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Abstract Let R be a non-domain commutative ring with identity aAd(R) be the set of
non-zero ideals with non-zero annihilators. We call an ideaf R, anannihilating-ideal if
there exists a non-zero idesl of R such that/; 7, = (0). Theannihilating-ideal graph of R
is defined as the graphG(R) with the vertex sef\*(R) and two distinct vertices; and I,
are adjacent if and only if1 I, = (0). In this paper, we characterize all commutative Artinian
non-local ringsk for which AG(R) is planar and the crosscap &f3(R) is one.

1 Introduction

The study of algebraic structures, using the properties of graphamigean exciting research
topic in the past twenty years, leading to many fascinating results and quedtidhe literature,
there are many papers assigning graphs to rings, groups and sepsigsee3, 4, 5, 12, 20, 31,
23, 24, 25]. In ring theory, the structure of a ring is closely tied to ideal’s behavior more than
elements and so it is deserving to define a graph with vertex set as iddakdirng elements.
Recently M. Behboodi and Z. Rakedid, 14] have introduced and investigated the annihilating-
ideal graph of a commutative ring. For a non-domain commutative Rirlgt A*(R) be the set
of non-zero ideals with non-zero annihilators. We call an idealf R, anannihilating-ideal if
there exists a non-zero idesl of R such that/; I, = (0). Theannihilating-ideal graph of R

is defined as the graphG(R) with the vertex sef\*(R) and two distinct vertice$;, and I, are
adjacent if and only i, I, = (0). Several properties ofG(R) were studied by the authors in
[1, 2,13 14, 26, 27].

By a graphG = (V, E), we mean an undirected simple graph with vertexisetnd edge
setE. A graph in which each pair of distinct vertices is joined by the edge is calteshgplete
graph. We usés,, to denote the complete graph withvertices. Anr-partite graph is one whose
vertex set can be partitioned intssubsets so that no edge has both ends in any one subset. A
completer-partite graph is one in which each vertex is joined to every vertex that igribe
same subset. The complete bipartite graph (2-partite graph) with pastsiaadn is denoted
by K, ». The girth ofG is the length of a shortest cycle @and is denoted byr(G). If G has
no cycles, we define the girth ¢f to be infinite. Thecorona of two graphsG; andGs, is the
graphG1 o G, formed from one copy of/; and|V (G1)| copies ofG>, where the!” vertex ofG;
is adjacent to every vertex in th& copy ofG,. A graphG is said to be planar if it can be drawn
in the plane so that its edges intersect only at their ends. A subdivisiomi@ph is a graph
obtained from it by replacing edges with pairwise internally-disjoint pathsemarkably simple
characterization of planar graphs was given by Kuratowski in 198@atéwski’'s Theorem says
that a graplt is planar if and only if it contains no subdivision df’s or K3 3(see [L6, p.153]). A
minor of G is a graph obtained fro® by contracting edges i@ or deleting edges and isolated
vertices inG. A classical theorem due to K. Wagn&(] states that a grap¥ is planar if and
only if G does not havés or K33 as a minor. It is well known that i" is a minor ofG, then

(@) <A(G).
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The main objective of topological graph theory is to embed a graph intafacseu By a
surface, we mean a connected two-dimensional real manifold, cenrected topological space
such that each point has a neighborhood homeomorphic to an operitdskvell known that
any compact surface is either homeomorphic to a sphere, or to actedrsum ofy tori, or to
a connected sum df projective planes (se€], Theorem 5.1]). We denots, for the surface
formed by a connected sum gftori, and N, for the one formed by a connected sum#kof
projective planes. The numbeis called the genus of the surfasgandk is called the crosscap
of N,. When considering the orientability, the surfaggsand sphere are among the orientable
class and the surfacég, are among the non-orientable one. In this paper, we mainly focus on
the non-orientable cases.

