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AbstractLet pod−k(n) denote the number of partition k−tuples of any positive integer n
where the odd parts in each partition are distinct. The arithmetic properties of pod−k(n) for the
particular cases k = 1, 2, 3 and 4 have been studied by different authors in recent times. In this
paper, we study the arithmetic properties of the partition functions pod−5(n) and pod−7(n) and
establish infinite family of congruences by using Ramanujan’s theta-functions. We also prove
some other congruences for pod−5(n) and pod−7(n).

1 Introduction

Let pod−k(n) denote the number of partition k-tuples of any positive integer n where the odd
parts in each partition are distinct. The generating function of pod−k(n) [7, p.1, (1.1)] is given
by

∞∑
n=0

pod−k(n)q
n =

(−q; q2)k∞
(q2; q2)k∞

=
1

ψ(−q)k
, (1.1)

where

(a; q)∞ =
∞∏
n=0

(1− aqn)

and

ψ(q) := f(q, q3) =
∞∑
n=0

qn(n+1)/2 =
(q2; q2)2

∞
(q; q)∞

(1.2)

is a special case of the Ramanujan’s general theta-function f(a, b) which is defined by

f(a, b) =
∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1. (1.3)

Other two special cases of f(a, b) and of importance in this paper are

φ(q) := f(q, q) = 1 + 2
∞∑
n=1

qn
2
=

(q2; q2)5
∞

(q; q)2
∞(q

4; q4)2
∞

(1.4)

and

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n+1)/2 = (q; q)∞. (1.5)

The arithmetic properties of pod−k(n) have drawn much attention in recent years. Hirschorn
and Sellers [5] studied the partition function pod−1(n) (often denoted by pod(n)) and proved
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some infinite family of congruences including the following congruence: For α ≥ 1,

pod

(
32α+3n+

23× 32α+2 + 1
8

)
≡ 0 (mod 3). (1.6)

They also proved some internal congruences of the following type

pod(81n+ 17) ≡ pod(9n+ 2) (mod 27). (1.7)

The congruences modulo 5 and 7 for pod(n) are proved by Radu and Sellers [6] by employing
the method of modular form. Wang [9] also found infinite family of congruences modulo 5 for
pod(n). Chen and Lin [3] investigated the arithmetic properties of pod−2(n) and proved infinite
family of congruences modulo 3 and 5. Wang [9] proved infinite family of congruences modulo
7, 9 and 11 for the partition function pod−3(n). More recently, Wang [7] established infinite
family of congruences modulo 9 for pod−4(n) and also proved some internal congruences.

In sequel to above works, in this paper we study arithmetic properties the partition functions
pod−5(n) and pod−7(n) and prove some congruences by employing Ramanujan’s theta-function
identities.

In section 3, we prove congruences modulo 2, 3, and 5 for pod−5(n). For example, in Theo-
rem 3.5 we prove that, for α ≥ 1 and any odd prime p,

pod−5

(
3p2αn+

3(8i+ p)p2α−1 + 5
8

)
≡ 0 (mod 3), (1.8)

where i = 1, 2, · · · , p − 1. We also prove some other congruences for pod−5(n) modulo 2, 3,
and 5.

In section 4, we investigate the partition function pod−7(n) and prove congruences modulo 3
and 7. For example, in Theorem 4.4 we prove, for α ≥ 1 and any odd prime p, we have

pod−7

(
9p2αn+

9(8i+ p)p2α−1 + 7
8

)
≡ 0 (mod 3),

where i = 1, 2, · · · , p− 1.
Section 2 is devoted to record some preliminary results for ready references in this paper.

2 Preliminary Results

Lemma 2.1. [1, p. 286, Lemma 3.11]We have

ψ(−q) = (q; q)∞(q4; q4)∞
(q2; q2)∞

, (2.1)

χ(q) := (−q; q2)∞ =
(q2; q2)2

∞
(q; q)∞(q4; q4)∞

. (2.2)

f(q) =
(q2; q2)3

∞
(q; q)∞(q4; q4)∞

. (2.3)

Lemma 2.2. [2, p. 49, Corollary (i)& (ii)]We have

φ(q) = φ(q9) + 2qf(q3, q15), (2.4)

ψ(q) = f(q3, q6) + qψ(q9). (2.5)

Lemma 2.3. For any prime p and positive integer m, we have

(qpm; qpm)∞ ≡ (qm; qm)p∞ (mod p), (2.6)

φ(qp) ≡ φ(q)p (mod p). (2.7)
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Proof. (2.6) follows from binomial theorem. (2.7) follows from (2.6) and the product represen-
tations of φ(q) in (1.4).

