\gamma']}$ -semiopen sets of a topological space (X,τ) is denoted by $\alpha SO(X,\tau)_{[\gamma,\gamma']}$, the family of all $\alpha_{[\gamma,\gamma']}$ -semiopen sets of (X,τ) containing x is denoted by $\alpha SO(X,x)_{[\gamma,\gamma']}$. Also the family of all $\alpha_{[\gamma,\gamma']}$ -semiclosed sets of a topological space (X,τ) is denoted by $\alpha SC(X,\tau)_{[\gamma,\gamma']}$.

Definition 2.6. Let A be a subset of a topological space (X, τ) . Then:

- (i) $\alpha_{[\gamma,\gamma']}$ - $Cl(A) = \bigcap \{F : F \text{ is } \alpha_{[\gamma,\gamma']} \text{ -closed and } A \subseteq F \}$ [1].
- (ii) $\alpha_{[\gamma,\gamma']}$ -Int $(A) = \bigcup \{U : U \text{ is } \alpha_{[\gamma,\gamma']} \text{ open and } U \subseteq A \}$ [1].
- (iii) $\alpha_{[\gamma,\gamma']} sCl(A) = \bigcap \{F : F \text{ is } \alpha_{[\gamma,\gamma']} \text{ -semiclosed and } A \subseteq F \}$ [2].
- (iv) $\alpha_{[\gamma,\gamma']}$ -sInt(A) = $\bigcup \{U : U \text{ is } \alpha_{[\gamma,\gamma']}$ -semiopen and $U \subseteq A\}$ [2].

3 $\alpha_{[\gamma,\gamma']}$ -semiregular Sets and $\alpha_{[\gamma,\gamma']}$ - θ -semiopen Sets

Definition 3.1. A subset A of a topological space (X, τ) is said to be $\alpha_{[\gamma,\gamma']}$ -semiregular, if it is both $\alpha_{[\gamma,\gamma']}$ -semiopen and $\alpha_{[\gamma,\gamma']}$ -semiclosed.

The family of all $\alpha_{[\gamma,\gamma']}$ -semiregular sets in X is denoted by $\alpha SR(X)_{[\gamma,\gamma']}$.

Lemma 3.2. The following properties hold for a subset A of a topological space (X, τ) :

- (i) If $A \in \alpha SO(X)_{[\gamma,\gamma']}$, then $\alpha_{[\gamma,\gamma']} sCl(A) \in \alpha SR(X)_{[\gamma,\gamma']}$.
- (ii) If $A \in \alpha SC(X)_{[\gamma,\gamma']}$, then $\alpha_{[\gamma,\gamma']}$ -sInt $(A) \in \alpha SR(X)_{[\gamma,\gamma']}$.
- $\begin{array}{l} \textit{Proof.} \quad (i) \ \text{Since} \ \alpha_{[\gamma,\gamma']} \text{-} sCl(A) \ \text{is} \ \alpha_{[\gamma,\gamma']} \text{-} \text{semiclosed, we show that} \ \alpha_{[\gamma,\gamma']} \text{-} sCl(A) \in \alpha SO(X)_{[\gamma,\gamma']}.\\ \text{Since} \ A \ \in \ \alpha SO(X)_{[\gamma,\gamma']}, \ \text{then for} \ \alpha_{[\gamma,\gamma']} \text{-} \text{open set} \ U \ \text{of} \ X, \ U \ \subseteq \ A \ \subseteq \ \alpha_{[\gamma,\gamma']} \text{-} Cl(U).\\ \text{Therefore we have,} \ U \ \subseteq \ \alpha_{[\gamma,\gamma']} \text{-} sCl(U) \ \subseteq \ \alpha_{[\gamma,\gamma']} \text{-} sCl(A) \ \subseteq \ \alpha_{[\gamma,\gamma']} \text{-} sCl(U) = \\ \alpha_{[\gamma,\gamma']} \text{-} Cl(U) \ \text{or} \ U \ \subseteq \ \alpha_{[\gamma,\gamma']} \text{-} sCl(A) \ \subseteq \ \alpha_{[\gamma,\gamma']} \text{-} sCl(A) \ \in \ \alpha SO(X)_{[\gamma,\gamma']}. \end{array}$
- (ii) This follows from (1).

Definition 3.3. A point $x \in X$ is said to be $\alpha_{[\gamma,\gamma']}$ - θ -semiadherent point of a subset A of X if $\alpha_{[\gamma,\gamma']}$ - $sCl(U) \cap A \neq \phi$ for every $\alpha_{[\gamma,\gamma']}$ -semiopen set U containing x. The set of all $\alpha_{[\gamma,\gamma']}$ - θ -semiadherent points of A is called the $\alpha_{[\gamma,\gamma']}$ - θ -semiclosure of A and is denoted by $\alpha_{[\gamma,\gamma']}$ - $sCl_{\theta}(A)$. A subset A is called $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed if $\alpha_{[\gamma,\gamma']}$ - $sCl_{\theta}(A) = A$. A subset A is called $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed.

Definition 3.4. A point $x \in X$ is said to be $\alpha_{[\gamma,\gamma']}$ - θ -adherent point of a subset A of X if $\alpha_{[\gamma,\gamma']}$ - $Cl(U) \cap A \neq \phi$ for every $\alpha_{[\gamma,\gamma']}$ -open set U containing x. The set of all $\alpha_{[\gamma,\gamma']}$ - θ -adherent points of A is called the $\alpha_{[\gamma,\gamma']}$ - θ -closure of A and is denoted by $\alpha_{[\gamma,\gamma']}$ - $Cl_{\theta}(A)$. A subset A is called $\alpha_{[\gamma,\gamma']}$ - θ -closed if $\alpha_{[\gamma,\gamma']}$ - $Cl_{\theta}(A) = A$. The complement of an $\alpha_{[\gamma,\gamma']}$ - θ -closed set is called an $\alpha_{[\gamma,\gamma']}$ - θ -open set.

Corollary 3.5. Let $x \in X$ and $A \subseteq X$. If $x \in \alpha_{[\gamma,\gamma']}$ -sCl_{θ}(A), then $x \in \alpha_{[\gamma,\gamma']}$ -Cl_{θ}(A).

Proof. Let $x \in \alpha_{[\gamma,\gamma']}$ - $sCl_{\theta}(A)$, then $\alpha_{[\gamma,\gamma']}$ - $sCl(U) \cap A \neq \phi$ for every $\alpha_{[\gamma,\gamma']}$ -semiopen set U containing x. Since $\alpha_{[\gamma,\gamma']}$ - $sCl(U) \subseteq \alpha_{[\gamma,\gamma']}$ -Cl(U), so we have $\phi \neq \alpha_{[\gamma,\gamma']}$ - $sCl(U) \cap A \subseteq \alpha_{[\gamma,\gamma']}$ - $Cl(U) \cap A$. Hence, $\alpha_{[\gamma,\gamma']}$ - $Cl(U) \cap A \neq \phi$ for every $\alpha_{[\gamma,\gamma']}$ -open set U containing x. Therefore, $x \in \alpha_{[\gamma,\gamma']}$ - $Cl_{\theta}(A)$.