A simple graph which can be embeddedSinbut not inS,_, is called a graph of genus
Similarly, if it can be embedded i, but not in N;._1, then we call it a graph of crosscap
The notationsy(G) and~(G) are denoted for the genus and crosscap of a geapkspectively.
Itis easy to see that(H) < v(G) and¥(H) < 7(G) for all subgraphH of G. For details on the
notion of embedding of graphs in surface, one can refer to A. T. WB#e |

2 Planarity of AG(R)

The main goal of this section is to determine all commutative Artinian norl-kiiegs R for
which AG(R) is planar.

Theorem 2.1.[26] Let R = F} x F; x --- x F,, be a commutative ring with identity where each
F; is afield andn > 2. ThenAG(R) is planar if and only ifr = 2 orn = 3.

Theorem 2.2.Let R = R; x Ry x --- x R, be a commutative ring with identity where each
(R;,m;) is a local ring withm; # {0} andn > 2. Letn; be the nilpotency ofv;. ThenAG(R)
is planar if and only if» = 2 and one of the following condition holds:

() n1 = 2,n, = 3andmy is the only non-trivial ideal i?; andms,, mg are the only non-trivial
ideals inRy;

(i) nn=3,mp =2 andml,mf are the only non-trivial ideals if®; andm; is the only non-
trivial ideal in Ry;

(iii) n1 = mnp = 2 andm; andm, are the only non-trivial ideal itkR; and R, respectively.

Proof. Suppose that = 2. ThenR = Ry x R, and hence the proof follows from Fig. 2.1.

mq X mp
my X (ORX m2
mg >'< Ry R1 X my
(0) X Rz Rl X (0)
(a) ng =2andny =3 (b)n1 =2andny =2

Fig 2.1: AG(Ry x Rp)

Conversely, assume thatG(R) is planar. Suppose that > 2. Consider the non-trivial
idealszy = m* ™1 x (0) x (0) x --- x (0), z2 = (0) x m52~ % x (0) x --- x (0), x3 = (0) x
(0) x mp* 1 x -+ x (0), y1 = mg x mp x (0) x --- x (0), yo = (0) x mp x mg x --- x (0),
yz =my x (0) x mg x --- x (0) in R. Thenz;y; = (0) for everyi, j and soK3 3 is a subgraph
of AG(R), a contradiction. Hence = 2.
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Suppose that; > 2 andn, > 2. Consider the non-trivial ideals, = m{”‘l x (0), uz =
(0) x mpzt, ug = mP* 1 x mp2~t, wy = my x (0), us = (0) x mp in R. Thenw;u; = (0)
for everyi # j and soKs is a subgraph oAG(R), a contradiction. Hence; = 2 orn, = 2.
Without loss of generality, we assume that= 2.

Suppose that, > 3. Consider the non-trivial ideals = (0) x mngl, ap = my X mngl,
az =my x (0), by = (0) x mp, bp = my X myp, bz = (0) x mgz_z in R. Thena;b; = (0) for every
i, j and soK3 3 is a subgraph cAG(R), a contradiction. Hence, < 3.

Suppose that, = 3. Let I, be any non-trivial ideal iz, with I, # mz,mg. Consider the
non-trivial idealsz; = (0) x m3, z, = my x m3, z3 = my x (0), y1 = (0) x mp, y2 = my x my,
yz3 = (0) x I in R. Thenz,;y; = (0) for everyi,j and soK33 is a subgraph oAG(R), a
contradiction. Hencen,, m% are the only non-trivial ideals iR;.

Let I; be any non-trivial ideal inR; with I; # m;. Consider the non-trivial ideals; =
my x m3, up = (0) x m3, uz = my x (0), ug = I x (0), us = (0) x mpin R. Thenu,u; = (0) for
every: # j and soKs is a subgraph oAG(R), a contradiction. Hence is the only non-trivial
ideal inR;.

Suppose that, = 2. Let I, be any non-trivial ideal inR, with I, # m;. Consider the
non-trivial ideals(zrl = (0) X My, Tp = (0) X Ip,x3 =mgy XMy, x4 = Mg X Iy, x5 = My X (O) in
R. Thenz;z; = (0) for every: # j and SoKs is a subgraph oAG(R), a contradiction. Hence
my is the only non-trivial ideal inR,. Similarly one can prove that; is the only non-trivial
ideal inR;. O

Lemma 2.3.Let (R, m) be a local ring. If dinfm/m?) = 1 and for some positive integer
m! = (0), then the set of all non-trivial ideals &f is the sef{m® : 1 < i < ¢}.