Lemma 2.4. [2, p. 51 , Example(v)]We have

f(q, q5) = ψ(−q3)χ(q).

Lemma 2.5. [2, p. 350 , Eqn. (2.3)]We have

f(q, q2) =
φ(−q3)

χ(−q)
.

Lemma 2.6. [2, p. 46, Entry 30(ii) & (iii)]We have

f(a, b) + f(−a,−b) = 2f
(
a3b, ab3) ,

f(a, b)− f(−a,−b) = 2af
(
b

a
, a5b3

)
.

Lemma 2.7. [2, p. 49]For any odd prime p, we have

φ(q) = φ(qp
2
) +

p−1∑
r=0

qr
2
f(qp(p−2r), qp(p+2r)).

Lemma 2.8. [4, Theorem 2.1]For any odd prime p, we have

ψ(q) =

p−3
2∑

k=0

q
k2+k

2 f

(
q
p2+(2k+1)p

2 , q
p2−(2k+1)p

2

)
+ q

p2−1
8 ψ(qp

2
).

Furthermore,
k2 + k

2
6≡ p2 − 1

8
(mod p) for 0 ≤ k ≤ p−3

2 .

3 Congruences for pod−5(n)

Theorem 3.1. For any positive integer n, we have

(i)
∞∑
n=0

pod−5(3n)qn ≡
φ(q)3

(q; q)∞(q4; q4)∞
(mod 3),

(ii)
∞∑
n=0

pod−5(3n+ 1)qn ≡ 2ψ(−q) (mod 3),

(iii) pod−5(3n+ 2) ≡ 0 (mod 3).

Proof. Setting k = 5 in (1.1), we find that

∞∑
n=0

pod−5(n)q
n =

(−q; q2)5
∞

(q2; q2)5
∞

=
1

ψ(−q)5 , (3.1)

Employing (2.1) and (1.4) in (3.1), we find that

∞∑
n=0

pod−5(n)q
n =

φ(q)

(q; q)3
∞(q

4; q4)3
∞

(3.2)

Employing (2.4) and (2.6) in (3.2), we obtain

∞∑
n=0

pod−5(n)q
n ≡ φ(q9)

(q3; q3)∞(q12; q12)∞
+ 2q

f(q3, q15)

(q3; q3)∞(q12; q12)∞
(mod 3). (3.3)
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Extracting the terms involving q3n from (3.3), then replacing q3 by q, and using (2.7), we arrive
at (i).

Extracting the terms involving q3n+1 from (3.3), then dividing by q and replacing q3 by q, we
obtain

∞∑
n=0

pod−5(3n+ 1)qn ≡ 2f(q, q5)

(q; q)∞(q4; q4)∞
(mod 3). (3.4)

Employing Lemma 2.4 in (3.4) and simplifying using (2.1) and (2.2), we obtain

∞∑
n=0

pod−5(3n+ 1)qn ≡ 2
(q3; q3)∞(q12; q12)∞(q2; q2)2

∞
(q; q)2

∞(q
4; q4)2

∞(q
6; q6)∞

(mod 3). (3.5)

Simplifying (3.5) by employing (2.6) with p = 3 and using (2.1), we complete the proof of (ii).
Since right hand side of (3.3) contains no terms involving q3n+2, extracting the terms involv-

ing q3n+2 from (3.3), dividing by q2 and replacing q3 by q, we readily arrive at (iii).

Theorem 3.2. For any positive integer n, we have

pod−5(16n+ j) ≡ 0 (mod 2),

where j =1, 3, 5, and 6.