Lemma 3.6. The following properties hold for a subset A of a topological space (X, τ) :

- (i) If $A \in \alpha SO(X)_{[\gamma,\gamma']}$, then $\alpha_{[\gamma,\gamma']} \cdot sCl(A) = \alpha_{[\gamma,\gamma']} \cdot sCl_{\theta}(A)$.
- (ii) If $A \in \alpha SR(X)_{[\gamma,\gamma']}$ if and only if A is both $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed and $\alpha_{[\gamma,\gamma']}$ - θ -semiopen.
- (iii) If $A \in \alpha O(X)_{[\gamma,\gamma']}$, then $\alpha_{[\gamma,\gamma']} Cl(A) = \alpha_{[\gamma,\gamma']} Cl_{\theta}(A)$.
- *Proof.* (i) Clearly $\alpha_{[\gamma,\gamma']} \cdot sCl(A) \subseteq \alpha_{[\gamma,\gamma']} \cdot sCl_{\theta}(A)$. Suppose that $x \notin \alpha_{[\gamma,\gamma']} \cdot sCl(A)$. Then, for some $\alpha_{[\gamma,\gamma']} \cdot semiopen$ set $U, A \cap U = \phi$ and hence $A \cap \alpha_{[\gamma,\gamma']} \cdot sCl(U) = \phi$, since $A \in \alpha SO(X)_{[\gamma,\gamma']}$. This shows that $x \notin \alpha_{[\gamma,\gamma']} \cdot sCl_{\theta}(A)$. Therefore $\alpha_{[\gamma,\gamma']} \cdot sCl(A) = \alpha_{[\gamma,\gamma']} \cdot sCl_{\theta}(A)$.
- (ii) Let $A \in \alpha SR(X)_{[\gamma,\gamma']}$, then $A \in \alpha SO(X)_{[\gamma,\gamma']}$, by (1), we have $A = \alpha_{[\gamma,\gamma']} \cdot sCl(A) = \alpha_{[\gamma,\gamma']} \cdot sCl_{\theta}(A)$. Therefore, A is $\alpha_{[\gamma,\gamma']} \cdot \theta$ -semiclosed. Since $X \setminus A \in \alpha SR(X)_{[\gamma,\gamma']}$, by the argument above, $X \setminus A$ is $\alpha_{[\gamma,\gamma']} \cdot \theta$ -semiclosed and hence A is $\alpha_{[\gamma,\gamma']} \cdot \theta$ -semiopen. The converse is obvious.
- (iii) This similar to (1).

Theorem 3.7. Let (X, τ) be a topological space and $A \subseteq X$. Then, A is $\alpha_{[\gamma,\gamma']}$ - θ -semiopen in X if and only if for each $x \in A$ there exists $U \in \alpha SO(X, x)_{[\gamma,\gamma']}$ such that $\alpha_{[\gamma,\gamma']}$ - $sC(U) \subseteq A$.

Proof. Let A be $\alpha_{[\gamma,\gamma']}$ - θ -semiopen and $x \in A$. Then, $X \setminus A$ is $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed and $X \setminus A = \alpha_{[\gamma,\gamma']}$ - $sCl_{\theta}(X \setminus A)$. Hence, $x \notin \alpha_{[\gamma,\gamma']}$ - $sCl_{\theta}(X \setminus A)$. Therefore, there exists $U \in \alpha SO(X, x)_{[\gamma,\gamma']}$ such that $\alpha_{[\gamma,\gamma']}$ - $sCl(U) \cap (X \setminus A) = \phi$ and so $\alpha_{[\gamma,\gamma']}$ - $sCl(U) \subseteq A$.

Conversely, let $A \subseteq X$ and $x \in A$. From hypothesis, there exists $U \in \alpha SO(X, x)_{[\gamma, \gamma']}$ such that $\alpha_{[\gamma, \gamma']} \cdot sCl(U) \subseteq A$. Therefore, $\alpha_{[\gamma, \gamma']} \cdot sCl(U) \cap (X \setminus A) = \phi$. Hence, $X \setminus A = \alpha_{[\gamma, \gamma']} \cdot sCl_{\theta}(X \setminus A)$ and A is $\alpha_{[\gamma, \gamma']} \cdot \theta$ -semiopen.

Theorem 3.8. For a subset A of a topological space (X, τ) , we have $\alpha_{[\gamma,\gamma']}$ -sCl_{θ} $(A) = \cap \{V : A \subseteq V \text{ and } V \in \alpha SR(X)_{[\gamma,\gamma']} \}$.

Proof. Let $x \notin \alpha_{[\gamma,\gamma']}$ -s $Cl_{\theta}(A)$. Then, there exists an $\alpha_{[\gamma,\gamma']}$ -semiopen set U containing x such that $\alpha_{[\gamma,\gamma']}$ -s $Cl(U) \cap A = \phi$. Then $A \subseteq X \setminus \alpha_{[\gamma,\gamma']}$ -sCl(U) = V (say). Thus $V \in \alpha SR(X)_{[\gamma,\gamma']}$ such that $x \notin V$. Hence $x \notin \cap \{V : A \subseteq V \text{ and } V \in \alpha SR(X)_{[\gamma,\gamma']}\}$. Again, if $x \notin \cap \{V : A \subseteq V \text{ and } V \in \alpha SR(X)_{[\gamma,\gamma']}\}$, then there exists $V \in \alpha SR(X)_{[\gamma,\gamma']}$ containing A such that $x \notin V$. Then $(X \setminus V) (= U, \text{ say})$ is an $\alpha_{[\gamma,\gamma']}$ -semiopen set containing x such that $\alpha_{[\gamma,\gamma']}$ -s $Cl(U) \cap V = \phi$. This shows that $\alpha_{[\gamma,\gamma']}$ -s $Cl(U) \cap A = \phi$, so that $x \notin \alpha_{[\gamma,\gamma']}$ -s $Cl_{\theta}(A)$.

Corollary 3.9. A subset A of X is $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed if and only if $A = \cap \{V : A \subseteq V \in \alpha SR(X)_{[\gamma,\gamma']}\}$.

Proof. Obvious.

Theorem 3.10. Let A and B be any subsets of a space X. Then, the following properties hold:

(i) $x \in \alpha_{[\gamma,\gamma']}$ -s $Cl_{\theta}(A)$ if and only if $U \cap A \neq \phi$ for each $U \in \alpha SR(X)_{[\gamma,\gamma']}$ containing x.

(ii) If
$$A \subseteq B$$
, then $\alpha_{[\gamma,\gamma']} \cdot sCl_{\theta}(A) \subseteq \alpha_{[\gamma,\gamma']} \cdot sCl_{\theta}(B)$.

Proof. Clear.

Theorem 3.11. For any subset A of X, $\alpha_{[\gamma,\gamma']}$ -sCl_{θ} $(\alpha_{[\gamma,\gamma']}$ -sCl_{θ} $(A)) = \alpha_{[\gamma,\gamma']}$ -sCl_{θ}(A).