Proof. Since din{fm/m?) = 1, by Nakayama’s lemmay = Rz for somez € R. Now, let be
a non-trivial ideal ofR. Sincem! = (0), there exists a natural numbek ¢ such that/ C m’
andl ¢ m*™. Leta € I'\m"'. We havea = bz’ for someb € R. If b € m, thena € m’*2,
a contradiction. Thusis an unit. Hence:’ € I. This implies thatl = (z*) = m’, as desired.
Thus, the set of all non-trivial ideals @f is the sef{m’: 1 <i < t}. o

The next Proposition has a crucial role in this paper.

Proposition 2.4.If (R, m) is a local ring and there is an ideAbf R such thatl # m’ for every
i, then R has at least three distinct non-trivial ideals K and L such that/, K, L # m' for
everysi.

Proof. Assume thatk has an ideall such that/ # m’ for everyi. Then by Lemma2.3
dim(m/m?) = n > 2. Therefore, by Nakayama’'s Lemma, we can findz,, ..., r, ¢ m?
such thatm = (z1,z2,...,2,). Thus, Rz;, Rz, and R(z; + ) are the distinct non-trivial
ideals with desired properties. |

Theorem 2.5.LetR = Ry X R x --- X R, X Fy X I, x --- X F,,, be a commutative ring with
identity where eacliR;, m;) is a local ring withm; # {0} andF; is a field,n, m > 1. Letn, be
the nilpotency ofn;. ThenAG(R) is planar if and only if one of the following condition holds:

() R= Ry x F1 x F»,ng = 2 andm; is the only non-trivial ideal inR;
(i) R = Ry x F1 and one of the following holds:

(&) n1 = 2 andm; is the only non-trivial ideal inky;
(b) ny = 3 andmy, m? are the only non-trivial ideals if;
(c) n1 = 4 andmy, m3, m3 are the only non-trivial ideals iR;.

Proof. SupposeR = R; x Fy x F, n; = 2 andmy is the only non-trivial ideal inR;. Then
AG(R) is isomorphic to the graph given in Fig 24. HenceAG(R) is planar.

SupposeR = Ry x Fi, n; = 2 andmy is the only non-trivial ideal inR;. ThenAG(R) is
isomorphic to the graph given in Fig Z&. HenceAG(R) is planar.

Supposer; = 3 andmy, m? are the only non-trivial ideals iR;. ThenAG(R) is isomorphic
to the graph given in Fig 2(2). HenceAG(R) is planar.

Supposer; = 4 andmy, mf, mf are the only non-trivial ideals iR;. ThenAG(R) is isomor-
phic to the graph given in Fig 2(2). HenceAG(R) is planar.
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mg X (O) X F2

m? X Fl
my X F]_ X (0)
my x (0) m? xX0)
mg X (0) X
Ry X (0)
2
m1 X Fl 1 % Fl
(0) x Fy mf x (0)
(a) AG(Rl x Fp X Fz) (b) AG(R]_ X Fl) with ny =4
my x (0) m2 x Fy my x (0) (0) x F1
my K
R{x (0
(0) x Fy m2 x (0) my X F1 Ry x (0)
(C) AG(R]_ X F]_) withny =3 (d) AG(R]_ X F]_) with ny = 2

Fig 2.2

Conversely, assume thatG(R) is planar. Suppose > 1. Consider the non-trivial ideals
z1 =m 1 x (0) x (0) x -+~ x (0), 22 = (0) x mpz ™1 x (0) x --- x (0), 23 = m* L x mpz~t x
(0)x---x(0),52 = (0)x (0)x -+ x F1x (0)x---x(0),y2 =my x (0) x - - - x F1 x (0) x - - - x (0),
y3 = (0) x mp x -+ x F1 x (0) x --- x (0) in R. Thenz;y; = (0) for everyi, j and soK3 3 is a
subgraph ofAG(R), a contradiction. Hence = 1.

