On the crosscap of the annihilating-ideal graph of a commutative ring

K. Selvakumar and P. Subbulakshmi
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 05C25; 05C75; Secondary 13A15, 13M05.
Keywords and phrases: finite ring, planar, crosscap, local ring, annihilating-ideal graph.
The authors would like to thank the referee for careful reading of the manuscript and helpful comments. The work is supported by the UGC Major Research Project (F. No. 42-8/2013(SR)) awarded to the first author by the University Grants Commission, Government of India.

Abstract

Let R be a non-domain commutative ring with identity and $\mathbb{A}^{*}(R)$ be the set of non-zero ideals with non-zero annihilators. We call an ideal I_{1} of R, an annihilating-ideal if there exists a non-zero ideal I_{2} of R such that $I_{1} I_{2}=(0)$. The annihilating-ideal graph of R is defined as the graph $\mathbb{A} \mathbb{G}(R)$ with the vertex set $\mathbb{A}^{*}(R)$ and two distinct vertices I_{1} and I_{2} are adjacent if and only if $I_{1} I_{2}=(0)$. In this paper, we characterize all commutative Artinian non-local rings R for which $\mathbb{A} \mathbb{G}(R)$ is planar and the crosscap of $\mathbb{A} \mathbb{G}(R)$ is one.

1 Introduction

The study of algebraic structures, using the properties of graphs, became an exciting research topic in the past twenty years, leading to many fascinating results and questions. In the literature, there are many papers assigning graphs to rings, groups and semigroups, see $[3,4,5,12,20,31$, $23,24,25]$. In ring theory, the structure of a ring R is closely tied to ideal's behavior more than elements and so it is deserving to define a graph with vertex set as ideals instead of elements. Recently M. Behboodi and Z. Rakeei $[13,14]$ have introduced and investigated the annihilatingideal graph of a commutative ring. For a non-domain commutative ring R, let $\mathbb{A}^{*}(R)$ be the set of non-zero ideals with non-zero annihilators. We call an ideal I_{1} of R, an annihilating-ideal if there exists a non-zero ideal I_{2} of R such that $I_{1} I_{2}=(0)$. The annihilating-ideal graph of R is defined as the graph $\mathbb{A} \mathbb{G}(R)$ with the vertex set $\mathbb{A}^{*}(R)$ and two distinct vertices I_{1} and I_{2} are adjacent if and only if $I_{1} I_{2}=(0)$. Several properties of $\mathbb{A} \mathbb{G}(R)$ were studied by the authors in [1, 2, 13, 14, 26, 27].

By a graph $G=(V, E)$, we mean an undirected simple graph with vertex set V and edge set E. A graph in which each pair of distinct vertices is joined by the edge is called a complete graph. We use K_{n} to denote the complete graph with n vertices. An r-partite graph is one whose vertex set can be partitioned into r subsets so that no edge has both ends in any one subset. A complete r-partite graph is one in which each vertex is joined to every vertex that is not in the same subset. The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by $K_{m, n}$. The girth of G is the length of a shortest cycle in G and is denoted by $g r(G)$. If G has no cycles, we define the girth of G to be infinite. The corona of two graphs G_{1} and G_{2} is the graph $G_{1} \circ G_{2}$ formed from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, where the $i^{t h}$ vertex of G_{1} is adjacent to every vertex in the $i^{t h}$ copy of G_{2}. A graph G is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is a graph obtained from it by replacing edges with pairwise internally-disjoint paths. A remarkably simple characterization of planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph G is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$ (see [16, p.153]). A minor of G is a graph obtained from G by contracting edges in G or deleting edges and isolated vertices in G. A classical theorem due to K. Wagner [30] states that a graph G is planar if and only if G does not have K_{5} or $K_{3,3}$ as a minor. It is well known that if G^{\prime} is a minor of G, then $\gamma\left(G^{\prime}\right) \leq \gamma(G)$.

The main objective of topological graph theory is to embed a graph into a surface. By a surface, we mean a connected two-dimensional real manifold, i.e., a connected topological space such that each point has a neighborhood homeomorphic to an open disk. It is well known that any compact surface is either homeomorphic to a sphere, or to a connected sum of g tori, or to a connected sum of k projective planes (see [21, Theorem 5.1]). We denote S_{g} for the surface formed by a connected sum of g tori, and N_{k} for the one formed by a connected sum of k projective planes. The number g is called the genus of the surface S_{g} and k is called the crosscap of N_{k}. When considering the orientability, the surfaces S_{g} and sphere are among the orientable class and the surfaces N_{k} are among the non-orientable one. In this paper, we mainly focus on the non-orientable cases.

A simple graph which can be embedded in S_{g} but not in S_{g-1} is called a graph of genus g. Similarly, if it can be embedded in N_{k} but not in N_{k-1}, then we call it a graph of crosscap k. The notations $\gamma(G)$ and $\bar{\gamma}(G)$ are denoted for the genus and crosscap of a graph G, respectively. It is easy to see that $\gamma(H) \leq \gamma(G)$ and $\bar{\gamma}(H) \leq \bar{\gamma}(G)$ for all subgraph H of G. For details on the notion of embedding of graphs in surface, one can refer to A. T. White [32].

2 Planarity of $\mathbb{A} \mathbb{G}(R)$

The main goal of this section is to determine all commutative Artinian non-local rings R for which $\mathbb{A} \mathbb{G}(R)$ is planar.

Theorem 2.1. [26] Let $R=F_{1} \times F_{2} \times \cdots \times F_{n}$ be a commutative ring with identity where each F_{i} is a field and $n \geq 2$. Then $\mathbb{A} \mathbb{G}(R)$ is planar if and only if $n=2$ or $n=3$.