 $\begin{array}{l} \textit{Proof. Obviously, } \alpha_{[\gamma,\gamma']} \text{-} sCl_{\theta}(A) \subseteq \alpha_{[\gamma,\gamma']} \text{-} sCl_{\theta}(\alpha_{[\gamma,\gamma']} \text{-} sCl_{\theta}(A)). \text{ Now, let } x \in \alpha_{[\gamma,\gamma']} \text{-} sCl_{\theta}(\alpha_{[\gamma,\gamma']} \text{-} sCl_{\theta}(A)) \\ sCl_{\theta}(A)) \text{ and } U \in \alpha SO(X, x)_{[\gamma,\gamma']}. \text{ Then, } \alpha_{[\gamma,\gamma']} \text{-} sCl(U) \cap \alpha_{[\gamma,\gamma']} \text{-} sCl_{\theta}(A) \neq \phi. \text{ Let } y \in \alpha_{[\gamma,\gamma']} \text{-} sCl(U) \cap \alpha_{[\gamma,\gamma']} \text{-} sCl_{\theta}(A) = \delta Cl_{\theta}(A). \\ sCl(U) \cap \alpha_{[\gamma,\gamma']} \text{-} sCl_{\theta}(A). \text{ Since } \alpha_{[\gamma,\gamma']} \text{-} sCl(U) \in \alpha SO(X, y)_{[\gamma,\gamma']}, \text{ then } \alpha_{[\gamma,\gamma']} \text{-} sCl(\alpha_{[\gamma,\gamma']} \text{-} sCl(U)) \cap A \neq \phi, \text{ that is } \alpha_{[\gamma,\gamma']} \text{-} sCl(U) \cap A \neq \phi. \text{ Thus, } x \in \alpha_{[\gamma,\gamma']} \text{-} sCl_{\theta}(A). \end{array}$

Corollary 3.12. For any $A \subseteq X$, $\alpha_{[\gamma,\gamma']}$ -s $Cl_{\theta}(A)$ is $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed.

Proof. Obvious.

Theorem 3.13. Intersection of arbitrary collection of $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed sets in X is $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed.

Proof. Let $\{A_i : i \in I\}$ be any collection of $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed sets in a topological space (X,τ) and $A = \bigcap_{i \in I} A_i$. Now, using Definition 3.3, $x \in \alpha_{[\gamma,\gamma']}$ - $sCl_{\theta}(A)$, in consequence, $x \in \alpha_{[\gamma,\gamma']}$ - $sCl_{\theta}(A_i)$ for all $i \in I$. Follows that $x \in A_i$ for all $i \in I$. Therefore, $x \in A$. Thus, $A = \alpha_{[\gamma,\gamma']}$ - $sCl_{\theta}(A)$.

Corollary 3.14. For any $A \subseteq X$, $\alpha_{[\gamma,\gamma']}$ -sCl_{θ}(A) is the intersection of all $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed sets each containing A.

Proof. Obvious.

Corollary 3.15. Let A and A_i $(i \in I)$ be any subsets of a space X. Then, the following properties hold:

- (i) A is $\alpha_{[\gamma,\gamma']}$ - θ -semiopen in X if and only if for each $x \in A$ there exists $U \in \alpha SR(X)_{[\gamma,\gamma']}$ such that $x \in U \subseteq A$.
- (ii) If A_i is $\alpha_{[\gamma,\gamma']}$ - θ -semiopen in X for each $i \in I$, then $\bigcup_{i \in I} A_i$ is $\alpha_{[\gamma,\gamma']}$ - θ -semiopen in X.

Proof. Obvious.

Remark 3.16. The following example shows that the union of $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed sets may fail to be $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed.

Example 3.17. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ be a topology on X. For each $A \in \alpha O(X, \tau)$, we define two operations γ and γ' , respectively, by $A^{\gamma} = Int(Cl(A))$ and

$$A^{\gamma'} = \begin{cases} X & \text{if } A = \{a, c\} \\ A & \text{if } A \neq \{a, c\}. \end{cases}$$

Then, the subsets $A = \{a\}$ and $B = \{c\}$ are $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed, but their union $\{a, c\} = A \cup B$ is not $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed.

Example 3.18. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ be a topology on X. For each $A \in \alpha O(X, \tau)$, we define two operations γ and γ' , respectively, by

$$A^{\gamma} = \begin{cases} A & \text{if } A \neq \{a, c\} \\ X & \text{if } A = \{a, c\}, \end{cases}$$
$$A^{\gamma'} = \begin{cases} A & \text{if } A \neq \{a, b\} \\ X & \text{if } A = \{a, b\}. \end{cases}$$

and

The subsets
$$\{b\}$$
 is $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed, but not $\alpha_{[\gamma,\gamma']}$ -semiregular.

Remark 3.19. From Lemma 3.6 (ii), we have $\alpha_{[\gamma,\gamma']}$ -semiregular set is $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed set. In the above example, $\{b\}$ is $\alpha_{[\gamma,\gamma']}$ - θ -semiclosed, but not $\alpha_{[\gamma,\gamma']}$ -semiregular. Again, for a subset A, we always have $A \subseteq \alpha_{[\gamma,\gamma']}$ - $sCl(A) \subseteq \alpha_{[\gamma,\gamma']}$ - $sCl_{\theta}(A)$. Therefore, every $\alpha_{[\gamma,\gamma']}$ - θ -semiopen set is $\alpha_{[\gamma,\gamma']}$ -semiopen. The following example shows that the converse is not true in general.

Example 3.20. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$ be a topology on X. For each $A \in \alpha O(X, \tau)$, we define two operations γ and γ' , respectively, by

$$A^{\gamma} = \begin{cases} A & \text{if } A \neq \{a\} \\ X & \text{if } A = \{a\}, \end{cases}$$

and

$$A^{\gamma'} = \begin{cases} A & \text{if } A \neq \{b\} \\ X & \text{if } A = \{b\}. \end{cases}$$

Then, $\{a, b\}$ is $\alpha_{[\gamma, \gamma']}$ -semiopen set but not an $\alpha_{[\gamma, \gamma']}$ - θ -semiopen set.

Remark 3.21. The notions $\alpha_{[\gamma,\gamma']}$ -openness and $\alpha_{[\gamma,\gamma']}$ - θ -semiopenness are independent. In Example 3.18, $\{a, b\}$ is an $\alpha_{[\gamma,\gamma']}$ - θ -semiopen set but not an $\alpha_{[\gamma,\gamma']}$ -open set, whereas in Example 3.20, $\{a, b\}$ is an $\alpha_{[\gamma,\gamma']}$ -open set but not an $\alpha_{[\gamma,\gamma']}$ - θ -semiopen set.

Remark 3.22. Every $\alpha_{[\gamma,\gamma']}$ - θ -open set is $\alpha_{[\gamma,\gamma']}$ -open.

4 $(\alpha_{[\alpha,\alpha']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous Functions

Throughout this section, let $\gamma, \gamma' : \alpha O(X) \to P(X)$ and $\beta, \beta' : \alpha O(Y) \to P(Y)$ be operations on $\alpha O(X)$ and $\alpha O(Y)$, respectively.

Definition 4.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ - θ -semicontinuous if for each point $x \in X$ and each $\alpha_{[\beta, \beta']}$ -semiopen set V of Y containing f(x), there exists an $\alpha_{[\gamma, \gamma']}$ -open set U of X containing x such that $f(U) \subseteq \alpha_{[\beta, \beta']}$ -sCl(V).