Suppose thatn > 2. Consider the non-trivial idealg; = my x (0) x (0) x --- x (0)
up =my X Fy x (0) x (0) x --- x (0), uzg = (0) x F1 x (0) x (0) x --- x (0), v1 = (0) x (0) x
Fox(0)x - x(0),v2 = (0) x (0) x (0) x F3x---x(0),v3=(0) x (0) x [, x F3x---x (0)
in R. Thenu;v; = (0) for everyi, j and SoK3 3 is a subgraph oA G(R), a contradiction. Hence
m < 2.

Suppose thatn = 2. Letn; > 2. Consider the non-trivial ideals; = Ry x (0) x (0),
az = my x (0) x (0), a3 = m? x (0) x (0), by = (0) x Fy x (0), by = (0) x (0) x F3,
bz = (0) x F1 x F>in R. Thena;b; = (0) for everyi, j and soK3 3 is a subgraph oAG(R), a
contradiction. Hence; = 2.

Suppose that is any non-trivial ideal inR; with I # m;. Consider the non-trivial ideals
di = Ry x (0) x (0), d2 = my x (0) x (0), d3 = I x (0) x (0), ex = (0) x Fy x (0),
ez = (0) x (0) x Iy, e3 = (0) x F1 x F> in R. Thend,;e; = (0) for everyi, j and soK3 3 is a
subgraph ofAG(R), a contradiction. Hence:; is the only non-trivial ideal irR;.

ni—1

Suppose thatn = 1. Letn; > 4. Consider the non-trivial ideals; = mf x (0),
T2 = mi”l_z X (0), xr3 = mi”l_s X (0), Y1 = (O) x Fy, Y2 = mi”_l x Fy, Y3z = m?l_z X Fy in
R. Thenz;y; = (0) for everyi, j and soK3 3 is a subgraph oAG(R), a contradiction. Hence
ny < 4.

Assume thati; = 2. Suppose there is an idehlof R; such thatl # mi for i = 1,2.
Then by Propositior2.4, R; has at least three distinct non-trivial ided{s I, and I3 such that
I, I, I3 # my. Consider the non-trivial ideal§y = m; x (0), d, = I1 x (0), d3 = I x (0),
e1=(0) x Fi,ep =my x Fi,e3 =11 x F1in R. Thend,e; = (0) for everyi, j and SoK3 3 is a
subgraph oAG(R), a contradiction. Hence,; is the only non-trivial ideal ink;.
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Assume thak; = 3. Suppose there is an idelabf R; such that/ # m forall i = 1,2, 3.
Then by Propositior2.4, R; has at least three distinct non-trivial ided{s I, and I3 such that
I, I, I3 # m] for all i = 1,2. Consider the non-trivial ideals; = m; x (0), up = I; x (0),
uz = I x (0), vy = (0) x Fy, v; = m2 x Fy, v3 = m? x (0) in R. Thenu,v; = (0) for every
i,7 and soK3 3 is a subgraph oAG(R), a contradiction. Hence;, m? are the only non-trivial
ideals inR;.

Assume thati; = 4. LetI be any non-trivial ideal in?; with I # my, m?, m3. Consider the
non-trivial idealsq; = mf x (0), g2 = my x (0), g3 =1 x (0), wy = (0) x F1, wp = mi x F1,
wz = m$ x (0) in R. Theng;w; = (0) for everyi, j and soK3 3 is a subgraph oAG(R), a
contradiction. Henceny, mf, mf are the only non-trivial ideals iR;. O

3 Crosscap ofAG(R)

The main goal of this section is to determine all commutative Artinian norl-kixgs R for
which AG(R) has crosscap one. The following two results about the crosscap le@mtia
complete graph and a complete bipartite graph are very useful in thecgidr®t sections.

Lemma 3.1.Letm, n be integers and for a real number[z] is the least integer that is greater
than or equal ta:. Then

1 —3)(n— - .
(4) T(Kn):{“ 3)(n—4)] ifn>3andn#7

6
In particulary(K,) = 1ifn =5,6.

3 ifn=17
(i1) F(Kmn) = [3(m —2)(n—2)], wheren,m > 1. In particulary(Ks,) = 1if n = 3,4.