Proof. Using (2.1) in (3.1) and simplifying using (2.6) with p = 2 , we obtain

∞∑
n=0

pod−5(n)q
n ≡ 1

(q; q)15
∞

=
(q; q)∞

(q16; q16)∞
(mod 2). (3.6)

Employing (1.5) in (3.6), we find that

∞∑
n=0

pod−5(n)q
n ≡ 1

(q16; q16)∞

∞∑
n=−∞

(−1)nqn(3n+1)/2 (mod 2). (3.7)

Extracting the terms involving q16n+j for j =1, 3, 5, and 6 from (3.7) and employing the fact
that there exist no positive integer n such that n(3n+ 1)/2 is congruent to 1, 3, 5, or 6 modulo
16, we arrive at the desired result.

Theorem 3.3. We have

(i)
∞∑
n=0

pod−5(9n+ 1)qn ≡ 2f(−q, q2) (mod 3),

(ii) pod−5(9n+ 1) ≡ pod−5

(
9p2n+

3p2 + 5
8

)
(mod 3),

where p is a prime such that p ≡ ±1 (mod 8).

Proof. Replacing q by −q in (2.5) and employing in Theorem 3.1(ii), we obtain

∞∑
n=0

pod−5(3n+ 1)qn ≡ 2
(
f(−q3, q6)− qψ(−q9)

)
(mod 3). (3.8)

Extracting the terms involving q3n from (3.8) and replacing q3 by q, we arrive at (i).
To prove (ii), we set

∞∑
n=0

c(n)qn = φ(q). (3.9)

Employing (2.4) in (3.9) , we obtain

∞∑
n=0

c(n)qn = φ(q9) + 2qf(q3, q15). (3.10)
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Extracting the terms involving q3n+1, dividing by q then replacing q3 by q, we obtain

∞∑
n=0

c(3n+ 1)qn = 2f(q, q5). (3.11)

Setting a = q and b = q5 in Lemma 2.6, we obtain

f(q, q5) + f(−q,−q5) = 2f(q8, q16) (3.12)

and
f(q, q5)− f(−q,−q5) = 2qf(q4, q20). (3.13)

Adding (3.12) and (3.13) and simplifying, we obtain

f(q, q5) = f(q8, q16) + qf(q4, q20). (3.14)

Employing (3.14) in (3.11), then extracting the terms involving q8n and replacing q8 by −q,
we obtain

∞∑
n=0

c(24n+ 1)(−1)nqn = 2f(−q, q2). (3.15)

Employing Theorem 3.3(i) in (3.15) and equating the terms involving qn, we obtain

c(24n+ 1) ≡ (−1)npod−5(9n+ 1) (mod 3). (3.16)

Employing Lemma 2.7 in (3.9), then extracting the terms involving qp
2n and replacing qp

2
by q,

we obtain
∞∑
n=0

c(p2n)qn = φ(q). (3.17)

From (3.9) and (3.17), we deduce that

c(n) = c(p2n). (3.18)

Replacing n by 24n+ 1 in (3.18), we obtain

c(24n+ 1) = c(24p2n+ p2) = c

(
24
(
p2n+

p2 − 1
24

)
+ 1
)
. (3.19)

Employing (3.16) in (3.19) and simplifying, we find that

pod−5(9n+ 1) ≡ (−1)(p
2+1)n+(p2−1)/24pod−5

(
9p2n+

3p2 + 5
8

)
(mod 3). (3.20)

Noting (p2 + 1)n+ (p2 − 1)/24 is even for any prime p and p ≡ ±1 (mod 8), (ii) follows from
(3.20).

Theorem 3.4. For α ≥ 1 and any odd prime p, we have

∞∑
n=0

(−1)p
2αn+(p2α−1)/8pod−5

(
3p2αn+ 3

(
p2α − 1

8

)
+ 1
)
qn ≡ 2ψ(q) (mod 3).

Proof. We will prove the result by using the method of mathematical induction on α.
Replacing q by −q in Theorem 3.1(ii) and employing Lemma 2.8, we obtain

∞∑
n=0

pod−5(3n+ 1)(−1)nqn ≡ 2

p−3
2∑

k=0

q
k2+k

2 f

(
q
p2+(2k+1)p

2 ,
p2−(2k+1)p

2

)
+ q

p2−1
8 ψ(qp

2
) (mod 3).