Example 4.2. Let $X = \{a, b, c\}, Y = \{1, 2, 3\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{3\}, \{1, 2\}, Y\}$. For each $A \in \alpha O(X, \tau)$ and $B \in \alpha O(Y, \sigma)$, we define the operations $\gamma : \alpha O(X, \tau) \to P(X), \gamma' : \alpha O(X, \tau) \to P(X), \beta : \alpha O(Y, \sigma) \to P(Y)$ and $\beta' : \alpha O(Y, \sigma) \to P(Y)$, respectively, by

$$A^{\gamma} = \begin{cases} A & \text{if } c \in A \\ A \cup \{c\} & \text{if } c \notin A, \end{cases}$$
$$A^{\gamma'} = \begin{cases} A & \text{if } b \in A \\ A \cup \{b\} & \text{if } b \notin A, \end{cases}$$
$$B^{\beta} = \begin{cases} Y & \text{if } 2 \notin B \\ B & \text{if } 2 \in B, \end{cases}$$

and

$$B^{\beta'} = \begin{cases} Y & \text{if } 1 \notin B \\ B & \text{if } 1 \in B \end{cases}$$

Define a function $f: (X, \tau) \to (Y, \sigma)$ as follows:

$$f(x) = \begin{cases} 1 & \text{if } x = a \\ 1 & \text{if } x = b \\ 3 & \text{if } x = c. \end{cases}$$

Clearly, $\alpha O(X, \tau)_{[\gamma, \gamma']} = \{\phi, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\alpha SO(Y, \sigma)_{[\beta, \beta']} = \{\phi, \{1, 2\}, Y\}$. Then, f is $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ - θ -semicontinuous.

Theorem 4.3. The following statements are equivalent for a function $f : (X, \tau) \to (Y, \sigma)$:

- (i) f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous.
- (ii) For each $x \in X$ and $V \in \alpha SR(Y)_{[\beta,\beta']}$ containing f(x), there exists an $\alpha_{[\gamma,\gamma']}$ -open set U containing x such that $f(U) \subseteq V$.
- (iii) $f^{-1}(V)$ is $\alpha_{[\gamma,\gamma']}$ -clopen (That is, $\alpha_{[\gamma,\gamma']}$ -open as well as $\alpha_{[\gamma,\gamma']}$ -closed) in X for every $V \in \alpha SR(Y)_{[\beta,\beta']}$.

(iv)
$$f^{-1}(V) \subseteq \alpha_{[\gamma,\gamma']}$$
-Int $(f^{-1}(\alpha_{[\beta,\beta']}$ -s $Cl(V)))$ for every $V \in \alpha SO(Y)_{[\beta,\beta']}$.

$$(v) \ \alpha_{[\gamma,\gamma']} - Cl(f^{-1}(\alpha_{[\beta,\beta']} - sInt(V))) \subseteq f^{-1}(V) \ for \ every \ \alpha_{[\beta,\beta']} - semiclosed \ set \ V \ of \ Y.$$

(vi)
$$\alpha_{[\gamma,\gamma']} - Cl(f^{-1}(V)) \subseteq f^{-1}(\alpha_{[\beta,\beta']} - sCl(V))$$
 for every $V \in \alpha SO(Y)_{[\beta,\beta']}$

Proof. (1) \Rightarrow (2): Let $x \in X$ and $V \in \alpha SR(Y)_{[\beta,\beta']}$ containing f(x). By (1), there exists an $\alpha_{[\gamma,\gamma']}$ -open set U containing x such that $f(U) \subseteq \alpha_{[\beta,\beta']}$ -sCl(V) = V.

(2) \Rightarrow (3): Let $V \in \alpha SR(Y)_{[\beta,\beta']}$ and $x \in f^{-1}(V)$. Then, $f(U) \subseteq V$ for some $\alpha_{[\gamma,\gamma']}$ -open set U of X containing x, hence $x \in U \subseteq f^{-1}(V)$. This shows that $f^{-1}(V)$ is $\alpha_{[\gamma,\gamma']}$ -open in X. Since $Y \setminus V \in \alpha SR(Y)_{[\beta,\beta']}$, $f^{-1}(Y \setminus V)$ is also $\alpha_{[\gamma,\gamma']}$ -open and hence $f^{-1}(V)$ is $\alpha_{[\gamma,\gamma']}$ -clopen in X.

(3) \Rightarrow (4): Let $V \in \alpha SO(Y)_{[\beta,\beta']}$. Since $V \subseteq \alpha_{[\beta,\beta']} \cdot sCl(V)$ and by Lemma 3.2, we have $\alpha_{[\beta,\beta']} \cdot sCl(V) \in \alpha SR(Y)_{[\beta,\beta']}$. By (3), we have $f^{-1}(V) \subseteq f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl(V))$ and $f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl(V))$ is $\alpha_{[\gamma,\gamma']} \cdot open$ in X. Therefore, we obtain $f^{-1}(V) \subseteq \alpha_{[\gamma,\gamma']} \cdot Int(f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl(V)))$.

(4) \Rightarrow (5): Let V be an $\alpha_{[\beta,\beta']}$ -semiclosed subset of Y. By (4), we have $f^{-1}(Y \setminus V) \subseteq \alpha_{[\gamma,\gamma']}$ -Int $(f^{-1}(\alpha_{[\beta,\beta']}-sCl(Y \setminus V))) = \alpha_{[\gamma,\gamma']}$ -Int $(f^{-1}(Y \setminus \alpha_{[\beta,\beta']}-sInt(V))) = X \setminus \alpha_{[\gamma,\gamma']}$ - $Cl(f^{-1}(\alpha_{[\beta,\beta']}-sInt(V))) \subseteq f^{-1}(V)$.

(5) \Rightarrow (6): Let $V \in \alpha SO(Y)_{[\beta,\beta']}$. By Lemma 3.2, $\alpha_{[\beta,\beta']} \cdot sCl(V) \in \alpha SR(Y)_{[\beta,\beta']}$. By (5), we obtain $\alpha_{[\gamma,\gamma']} \cdot Cl(f^{-1}(V)) \subseteq \alpha_{[\gamma,\gamma']} \cdot Cl(f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl(V))) = \alpha_{[\gamma,\gamma']} \cdot Cl(f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl(V))) = sInt(\alpha_{[\beta,\beta']} \cdot sCl(V))) \subseteq f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl(V)).$

(6) \Rightarrow (1): Let $x \in X$ and $V \in \alpha SO(Y, f(x))_{[\beta,\beta']}$. By Lemma 3.2, we have $\alpha_{[\beta,\beta']} sCl(V) \in \alpha SR(Y)_{[\beta,\beta']}$ and $f(x) \notin Y \setminus \alpha_{[\beta,\beta']} sCl(V) = \alpha_{[\beta,\beta']} sCl(Y \setminus \alpha_{[\beta,\beta']} sCl(V))$. Thus, by (6) we obtain $x \notin \alpha_{[\gamma,\gamma']} - Cl(f^{-1}(Y \setminus \alpha_{[\beta,\beta']} - sCl(V)))$. There exists an $\alpha_{[\gamma,\gamma']} - open$ set U of X containing x such that $U \cap f^{-1}(Y \setminus \alpha_{[\beta,\beta']} - sCl(V)) = \phi$. Therefore, we have $f(U) \cap (Y \setminus \alpha_{[\beta,\beta']} - sCl(V)) = \phi$ and hence $f(U) \subseteq \alpha_{[\beta,\beta']} - sCl(V)$. This shows that f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']}) - \theta$ -semicontinuous.

Theorem 4.4. The following statements are equivalent for a function $f : (X, \tau) \to (Y, \sigma)$:

- (i) f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous.
- (ii) For each $x \in X$ and $V \in \alpha SR(Y)_{[\beta,\beta']}$ containing f(x), there exists an $\alpha_{[\gamma,\gamma']}$ -clopen set U containing x such that $f(U) \subseteq V$.
- (iii) For each $x \in X$ and $V \in \alpha SO(Y)_{[\beta,\beta']}$ containing f(x), there exists an $\alpha_{[\gamma,\gamma']}$ -open set U containing x such that $f(\alpha_{[\gamma,\gamma']}-Cl(U)) \subseteq \alpha_{[\beta,\beta']}-sCl(V)$.