Theorem 3.2.Let R = F; x F; x - -- x F,, be a commutative ring with identity where eakhis
afield andn > 1. Theny(AG(R)) = 1ifand only ifn = 4

Proof. Assume thaﬁ(AG(R)

z1 = F1 % (0) x (0) x (0)
1'3:F1><F2><() ()

= 1. Suppose that > 4. Consider the non-trivial ideals
X X -+ x (0), z2 = (0) x F» x (0) x (0) x (0) x --- x (0),
X )>< x (0), y1 = (0) x (0) x F5 x (0) x (0) x --- x (0),

y2 = (0) x (0) x (0) x Fy x (0) x -~ x (0), y3 = (0) x (0) x (0) x (0) x Fs x --- x (0),

ya = (0) x (0) x F3x F4x (0) x---x (0), ys = (0) x (0) x F3x (0) x F5 x --- x (0) in R. Then

z;y; = (0O) for everyi, j and soK375 is a subgraph oAG(R). By Lemma3.1 7(AG(R)) > 1,

a contradiction. Hence by Theorel, n = 4

ai

7 T

ay
Fig 3.1: Projective embedding &fG(Fy x Fy X F3 X Fy)
Conversely, suppose that= 4. Consider all the non-trivial idealg = F; x (0) x (0) x (0),az =
0) x

(0) x F2x (0) x (0), ag = F1 x F2x (0) x (0), by = (0) x (0) x F3x (0), b = (0) x (0) x (0) x Fy,
b3:(0)><(0)><F3><F4,:Z,‘1:F1><(0)><(0)><F4,:L‘2:(0)><F2><(0)><F4,:Z,‘3—F]_X(O)XFgX(O)
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T4 = (O)XF2XF3>< (O), Ty = (0) ><F2><F3><F4, Te = F1><F2><(0) XF4, xTr7 = F1><F2><F3><(0),
zg = F1 x (0) x F3x Fyin R. Thena;b; = (0) for everyi, j and saK 3 is a subgraph cAG(R).
Therefore by Lemma&.1, 7(AG(R)) > 1. The embedding given in Fig 3.1 explicitly shows that
J(AG(R)) = 1. o

Theorem 3.3.Let R = Ry x Ry X --- x R, be a commutative ring with identity, where each
(R;,m;) is a local ring withm; # {0} andn > 1. Letn; be the nilpotency ofn;. If AG(R) is
non-planar, thef(AG(R)) > 1.

Proof. Assume that\G(R) is non-planar. Suppose that> 2. Consider the non-trivial ideals
21 =m 1 x (0) x (0) x -+~ x (0), 22 = (0) x mpz ™1 x (0) x --- x (0), 23 = m* L x mpz~t x
-x (0), 51 = (0) x (0) x mzg x (0)--- x (0), y2 = myg x (0) x mg x (0) x --- x (0), yzg =

(0)xmaxmgx (0)x---x(0),y4 = myxmpxmgx (0)x---x(0),ys = (0)x (0)x Rgx (0)x---x(0)
in R. Thenz;y; = (0) for everyi,j and soK3s is a subgraph oAG(R). By Lemma3.1,
F(AG(R)) > 1. Hencen = 2.

Suppose that; > 2 andn, > 2. Consider the non-trivial ideals, = m{”‘l x (0), ap =
(0) xm;”z_l, az = mi”l_l xmgz_l, by = myx(0), by = (0) xmy, b3 = myxmp, by = m?l_l XMy,
bs = my X m;”*l in R. Thena;b; = (0) for all ¢, j and s0K3 s is a subgraph oAG(R). By
Lemma3.1, 5(AG(R)) > 1. Hencen; = 2 ornp = 2. Without loss of generality, we assume
thatnl =2.