(3.21)
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Extracting the terms involving qp
2n+(p2−1)/8 from (3.21), then dividing by q(p

2−1)/8 and replacing
qp

2
by q, we obtain
∞∑
n=0

(−1)p
2n+(p2−1)/8pod−5

(
3p2n+ 3

(
p2 − 1

8

)
+ 1
)
qn ≡ 2ψ(q) (mod 3). (3.22)

So the result is true for α = 1.
Assume that the result is true for α = k, so
∞∑
n=0

(−1)p
2kn+(p2k−1)/8pod−5

(
3p2kn+ 3

(
p2k − 1

8

)
+ 1
)
qn ≡ 2ψ(q) (mod 3). (3.23)

Employing Lemma 2.8 in (3.23), we obtain
∞∑
n=0

(−1)p
2kn+(p2k−1)/8pod−5

(
3p2kn+ 3

(
p2k − 1

8

)
+ 1
)
qn

≡ 2

p−3
2∑

k=0

q
k2+k

2 f

(
q
p2+(2k+1)p

2 ,
p2−(2k+1)p

2

)
+ q

p2−1
8 ψ(qp

2
) (mod 3). (3.24)

Extracting the terms involving qp
2n+(p2−1)/8 from (3.24), then dividing by q(p

2−1)/8 and replacing
qp

2
by q, we obtain
∞∑
n=0

(−1)
p2k

(
p2n+ p2−1

8

)
+ p2k−1

8
pod−5

(
3p2k

(
p2n+

p2 − 1
8

)
+ 3

(
p2k − 1

8

)
+ 1
)
qn

=
∞∑
n=0

(−1)p
2(k+1)n+ p

2(k+1)−1
8 pod−5

(
3p2(k+1)n + 3

(
p2(k+1) − 1

8

)
+ 1

)
qn

≡ 2ψ(q) (mod 3). (3.25)
Thus, the theorem is true for α = k + 1 whenever it is true for α = k. As the result is also true
for α = 1. Hence, by principle of mathematical induction the result is true for any α ≥ 1.

Theorem 3.5. For α ≥ 1 and any odd prime p, we have

pod−5

(
3p2αn+

3(8i+ p)p2α−1 + 5
8

)
≡ 0 (mod 3),

where i = 1, 2, · · · , p− 1.

Proof. Extracting the terms involving qpn+
p2−1

8 from (3.24), then dividing by q
p2−1

8 and replacing
qn by q, we obtain

∞∑
n=0

(−1)p
2α+1n+ p2α+2−1

8 pod−5

(
3p2α+1n+ 3

(
p2α+2 − 1

8

)
+ 1
)
qn ≡ 2ψ(qp) (mod 3),

(3.26)
where we replaced k by α. The right hand side of (3.26) contains no terms involving qpn+i for
i = 1, 2, · · · , p − 1, so extracting the terms involving qpn+i from (3.26) and simplifying, we
arrive at the desired result.

Theorem 3.6. For any positive integer n, we have

pod−5(5n+ j) ≡ 0 (mod 5),

where j =1, 2, 3, and 4.

Proof. Employing (2.1) in (3.1) and simplifying using (2.6) with p = 5, we obtain
∞∑
n=0

pod−5(n)q
n =

(q2; q2)5
∞

(q; q)5
∞(q

4; q4)5
∞
≡ (q10; q10)∞

(q5; q5)∞(q20; q20)∞
(mod 5). (3.27)

Since right hand side of (3.27) contains no term involving q5n+j for j = 1, 2, 3, and 4, extracting
the terms involving q5n+j , we complete the proof.
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4 Congruences for pod−7(n)

Theorem 4.1. We have

(i)
∞∑
n=0

pod−7(3n)qn ≡
φ2(q3)

(q; q)∞(q2; q2)∞(q4; q4)∞
(mod 3).

(ii)
∞∑
n=0

pod−7(3n+ 1)qn ≡ φ3(q)f(q, q5)

(q; q)∞(q2; q2)∞(q4; q4)∞
(mod 3).

(iii)
∞∑
n=0

pod−7(3n+ 2)qn ≡ f2(q, q5)

(q; q)∞(q2; q2)∞(q4; q4)∞
(mod 3).