Proof. (1) \Rightarrow (2): Let $x \in X$ and $V \in \alpha SR(Y)_{[\beta,\beta']}$ containing f(x). By Theorem 4.3, $f^{-1}(V)$ is $\alpha_{[\gamma,\gamma']}$ -clopen in X. Put $U = f^{-1}(V)$, then $x \in U$ and $f(U) \subseteq V$.

(2) \Rightarrow (3): Let $V \in \alpha SO(Y, f(x))_{[\beta,\beta']}$. By Lemma 3.2, we have $\alpha_{[\beta,\beta']} \cdot sCl(V) \in \alpha SR(Y)_{[\beta,\beta']}$ and by (2), there exists an $\alpha_{[\gamma,\gamma']} \cdot clopen$ set U containing x such that $f(\alpha_{[\gamma,\gamma']} \cdot Cl(U)) = f(U) \subseteq \alpha_{[\beta,\beta']} \cdot sCl(V)$.

(3) \Rightarrow (1): Let $x \in X$ and $V \in \alpha SO(Y, f(x))_{[\beta,\beta']}$. By (3), there exists an $\alpha_{[\gamma,\gamma']}$ -open set U containing x such that $f(\alpha_{[\gamma,\gamma']}-Cl(U)) \subseteq \alpha_{[\beta,\beta']}-sCl(V)$ implies that $f(U) \subseteq f(\alpha_{[\gamma,\gamma']}-Cl(U)) \subseteq \alpha_{[\beta,\beta']}-sCl(V)$. This shows that f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})-\theta$ -semicontinuous.

Theorem 4.5. The following statements are equivalent for a function $f : (X, \tau) \to (Y, \sigma)$:

- (i) f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous.
- (ii) $\alpha_{[\gamma,\gamma']}$ - $Cl(f^{-1}(B)) \subseteq f^{-1}(\alpha_{[\beta,\beta']}$ - $sCl_{\theta}(B))$ for every subset B of Y.
- (iii) $f(\alpha_{[\gamma,\gamma']}-Cl(A)) \subseteq \alpha_{[\beta,\beta']}-sCl_{\theta}(f(A))$ for every subset A of X.

- (iv) $f^{-1}(F)$ is $\alpha_{[\gamma,\gamma']}$ -closed in X for every $\alpha_{[\beta,\beta']}$ - θ -semiclosed set F of Y.
- (v) $f^{-1}(V)$ is $\alpha_{[\gamma,\gamma']}$ -open in X for every $\alpha_{[\beta,\beta']}$ - θ -semiopen set V of Y.

Proof. (1) \Rightarrow (2): Let *B* be any subset of *Y* and $x \notin f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl_{\theta}(B))$. Then, $f(x) \notin \alpha_{[\beta,\beta']} \cdot sCl_{\theta}(B)$ and there exists $V \in \alpha SO(Y, f(x))_{[\beta,\beta']}$ such that $\alpha_{[\beta,\beta']} \cdot sCl(V) \cap B = \phi$. By (1), there exists an $\alpha_{[\gamma,\gamma']}$ -open set *U* containing *x* such that $f(U) \subseteq \alpha_{[\beta,\beta']} \cdot sCl(V)$. Hence $f(U) \cap B = \phi$ and $U \cap f^{-1}(B) = \phi$. Consequently, we obtain $x \notin \alpha_{[\gamma,\gamma']} \cdot Cl(f^{-1}(B))$.

(2) \Rightarrow (3): Let A be any subset of X. By (2), we have $\alpha_{[\gamma,\gamma']}$ - $Cl(A) \subseteq \alpha_{[\gamma,\gamma']}$ - $Cl(f^{-1}(f(A))) \subseteq f^{-1}(\alpha_{[\beta,\beta']}$ - $sCl_{\theta}(f(A)))$ and hence $f(\alpha_{[\gamma,\gamma']}$ - $Cl(A)) \subseteq \alpha_{[\beta,\beta']}$ - $sCl_{\theta}(f(A))$.

(3) \Rightarrow (4): Let F be any $\alpha_{[\beta,\beta']}$ - θ -semiclosed set of Y. Then, by (3), we have $f(\alpha_{[\gamma,\gamma']} - Cl(f^{-1}(F))) \subseteq \alpha_{[\beta,\beta']} - sCl_{\theta}(f(f^{-1}(F))) \subseteq \alpha_{[\beta,\beta']} - sCl_{\theta}(F) = F$. Therefore, we have $\alpha_{[\gamma,\gamma']} - Cl(f^{-1}(F)) \subseteq f^{-1}(F)$ and hence $\alpha_{[\gamma,\gamma']} - Cl(f^{-1}(F)) = f^{-1}(F)$. This shows that $f^{-1}(F)$ is $\alpha_{[\gamma,\gamma']}$ -closed in X.

 $(4) \Rightarrow (5)$: Obvious.

(5) \Rightarrow (1): Let $x \in X$ and $V \in \alpha SO(Y, f(x))_{[\beta,\beta']}$. By Lemmas 3.2 and 3.6 (ii), $\alpha_{[\beta,\beta']} \cdot sCl(V)$ is $\alpha_{[\beta,\beta']} \cdot \theta$ -semiopen in Y. Put $U = f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl(V))$. Then by (5), U is $\alpha_{[\gamma,\gamma']} \cdot open$ containing x and $f(U) \subseteq \alpha_{[\beta,\beta']} \cdot sCl(V)$. Thus, f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']}) \cdot \theta$ -semicontinuous.

Theorem 4.6. The following statements are equivalent for a function $f : (X, \tau) \to (Y, \sigma)$:

- (i) f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']}) \theta$ -semicontinuous.
- (ii) $\alpha_{[\gamma,\gamma']} Cl_{\theta}(f^{-1}(B)) \subseteq f^{-1}(\alpha_{[\beta,\beta']} sCl_{\theta}(B))$ for every subset B of Y.

(iii) $f(\alpha_{[\gamma,\gamma']}-Cl_{\theta}(A)) \subseteq \alpha_{[\beta,\beta']}-sCl_{\theta}(f(A))$ for every subset A of X.

- (iv) $f^{-1}(F)$ is $\alpha_{[\gamma,\gamma']}$ - θ -closed in X for every $\alpha_{[\beta,\beta']}$ - θ -semiclosed set F of Y.
- (v) $f^{-1}(V)$ is $\alpha_{[\gamma,\gamma']}$ - θ -open in X for every $\alpha_{[\beta,\beta']}$ - θ -semiopen set V of Y.

Proof. (1) \Rightarrow (2): Let *B* be any subset of *Y* and $x \notin f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl_{\theta}(B))$. Then, $f(x) \notin \alpha_{[\beta,\beta']} \cdot sCl_{\theta}(B)$ and there exists $V \in \alpha SO(Y, f(x))_{[\beta,\beta']}$ such that $\alpha_{[\beta,\beta']} \cdot sCl(V) \cap B = \phi$. By Theorem 4.4 (iii), there exists an $\alpha_{[\gamma,\gamma']} \cdot open$ set *U* containing *x* such that $f(\alpha_{[\gamma,\gamma']} \cdot Cl(U)) \subseteq \alpha_{[\beta,\beta']} \cdot sCl(V)$. Hence $f(\alpha_{[\gamma,\gamma']} \cdot Cl(U)) \cap B = \phi$ and $\alpha_{[\gamma,\gamma']} \cdot Cl(U) \cap f^{-1}(B) = \phi$. Consequently, we obtain $x \notin \alpha_{[\gamma,\gamma']} \cdot Cl_{\theta}(f^{-1}(B))$.