Suppose that, > 3. Consider the se® = {ej,...,eq}, Wheree; = my x mngz, ey =
my X m;”z_l, ez =my X My, eq4 = my X (0), e5 = (0) x m;”z_l, e = (0) x mp, e7 = (0) x m;”z_z,
eg = Ry x (0), eg = Ry X m;”z‘l are the non-trivial ideals i. Then the subgraph induced by
Q in AG(R) contains a subgraph isomorphic to the graph given in Fig 3.2. and sbédyr@m
6.5.1 15, p.197],7(AG(R)) > 1. Hencen, < 3.

Fig 3.2: Forbidden subgraph for the projective plane

Case 1.Suppose that, = 3. Let.J; be a non-trivial ideal ik, such that/; # my, m%. Consider
the setQ)’ = {fl, .. .,fg} Wherefl =my X Jq, fz =my X m%, f3 =my X myp, f4 =my X (0),
f5=(0) x m3, fo = (0) x my, fz = (0) x Jy, fg = R1 x (0), fo = Ry x m3 are the non-trivial
ideals inR. Then the subgraph induced BY in AG(R) contains a subgraph isomorphic to the
graph given in Fig 3.2. and so by Theorem 6.8.%, [p.197],7(AG(R)) > 1.

Let I; be a non-trivial ideal inR; such thatl; # m;. Consider the non-trivial ideals; =
(0) x m3, 1, = my x (0), 13 = my x m3, y1 = (0) x mp, y2 = my x mp, y3 = I x (0),
ys = I x mp, ys = I x m3in R. Thenx,;y; = (0) for everyi, j and soK3 5 is a subgraph of
AG(R). By Lemma3.1, 7(AG(R)) > 1.

Supposen; andm,, m3 are the only non-trivial ideals ifk; and R, respectively. Then by
Theorem2.2, %(AG(R)) = 0, a contradiction.

Case 2.Assume that, = 2. Suppose there is an idgabf R, such thatl # m} forall i = 1,2.
Then by Propositior2.4, R, has at least three distinct non-trivial idedls .J, and J3 such that
J1, J2, J3 # my. Consider the non-trivial ideals = my x (0), az = (0) x mp, ag = my X my,
as = (0) x Ji, as = mg x J1, ag = (0) X Jo, a7 = my x Jo in R. Thena,;a; = (0) for every
i # j and soK7 is a subgraph oAG(R). By Lemma3.1, 5(AG(R)) > 1.

If R, has at most two non-trivial ideals different frang, then by Propositio@.4and Lemma
2.3 my is the only non-trivial ideal inR, and if R; has at most two non-trivial ideals different
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from mg, then by Propositio2.4and Lemma2.3, m; is the only non-trivial ideal inR;. Hence
by Theoren2.5 7(AG(R)) = 0, a contradiction. i

Theorem 3.4.LetR = Ry X R x --- X R, X Fy X I, x --- X F,,, be a commutative ring with
identity, where eacliR;, m;) is a local ring withm; # {0} and eacl¥; is a field andu, m > 1.
Let n; be the nilpotency ofn;. Theny(AG(R)) = 1if and only if R = R; x F; and one of the
following condition holds:

(i) n1 = 3andR; has exactly 5 distinct non-trivial ideals, say, mf, I, I, I3 with I;mq # (0)
for everyi = 1,2,3 andl;I; = (0) for somei # j.

(i1) ny = 5 andR; has exactly 4 distinct non-trivial ideals, say, m?, m3, m.

Proof. Assume thaty(AG(R)) = 1. Suppose that > 1. Consider the s& = {z3, ..., 14,

Y1, ..., ya}, wherery = m*1x (0)x- - -x (0)x Fyx (0) x- - -x (0), 22 = (0) xmp2 tx---x (0) x
Firx(0)x---x(0),23 = (0) x (0) x -+ x (0) x Fyx (0) x---x (0), 24 =mj* T xmj2tx...x
(0)x F1x (0)x---x(0),y1 =mgx (0) x---x(0)x--- (O) y2 = (0) xmpx---x (0) x---x(0),
yz=mg xmy x -+ x (0) x --- x (0), ys = [Ry x (0) x --- x (0),(0) x Ry x --- x (0)]. Then
the subgraph induced Y in AG(R) contains a subgraph isomorphic to the graph given in Fig
3.3. and so by Theorem 6.5.15, p.197],7(AG(R)) > 1, a contradiction. Hence =1