Proof. Setting k = 7 in (1.1) and simplifying by employing (2.1) and (1.4), we obtain

∞∑
n=0

pod−7(n)q
n =

φ2(q)

(q; q)3
∞(q

2; q2)3
∞(q

4; q4)3
∞
. (4.1)

Employing (2.6) with p = 3 in (4.1), we obtain

∞∑
n=0

pod−7(n)q
n ≡ φ2(q)

(q3; q3)∞(q6; q6)∞(q12; q12)∞
(mod 3). (4.2)

Employing (2.4) in (4.2), we obtain

∞∑
n=0

pod−7(n)q
n ≡ φ2(q9) + 4qφ(q9)f(q3, q15) + 4q2f2(q3, q15)

(q3; q3)∞(q6; q6)∞(q12; q12)∞
(mod 3). (4.3)

Extracting the terms involving q3n from (4.3) and replacing q3 by q, we arrive at (i). Extracting
the terms involving q3n+1 from (4.3), dividing by q and replacing q3 by q, we arrive at (ii).
Extracting the terms involving q3n+2 from (4.3), dividing by q2 and replacing q3 by q we complete
the proof of (iii).

Theorem 4.2. We have

(i)
∞∑
n=0

pod−7(9n+ 2)qn ≡ ψ(−q) (mod 3),

(ii) pod−7(9n+ 5) ≡ 0 (mod 3),

(iii) pod−7(9n+ 8) ≡ 0 (mod 3).

Proof. Employing Lemma 2.4 in Theorem 4.1(iii) and simplifying using (2.1), (2.2) and (2.6),
we obtain

∞∑
n=0

pod−7(3n+ 2)qn ≡ (q3; q3)2
∞(q

12; q12)∞
(q2; q2)3

∞(q; q)3
∞

≡ (q3; q3)∞(q12; q12)∞
(q6; q6)∞

= ψ(−q3) (mod 3).

(4.4)
Extracting the terms involving q3n from (4.4) and replacing q3 by q, we arrive at (i).

Since right hand side of (4.4) contains no terms involving q3n+1 and q3n+2, extracting the
terms involving q3n+1 and q3n+2 from (4.4), we complete the proof of (ii) and (iii), respectively.

Theorem 4.3. For any odd prime p and α ≥ 1, we have

∞∑
n=0

(−1)p
2αn+ p2α−1

8 pod−7

(
9p2αn+ 9

(
p2α − 1

8

)
+ 2
)
qn ≡ ψ(q) (mod 3).
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Proof. We will prove the result by induction on α.
Replacing q by −q in Theorem 4.2(i) and employing Lemma 2.8, we obtain

∞∑
n=0

pod−7(9n+ 2)(−1)nqn ≡

p−3
2∑

k=0

q
k2+k

2 f

(
q
p2+(2k+1)p

2 ,
p2−(2k+1)p

2

)
+ q

p2−1
8 ψ(qp

2
) (mod 3).

(4.5)
Extracting the terms involving qp

2n+(p2−1)/8 from (4.5), then dividing by q(p
2−1)/8 and replacing

qp
2

by q, we obtain

∞∑
n=0

(−1)p
2n+(p2−1)/8pod−7

(
9p2n+ 9

(
p2 − 1

8

)
+ 2
)
qn ≡ ψ(q) (mod 3). (4.6)

So the result is true for α = 1.
Assume that the result is true for α = k, so
∞∑
n=0

(−1)p
2kn+(p2k−1)/8pod−7

(
9p2kn+ 9

(
p2k − 1

8

)
+ 2
)
qn ≡ ψ(q) (mod 3). (4.7)

Employing Lemma 2.8 in (4.7), we obtain

∞∑
n=0

(−1)p
2kn+(p2k−1)/8pod−7

(
9p2kn+ 9

(
p2k − 1

8

)
+ 2
)
qn

≡

p−3
2∑

k=0

q
k2+k

2 f

(
q
p2+(2k+1)p

2 ,
p2−(2k+1)p

2

)
+ q

p2−1
8 ψ(qp

2
) (mod 3). (4.8)