 $(2) \Rightarrow (3): \text{Let } A \text{ be any subset of } X. \text{ By } (2), \text{ we have } \alpha_{[\gamma,\gamma']}\text{-}Cl_{\theta}(A) \subseteq \alpha_{[\gamma,\gamma']}\text{-}Cl_{\theta}(f^{-1}(f(A))) \subseteq f^{-1}(\alpha_{[\beta,\beta']}\text{-}sCl_{\theta}(f(A))) \text{ and hence } f(\alpha_{[\gamma,\gamma']}\text{-}Cl_{\theta}(A)) \subseteq \alpha_{[\beta,\beta']}\text{-}sCl_{\theta}(f(A)).$

(3) \Rightarrow (4): Let F be any $\alpha_{[\beta,\beta']} \cdot \theta$ -semiclosed set of Y. Then, by (3), we have $f(\alpha_{[\gamma,\gamma']} \cdot Cl_{\theta}(f^{-1}(F))) \subseteq \alpha_{[\beta,\beta']} \cdot sCl_{\theta}(f(f^{-1}(F))) \subseteq \alpha_{[\beta,\beta']} \cdot sCl_{\theta}(F) = F$. Therefore, we have $\alpha_{[\gamma,\gamma']} \cdot Cl_{\theta}(f^{-1}(F)) \subseteq f^{-1}(F)$ and hence $\alpha_{[\gamma,\gamma']} \cdot Cl_{\theta}(f^{-1}(F)) = f^{-1}(F)$. This shows that $f^{-1}(F)$ is $\alpha_{[\gamma,\gamma']} \cdot \theta$ -closed in X.

 $(4) \Rightarrow (5)$: Obvious.

(5) \Rightarrow (1): Let $x \in X$ and $V \in \alpha SO(Y, f(x))_{[\beta,\beta']}$. By Lemmas 3.2 and 3.6 (ii), $\alpha_{[\beta,\beta']} \cdot sCl(V)$ is $\alpha_{[\beta,\beta']} \cdot \theta$ -semiopen in Y. Put $U = f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl(V))$. Then by (5), U is $\alpha_{[\gamma,\gamma']} \cdot \theta$ -open containing x and by Remark 3.22, U is $\alpha_{[\gamma,\gamma']} \cdot \theta$ -open such that $f(U) \subseteq \alpha_{[\beta,\beta']} \cdot sCl(V)$. Thus, f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']}) \cdot \theta$ -semicontinuous.

Proposition 4.7. The following statements are equivalent for a function $f : (X, \tau) \to (Y, \sigma)$:

- (i) f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous.
- (ii) $\alpha_{[\gamma,\gamma']} Cl(f^{-1}(\alpha_{[\beta,\beta']} sInt(\alpha_{[\beta,\beta']} sCl(B)))) \subseteq f^{-1}(\alpha_{[\beta,\beta']} sCl(B)), \text{ for every subset } B = of Y.$
- (iii) $f^{-1}(\alpha_{[\beta,\beta']}-sInt(B)) \subseteq \alpha_{[\gamma,\gamma']}-Int(f^{-1}(\alpha_{[\beta,\beta']}-sCl(\alpha_{[\beta,\beta']}-sInt(B))))$, for every subset B of Y.

Proof. (1) \Rightarrow (2): Let *B* be any subset of *Y*. Then, $\alpha_{[\beta,\beta']}$ -s*Cl*(*B*) is $\alpha_{[\beta,\beta']}$ -semiclosed in *Y* and by Theorem 4.3 (*v*), we have that if $x \in \alpha_{[\gamma,\gamma']}$ -*Cl*($f^{-1}(\alpha_{[\beta,\beta']}$ -s*Int*($\alpha_{[\beta,\beta']}$ -s*Cl*(*B*)))), then $x \in f^{-1}(\alpha_{[\beta,\beta']}$ -s*Cl*(*B*)).

 $\begin{array}{l} (2) \Rightarrow (3): \text{ Let } B \text{ be any subset of } Y \text{ and } x \in f^{-1}(\alpha_{[\beta,\beta']}\text{-}sInt(B)). \text{ Then we have } x \in f^{-1}(\alpha_{[\beta,\beta']}\text{-}sInt(B)) = X \setminus f^{-1}(\alpha_{[\beta,\beta']}\text{-}sCl(Y \setminus B)). \text{ Then } x \notin f^{-1}(\alpha_{[\beta,\beta']}\text{-}sCl(Y \setminus B)) \text{ and by } (2), \text{ we have } x \in X \setminus \alpha_{[\gamma,\gamma']}\text{-}Cl(f^{-1}(\alpha_{[\beta,\beta']}\text{-}sInt(\alpha_{[\beta,\beta']}\text{-}sCl(Y \setminus B)))) = \alpha_{[\gamma,\gamma']}\text{-}Int(f^{-1}(\alpha_{[\beta,\beta']}\text{-}sCl(\alpha_{[\beta,\beta']}\text{-}sInt(B)))). \end{array}$

 $\begin{array}{ll} (3) \Rightarrow (1): \mbox{ Let } V \mbox{ be any } \alpha_{[\beta,\beta']}\mbox{-semiopen set of } Y. \mbox{ Suppose that } z \notin f^{-1}(\alpha_{[\beta,\beta']}\mbox{-}sCl(V)). \\ \mbox{ Then, } f(z) \notin \alpha_{[\beta,\beta']}\mbox{-}sCl(V) \mbox{ and there exists an } \alpha_{[\beta,\beta']}\mbox{-semiopen set } W \mbox{ containing } f(z) \mbox{ such that } W \cap V = \phi \mbox{ and hence } \alpha_{[\gamma,\gamma']}\mbox{-}sCl(W) \cap V = \phi. \mbox{ By } (3), \mbox{ we have } z \in \alpha_{[\gamma,\gamma']}\mbox{-}Int(f^{-1}(\alpha_{[\beta,\beta']}\mbox{-}sCl(W))) \mbox{ and hence there exists } U \in \alpha O(X)_{[\gamma,\gamma']} \mbox{ such that } z \in U \subseteq f^{-1}(\alpha_{[\beta,\beta']}\mbox{-}sCl(W)). \\ \mbox{ Since } \alpha_{[\beta,\beta']}\mbox{-}sCl(W) \cap V = \phi, \mbox{ } U \cap f^{-1}(V) = \phi \mbox{ and so, } z \notin \alpha_{[\gamma,\gamma']}\mbox{-}Cl(f^{-1}(V)). \mbox{ Therefore, } \\ \alpha_{[\gamma,\gamma']}\mbox{-}Cl(f^{-1}(V)) \subseteq f^{-1}(\alpha_{[\beta,\beta']}\mbox{-}sCl((V))) \mbox{ for every } V \in \alpha SO(Y)_{[\beta,\beta']}. \mbox{ Hence, by Theorem } \\ \mbox{ 4.3, } f \mbox{ is } (\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})\mbox{-}\theta\mbox{-semicontinuous.} \end{array}$

Proposition 4.8. The following statements are equivalent for a function $f : (X, \tau) \to (Y, \sigma)$:

- (i) f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous.
- (ii) $\alpha_{[\gamma,\gamma']} Cl(f^{-1}(\alpha_{[\beta,\beta']} sInt(\alpha_{[\beta,\beta']} sCl_{\theta}(B)))) \subseteq f^{-1}(\alpha_{[\beta,\beta']} sCl_{\theta}(B)), \text{ for every subset } B \text{ of } Y.$
- (iii) $\alpha_{[\gamma,\gamma']}$ - $Cl(f^{-1}(\alpha_{[\beta,\beta']}$ - $sInt(\alpha_{[\beta,\beta']}$ - $sCl(B)))) \subseteq f^{-1}(\alpha_{[\beta,\beta']}$ - $sCl_{\theta}(B)), for every subset B of Y.$
- (iv) $\alpha_{[\gamma,\gamma']}$ - $Cl(f^{-1}(\alpha_{[\beta,\beta']}$ - $sInt(\alpha_{[\beta,\beta']}$ - $sCl(O)))) \subseteq f^{-1}(\alpha_{[\beta,\beta']}$ -sCl(O)), for every $\alpha_{[\beta,\beta']}$ -semiopen set O of Y.