Fig 3.3: Forbidden subgraph for the projective plane

Suppose that, > 2. Consider the non-trivial ideals, = (0) x F1 x (0) x (O) x (0),
azg =m" 1t By x (0) x (0) x -+ x (0), a3 = m?ll x (0) x (0) x ---x (0), b ()><(0)><
F>x(0) x---x(0),b2 = (0) x (0) x (0) x F3x -~ ()bg—(O)X()XFzXFgX x (0),
b4:m1><(0)><F2><(0)><---><(0),b5:n11><(0)><(0)><F3>< x (0)in R. Thena;b; = (0) for
everyi, j and soKss is a subgraph oAG(R). By Lemma3.1, 5(AG(R)) > 1, a contradiction.
Hencem < 2.

Case 1.Assume thain = 2.

Suppose that; > 2. Consider the se®’ = {ey,...,eq}, Wheree; = mj*~ Ly (0) x F,
ez = m X By % (0), e3 = my x (0) X Fy, eq = mi* x (0) x (0), es = (0) x Fy x (0),
e6 = (0) x F1 x Fy, e7 = (0) x (0) x F», eg = Ry x (0) x (0), eg = my x (0) x (0) are
the non-trivial ideals ink. Then the subgraph induced K in AG(R) contains a subgraph
isomorphic to the graph given in Fig 3.2. and so by Theorem 61519.197],7(AG(R)) > 1,
a contradiction. Hence; = 2.

Let I; be any non-trivial ideal inR; with I; # my. Consider the se®; = {f1,..., fo},
where fi = Iy x (0) x F, f, = Iy x F1 x (0), f3 = m1 x (0) x Iy, fa = I x (0) x (0),
f5 = (0) X Fl X (O), fe = (O) X Fl X Fz, f7 = (0) X (0) X Fz, fg = Rl X (0) X (0),
fo=my x (0) x (0) are the non-trivial ideals if®. Then the subgraph induced By in AG(R)
contains a subgraph isomorphic to the graph given in Fig 3.2. and sdégrdm 6.5.115,
p.197],7(AG(R)) > 1, a contradiction. Hence; is the only non-trivial ideal ink?; and so by
Theorem2.5 7(AG(R)) = 0, a contradiction.

Case 2.Assume thain = 1.

Let nl > 5. Consider the se®, = {.231, e T4, Y1, 7y4}, Wherexl = (O) x Fy, xo =
mpt Tt x By, g = mpt < (0), 24 = mPT 2 X Fy, g1 = mf x (0), y2 = m$ x (0), yz = m x (0),
ys = my x (0) are the non-trivial ideals iR. Then the subgraph induced 6% in AG(R)
contain a subgraph isomorphic to the graph given in Fig 3.3. and so bgréim 6.5.1 15,
p.197],7(AG(R)) > 1, a contradiction. Hence; < 5.

Subcase 2.1n; = 2.
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Suppose there is an ideabf R; such thatl # m! for all i = 1,2. Then by Propositio@.4, R,
has at least three distinct non-trivial ide#ls I, and I3 such that/y, I, I3 # m} for all i = 1, 2.
Consider the non-trivial idealg; = (0) x Fi, up = my x Fy, ug = I X F1, uqg = I x F1,
vy =my X (0),v2 =I1 x (0), v3 = I» x (0), va = I3 x (0) in R. Thenu,v; = (0) for everysi, j
and soKy 4 is a subgraph cAG(R). By Lemma3.1, 5(AG(R)) > 1, a contradiction. Hence by
Proposition2.4 and Lemma2.3, m; is the only non-trivial ideal inR; and so by Theorerf.5,
F(AG(R)) = 0, a contradiction.

Subcase 2.2n, = 3.