Extracting the terms involving qp
2n+(p2−1)/8 from (4.8), then dividing by q(p

2−1)/8 and replacing
qp

2
by q, we obtain

∞∑
n=0

(−1)
p2k

(
p2n+ p2−1

8

)
+ p2k−1

8
pod−7

(
9p2k

(
p2n+

p2 − 1
8

)
+ 9

(
p2k − 1

8

)
+ 2
)
qn

=
∞∑
n=0

(−1)p
2(k+1)n+ p

2(k+1)−1
8 pod−7

(
9p2(k+1)n + 9

(
p2(k+1) − 1

8

)
+ 2

)
qn

≡ ψ(q) (mod 3). (4.9)

Thus, the theorem is true for α = k + 1 whenever it is true for α = k. As the result is also true
for α = 1. Hence, by principle of mathematical induction the result is true for any α ≥ 1.

Theorem 4.4. For α ≥ 1 and any odd prime p, we have

pod−7

(
9p2αn+

9(8i+ p)p2α−1 + 7
8

)
≡ 0 (mod 3),

where i = 1, 2, · · · , p− 1.

Proof. Extracting the terms involving qpn+
p2−1

8 from (4.8), then dividing by q
p2−1

8 and replacing
qn by q, we obtain

∞∑
n=0

(−1)p
2α+1n+ p2α+2−1

8 pod−7

(
9p2α+1n+ 9

(
p2α+2 − 1

8

)
+ 2
)
qn ≡ ψ(qp) (mod 3), (4.10)

where we replaced k by α. Since right hand side of (4.10) contains no terms involving qpn+i for
i = 1, 2, · · · , p− 1, extracting the terms involving qpn+i from (4.10) and simplifying, we arrive
at the desired result.
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Theorem 4.5. We have

(i)
∞∑
n=0

pod−7(3n+ 1)qn ≡ f(−q, q2) (mod 3),

(ii) pod−5(9n+ 1) ≡ 2pod−7(3n+ 1) (mod 3),

(iii) pod−7(3n+ 1) ≡ pod−7

(
3p2n+

p2 + 7
8

)
(mod 3),

where p is a prime with p ≡ ±1 (mod 8).

Proof. Simplifying Theorem 4.1(ii) with the help of (2.7), (1.4), and Lemma 2.4, we arrive at

∞∑
n=0

pod−7(3n+ 1)qn ≡ φ2(q)
(q2; q2)3

∞
(q; q)∞(q4; q4)∞

=
φ3(q)

φ(q)

(q2; q2)3
∞

(q; q)∞(q4; q4)∞
(mod 3). (4.11)

Employing (2.7), (1.4) and (2.2) in (4.11) and simplifying , we obtain

∞∑
n=0

pod−7(3n+ 1)qn ≡ φ(q3)

χ(q)
(mod 3). (4.12)

Replacing q by −q in Lemma 2.5 and employing in (4.12), we complete the proof of (i).
(ii) follows easily from Theorem 3.3(i) and Theorem 4.5(i).
To prove (iii), combining (3.15) and Theorem 4.5(i), we obtain

c(24n+ 1) ≡ (−1)npod−7(3n+ 1) (mod 3). (4.13)

Employing (4.13) in (3.18) and simplifying, we obtain

pod−7(3n+ 1) ≡ (−1)(p
2+1)n+ p2−1

24 pod−7

(
3p2n+

p2 + 7
8

)
(mod 3). (4.14)

Noting (p2 + 1)n+ (p2 − 1)/24 is even for any prime p and p ≡ ±1 (mod 8), we complete the
proof of (iii).

Theorem 4.6. For any positive integer n, we have

pod−7(7n+ j) ≡ 0 (mod 7),

where j =1, 2, 3, 4, 5, and 6.

Proof. Employing Lemma 2.1 in (1.1) with k = 7 and simplifying using (2.6), we obtain

∞∑
n=0

pod−7(n)q
n =

(q2; q2)7
∞

(q; q)7
∞(q

4; q4)7
∞
≡ (q14; q14)∞

(q7; q7)∞(q28; q28)∞
(mod 7). (4.15)

The right hand side of (4.15) contains no term involving q7n+j for j =1, 2, 3, 4, 5, and 6, so
extracting the terms involving q7n+j , we complete the proof.
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