Proof. (1) \Rightarrow (2): Let *B* be any subset of *Y*. Then, $\alpha_{[\beta,\beta']} \cdot sCl_{\theta}(B)$ is $\alpha_{[\beta,\beta']} \cdot semiclosed$ in *Y*. Then by Theorem 4.3 (v), if $x \in \alpha_{[\gamma,\gamma']} \cdot Cl(f^{-1}(\alpha_{[\beta,\beta']} \cdot sInt(\alpha_{[\beta,\beta']} \cdot sCl_{\theta}(B))))$, then $x \in f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl_{\theta}(B))$.

(2) \Rightarrow (3): This is obvious since $\alpha_{[\beta,\beta']}$ -sCl(B) $\subseteq \alpha_{[\beta,\beta']}$ -sCl_ θ (B) for every subset B.

(3) \Rightarrow (4): By Lemma 3.6 (i), we have $\alpha_{[\beta,\beta']} \cdot sCl(O) = \alpha_{[\beta,\beta']} \cdot sCl_{\theta}(O)$ for every $\alpha_{[\beta,\beta']} \cdot semiopen$ set O.

(4) \Rightarrow (1): Let V be any $\alpha_{[\beta,\beta']}$ -semiopen set of Y and $x \in \alpha_{[\gamma,\gamma']}$ - $Cl(f^{-1}(V))$. Then, V is $\alpha_{[\beta,\beta']}$ -semiopen and $x \in \alpha_{[\gamma,\gamma']}$ - $Cl(f^{-1}(\alpha_{[\beta,\beta']}-sInt(\alpha_{[\beta,\beta']}-sCl(V))))$. By (4), $x \in f^{-1}(\alpha_{[\beta,\beta']}-sCl(V))$. It follows from Theorem 4.3, that f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous.

Proposition 4.9. A function $f: (X, \tau) \to (Y, \sigma)$ is $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ - θ -semicontinuous if and only if $f^{-1}(\alpha_{[\beta, \beta']}$ -sCl(V)) is $\alpha_{[\gamma, \gamma']}$ -open set in X, for each $\alpha_{[\beta, \beta']}$ -semiopen set V in Y.

Proof. Let V be any $\alpha_{[\beta,\beta']}$ -semiopen set in Y. We have to show that $f^{-1}(\alpha_{[\beta,\beta']}-sCl(V))$ is $\alpha_{[\gamma,\gamma']}$ -open set in X. Let $x \in f^{-1}(\alpha_{[\beta,\beta']}-sCl(V))$. Then, $f(x) \in \alpha_{[\beta,\beta']}-sCl(V)$ and $\alpha_{[\beta,\beta']}-sCl(V) \in sCl(V) \in \alpha SR(Y)_{[\beta,\beta']}$. Since f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous, then by Theorem 4.3 (ii),

there exists an $\alpha_{[\gamma,\gamma']}$ -open set U of X containing x such that $f(U) \subseteq \alpha_{[\beta,\beta']}$ -sCl(V). Which implies that $x \in U \subseteq f^{-1}(\alpha_{[\beta,\beta']}$ -sCl(V)). Therefore, $f^{-1}(\alpha_{[\beta,\beta']}$ -sCl(V)) is an $\alpha_{[\gamma,\gamma']}$ -open set in X.

Conversely, let $x \in X$ and V be any $\alpha_{[\beta,\beta']}$ -semiopen set of Y containing f(x). Then $x \in f^{-1}(\alpha_{[\beta,\beta']}-sCl(V))$, by hypothesis $f^{-1}(\alpha_{[\beta,\beta']}-sCl(V))$ is an $\alpha_{[\gamma,\gamma']}$ -open set in X containing x, so clearly $f(f^{-1}(\alpha_{[\beta,\beta']}-sCl(V)) \subseteq \alpha_{[\beta,\beta']}-sCl(V)$. Therefore, f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})-\theta$ -semicontinuous.

Proposition 4.10. A function $f : (X, \tau) \to (Y, \sigma)$ is $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ - θ -semicontinuous if and only if $f^{-1}(\alpha_{[\beta, \beta']}$ -sInt(F)) is an $\alpha_{[\gamma, \gamma']}$ -closed set in X, for each $\alpha_{[\beta, \beta']}$ -semclosed set F of Y.

Proof. Let F be any $\alpha_{[\beta,\beta']}$ -semclosed set of Y. Then, $Y \setminus F$ is an $\alpha_{[\beta,\beta']}$ -semopen set of Y, since f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous. Then by Proposition 4.9, $f^{-1}(\alpha_{[\beta,\beta']} - sCl(Y \setminus F))$ is an $\alpha_{[\gamma,\gamma']}$ -open set in X and $f^{-1}(\alpha_{[\beta,\beta']} - sCl(Y \setminus F)) = f^{-1}(Y \setminus \alpha_{[\beta,\beta']} - sInt(F)) = X \setminus f^{-1}(\alpha_{[\beta,\beta']} - sInt(F))$ is an $\alpha_{[\gamma,\gamma']}$ -open set in X and hence $f^{-1}(\alpha_{[\beta,\beta']} - sInt(F))$ is an $\alpha_{[\gamma,\gamma']}$ -closed set in X.

Conversely, let V be any $\alpha_{[\beta,\beta']}$ -semopen set of Y. Then $Y \setminus V$ is $\alpha_{[\beta,\beta']}$ -semclosed, and by hypothesis $f^{-1}(\alpha_{[\beta,\beta']}$ - $sInt(Y \setminus V)) = f^{-1}(Y \setminus \alpha_{[\beta,\beta']}$ - $sCl(V)) = X \setminus f^{-1}(\alpha_{[\beta,\beta']}$ -sCl(V))is an $\alpha_{[\gamma,\gamma']}$ -closed set in X, so $f^{-1}(\alpha_{[\beta,\beta']}$ -sCl(V)) is an $\alpha_{[\gamma,\gamma']}$ -open set in X. Therefore, by Proposition 4.9, f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous.

Proposition 4.11. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. If $f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl_{\theta}(B))$ is $\alpha_{[\gamma,\gamma']} \cdot closed$ in X for every subset B of Y, then f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']}) \cdot \theta$ -semicontinuous.

Proof. Let $B \subseteq Y$. Since $f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl_{\theta}(B))$ is $\alpha_{[\gamma,\gamma']} \cdot closed$ in X, then $\alpha_{[\gamma,\gamma']} \cdot Cl(f^{-1}(B)) \subseteq \alpha_{[\gamma,\gamma']} \cdot Cl(f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl_{\theta}(B))) = f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl_{\theta}(B))$. By Theorem 4.5, f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']}) - \theta$ -semicontinuous.