Suppose there is an idealof R; such thatl # m for all i = 1,2,3. Then by Proposition
2.4, Ry has at least three distinct non-trivial ideds I, and I3 such thatly, I, I3 # m{ for all

i = 1,2. Suppose?; has at least 4 non-trivial ideals different franj for all i = 1,2. Let1,
I,, I3, I4 be the distinct non-trivial ideals iR; such thatl; # mq, mf for everyi. Consider the
non-trivial idealsu; = (0) x Fy, up = m3 x F, ug = m2 x (0), vy = my x (0), v2 = I x (0),
v3 = I x (0), va = I3 x (0), v5s = I x (0) in R. Thenu,;v; = (0) for everyi, j and SoK3s is
a subgraph oAG(R). By Lemma3.1, 7(AG(R)) > 1, a contradiction. Henc&; has exactly 3
non-trivial ideals different fromm} for ; = 1,2. Hencem;, mf, 11, I, I3 are the only non-trivial
ideals inR;.

Supposd;m; = (0) for somei. Consider the non-trivial ideats, = (0) x Fy, up = mf x F1,
u3z = mfx (O), ug = I; x F1,v1 = my X (O), vo = I1 X (0), vg3 = Ip x (O), vg = I3 X (O) in R. Then
w;v; = (0) for everyi, j and soK4 4 is a subgraph oAG(R). By Lemma3.1, 5(AG(R)) > 1,
a contradiction. Hencé&m; # (0) for everyi.

Supposéd; is adjacent td; for every;j # i. Let us assume thdil, = (0), [>/3 = (0) and
LIz = (O) Consider the se® = {ul .. .UQ}, Whereul = mf X (0), up = I1 X (0), ugz = I3 X Fy,
Ugy = (0)><F1,U5212><F1,u6:I]_XFJ_,’UJ:m%XFl,uE;:IzX(0),11,9213><(0)
are the non-trivial ideals if. Then the subgraph induced Byin AG(R) contain a subgraph
isomorphic to the graph given in Fig 3.4. and so by Theorem 61519.197],7(AG(R)) > 1,
a contradiction. Hencé I, # (0) or I3 # (0) or I 13 # (0).

mg x (0) I x (0)
I3 Fi
Il><F1 m%XF]_

Lx(0) I3x (0)

Fig 3.4: Forbidden subgraph for the projective plane
(0) x Iy

~

Fig 3.5: Projective embedding éfG(R1 x Fi) with ng = 3,
Iymq # (0) Y 4, 111 = (0), I3 = (0) and I3 #+ (0)
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Subcase 2.3n; = 4.

SupposeR; has at least 3 non-trivial ideals different franj for everyi. Let J;, J, J3 be the
distinct non-trivial ideals inR; such thatJ; # ml,mf,mf for everyi. Consider the non-trivial
ideaI3u1 = (0) X Fy,up = mf x Fy, uz = mf X (0), v = mi X (O), U2 = my X (O), v3 = J1 X (0),
va = Jo x (0), v5 = J3 x (0) in R. Thenu,;v; = (0) for everyi, j and soK3 s is a subgraph of
AG(R). By Lemma3.1, 7(AG(R)) > 1, a contradiction. Hence by Propositidrtand Lemma
2.3, my, m2, m3 are the only non-trivial ideals i; and so by Theorer.5, 7(AG(R)) = 0, a
contradiction.

Subcase 2.4n, = 5.

SupposeR; contains at least two distinct non-trivial ideals I, such thatl; # mjy, mf, mi,
m$ for i = 1,2. Consider the non-trivial ideatg = (0) x Fi, c = m$ x Fj, c3 = mf x (0),
dy = mf X (O), dy = mf X (O), dz = my X (O), da = I1 X (O), ds = I X (0) in R. Then
¢;d; = (0) for everyi, j and soK3 5 is a subgraph aAG(R). By Lemma3.1, 7(AG(R)) > 1, a
contradiction. Hencer; contains at most one non-trivial ideakuch that’ # my, m%, m3, m$.
By Proposition2.4, my, m%, m$, m7 are the only non-trivial ideals if;.

Fig 3.6: Projective embedding &fG(R; x F1) withn; =5
andmy, m2, m$, m} are the only non-trivial ideals if;

Converse follows from Fig. 3.5 and Fig. 3.6. O
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