Proposition 4.12. The following statements are equivalent for a function $f : (X, \tau) \to (Y, \sigma)$:

(i) f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous.

$$(ii) \ \alpha_{[\gamma,\gamma']} - Cl(f^{-1}(V)) \subseteq f^{-1}(\alpha_{[\beta,\beta']} - sCl(V)), for \ every \ V \subseteq \alpha_{[\beta,\beta']} - sInt(\alpha_{[\beta,\beta']} - sCl(V)).$$

$$(iii) \ f^{-1}(V) \subseteq \alpha_{[\gamma,\gamma']} - Int(f^{-1}(\alpha_{[\beta,\beta']} - sCl(V))), for \ every \ V \subseteq \alpha_{[\beta,\beta']} - sInt(\alpha_{[\beta,\beta']} - sCl(V))$$

Proof. (1) \Rightarrow (2): Let $V \subseteq \alpha_{[\beta,\beta']}$ - $sInt(\alpha_{[\beta,\beta']}$ -sCl(V)) such that $x \in \alpha_{[\gamma,\gamma']}$ - $Cl(f^{-1}(V))$. Suppose that $x \notin f^{-1}(\alpha_{[\beta,\beta']}$ -sCl(V)). Then there exists an $\alpha_{[\beta,\beta']}$ -semopen set W containing f(x) such that $W \cap V = \phi$. Hence, we have $W \cap \alpha_{[\beta,\beta']}$ - $sCl(V) = \phi$ and hence $\alpha_{[\beta,\beta']}$ - $sCl(W) \cap \alpha_{[\beta,\beta']}$ - $sInt(\alpha_{[\beta,\beta']}$ - $sCl(V)) = \phi$. Since $V \subseteq \alpha_{[\beta,\beta']}$ - $sInt(\alpha_{[\beta,\beta']}$ -sCl(V)) and we have $V \cap \alpha_{[\beta,\beta']}$ - $sCl(W) = \phi$. Since f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous at $x \in X$ and W is an $\alpha_{[\beta,\beta']}$ -sCl(W). Then $f(U) \cap V = \phi$ and hence $U \cap f^{-1}(V) = \phi$. This shows that $x \notin \alpha_{[\gamma,\gamma']}$ - $Cl(f^{-1}(V))$. This is a contradiction. Therefore, we have $x \in f^{-1}(\alpha_{[\beta,\beta']}$ -sCl(V)).

 $\begin{array}{l} (2) \Rightarrow (3): \mbox{ Let } V \subseteq \alpha_{[\beta,\beta']} \cdot sInt(\alpha_{[\beta,\beta']} \cdot sCl(V)) \mbox{ and } x \in f^{-1}(V). \mbox{ Then, we have } f^{-1}(V) \subseteq f^{-1}(\alpha_{[\beta,\beta']} \cdot sInt(\alpha_{[\beta,\beta']} \cdot sCl(V))) = X \setminus f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl(Y \setminus \alpha_{[\beta,\beta']} \cdot sCl(V))). \mbox{ Therefore, } x \notin f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl(Y \setminus \alpha_{[\beta,\beta']} \cdot sCl(V))). \mbox{ Therefore, } x \notin f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl(Y \setminus \alpha_{[\beta,\beta']} \cdot sCl(V))). \mbox{ Then by } (2), x \notin \alpha_{[\gamma,\gamma']} \cdot Cl(f^{-1}(Y \setminus \alpha_{[\beta,\beta']} \cdot sCl(V))). \mbox{ Hence, } x \in X \setminus \alpha_{[\gamma,\gamma']} \cdot Cl(f^{-1}(Y \setminus \alpha_{[\beta,\beta']} \cdot sCl(V))) = \alpha_{[\gamma,\gamma']} \cdot Int(f^{-1}(\alpha_{[\beta,\beta']} \cdot sCl(V))). \end{array}$

(3) \Rightarrow (1): Let V be any $\alpha_{[\beta,\beta']}$ -semiopen set of Y. Then, $V = \alpha_{[\beta,\beta']}$ - $sInt(V) \subseteq \alpha_{[\beta,\beta']}$ - $sInt(\alpha_{[\beta,\beta']}$ -sCl(V)). Hence, by (3) and Theorem 4.3, f is $(\alpha_{[\gamma,\gamma']}, \alpha_{[\beta,\beta']})$ - θ -semicontinuous.

Proposition 4.13. If $f : (X, \tau) \to (Y, \sigma)$ is $(\alpha_{[\gamma, \gamma']}, \alpha_{[\beta, \beta']})$ - θ -semicontinuous at $x \in X$, then for each $\alpha_{[\beta, \beta']}$ -semiopen set B containing f(x) and each $\alpha_{[\gamma, \gamma']}$ -open set A containing x, there

exists a nonempty $\alpha_{[\gamma,\gamma']}$ -open set $U \subseteq A$ such that $U \subseteq \alpha_{[\gamma,\gamma']}$ - $Cl(f^{-1}(\alpha_{[\beta,\beta']}-sCl(B)))$. Where γ and γ' are α -regular operations.

Proof. Let *B* be any $\alpha_{[\beta,\beta']}$ -semiopen set containing f(x) and *A* be an $\alpha_{[\gamma,\gamma']}$ -open set of *X* containing *x*. By Lemma 3.2 and Theorem 4.3, $x \in \alpha_{[\gamma,\gamma']}$ - $Int(f^{-1}(\alpha_{[\beta,\beta']}-sCl(B)))$, then $A \cap \alpha_{[\gamma,\gamma']}$ - $Int(f^{-1}(\alpha_{[\beta,\beta']}-sCl(B))) \neq \phi$. Take $U = A \cap \alpha_{[\gamma,\gamma']}$ - $Int(f^{-1}(\alpha_{[\beta,\beta']}-sCl(B)))$. Thus, *U* is a nonempty $\alpha_{[\gamma,\gamma']}$ -open set by [[1], Proposition 3.4], and hence $U \subseteq A$ and $U \subseteq \alpha_{[\gamma,\gamma']}$ - $Int(f^{-1}(\alpha_{[\beta,\beta']}-sCl(B))) \subseteq \alpha_{[\gamma,\gamma']}$ - $Cl(f^{-1}(\alpha_{[\beta,\beta']}-sCl(B)))$.

References

- A. B. Khalaf, S. Jafari and H. Z. Ibrahim, Bioperations on α-open sets in topological spaces, *International Journal of Pure and Applied Mathematics*, **103** (4), 653–666 (2015).
- [2] A. B. Khalaf and H. Z. Ibrahim, Bioperations on α-semiopen sets, Konuralp Journal of Mathematics, 4 (2), 193–208 (2016).
- [3] H. Z. Ibrahim, On a class of α_{γ} -open sets in a topological space, *Acta Scientiarum. Technology*, **35** (3), 539–545 (2013).
- [4] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15, 961–970 (1965).

Author information

Hariwan Z. Ibrahim, Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq.

E-mail: hariwan.ibrahim@uoz.edu.krd

Alias B. Khalaf, Department of Mathematics, Faculty of Science, University of Duhok, Kurdistan-Region, Iraq.

E-mail: aliasbkhalaf@gmail.com

Received: August 3, 2016. Accepted: January 7, 2017.