Theorem 2.2. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ be a commutative ring with identity where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq\{0\}$ and $n \geq 2$. Let n_{i} be the nilpotency of \mathfrak{m}_{i}. Then $\mathbb{A} \mathbb{G}(R)$ is planar if and only if $n=2$ and one of the following condition holds:
(i) $n_{1}=2$, $n_{2}=3$ and \mathfrak{m}_{1} is the only non-trivial ideal in R_{1} and $\mathfrak{m}_{2}, \mathfrak{m}_{2}^{2}$ are the only non-trivial ideals in R_{2};
(ii) $n_{1}=3, n_{2}=2$ and $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$ are the only non-trivial ideals in R_{1} and \mathfrak{m}_{2} is the only nontrivial ideal in R_{2};
(iii) $n_{1}=n_{2}=2$ and \mathfrak{m}_{1} and \mathfrak{m}_{2} are the only non-trivial ideal in R_{1} and R_{2} respectively.

Proof. Suppose that $n=2$. Then $R=R_{1} \times R_{2}$ and hence the proof follows from Fig. 2.1.

Fig 2.1: $\mathbb{A G}\left(R_{1} \times R_{2}\right)$
Conversely, assume that $\mathbb{A} \mathbb{G}(R)$ is planar. Suppose that $n>2$. Consider the non-trivial ideals $x_{1}=\mathfrak{m}_{1}^{n_{1}-1} \times(0) \times(0) \times \cdots \times(0), x_{2}=(0) \times \mathfrak{m}_{2}^{n_{2}-1} \times(0) \times \cdots \times(0), x_{3}=(0) \times$ $(0) \times \mathfrak{m}_{3}^{n_{3}-1} \times \cdots \times(0), y_{1}=\mathfrak{m}_{1} \times \mathfrak{m}_{2} \times(0) \times \cdots \times(0), y_{2}=(0) \times \mathfrak{m}_{2} \times \mathfrak{m}_{3} \times \cdots \times(0)$, $y_{3}=\mathfrak{m}_{1} \times(0) \times \mathfrak{m}_{3} \times \cdots \times(0)$ in R. Then $x_{i} y_{j}=(0)$ for every i, j and so $K_{3,3}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$, a contradiction. Hence $n=2$.

Suppose that $n_{1}>2$ and $n_{2}>2$. Consider the non-trivial ideals $u_{1}=\mathfrak{m}_{1}^{n_{1}-1} \times(0), u_{2}=$ $(0) \times \mathfrak{m}_{2}^{n_{2}-1}, u_{3}=\mathfrak{m}_{1}^{n_{1}-1} \times \mathfrak{m}_{2}^{n_{2}-1}, u_{4}=\mathfrak{m}_{1} \times(0), u_{5}=(0) \times \mathfrak{m}_{2}$ in R. Then $u_{i} u_{j}=(0)$ for every $i \neq j$ and so K_{5} is a subgraph of $\mathbb{A} \mathbb{G}(R)$, a contradiction. Hence $n_{1}=2$ or $n_{2}=2$. Without loss of generality, we assume that $n_{1}=2$.

Suppose that $n_{2}>3$. Consider the non-trivial ideals $a_{1}=(0) \times \mathfrak{m}_{2}^{n_{2}-1}, a_{2}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{n_{2}-1}$, $a_{3}=\mathfrak{m}_{1} \times(0), b_{1}=(0) \times \mathfrak{m}_{2}, b_{2}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, b_{3}=(0) \times \mathfrak{m}_{2}^{n_{2}-2}$ in R. Then $a_{i} b_{j}=(0)$ for every i, j and so $K_{3,3}$ is a subgraph of $\mathbb{A}(R)$, a contradiction. Hence $n_{2} \leq 3$.

Suppose that $n_{2}=3$. Let I_{2} be any non-trivial ideal in R_{2} with $I_{2} \neq \mathfrak{m}_{2}, \mathfrak{m}_{2}^{2}$. Consider the non-trivial ideals $x_{1}=(0) \times \mathfrak{m}_{2}^{2}, x_{2}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{2}, x_{3}=\mathfrak{m}_{1} \times(0), y_{1}=(0) \times \mathfrak{m}_{2}, y_{2}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}$, $y_{3}=(0) \times I_{2}$ in R. Then $x_{i} y_{j}=(0)$ for every i, j and so $K_{3,3}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$, a contradiction. Hence $\mathfrak{m}_{2}, \mathfrak{m}_{2}^{2}$ are the only non-trivial ideals in R_{2}.

Let I_{1} be any non-trivial ideal in R_{1} with $I_{1} \neq \mathfrak{m}_{1}$. Consider the non-trivial ideals $u_{1}=$ $\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{2}, u_{2}=(0) \times \mathfrak{m}_{2}^{2}, u_{3}=\mathfrak{m}_{1} \times(0), u_{4}=I_{1} \times(0), u_{5}=(0) \times \mathfrak{m}_{2}$ in R. Then $u_{i} u_{j}=(0)$ for every $i \neq j$ and so K_{5} is a subgraph of $\mathbb{A} \mathbb{G}(R)$, a contradiction. Hence \mathfrak{m}_{1} is the only non-trivial ideal in R_{1}.

Suppose that $n_{2}=2$. Let I_{2} be any non-trivial ideal in R_{2} with $I_{2} \neq \mathfrak{m}_{1}$. Consider the non-trivial ideals $x_{1}=(0) \times \mathfrak{m}_{2}, x_{2}=(0) \times I_{2}, x_{3}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, x_{4}=\mathfrak{m}_{1} \times I_{2}, x_{5}=\mathfrak{m}_{1} \times(0)$ in R. Then $x_{i} x_{j}=(0)$ for every $i \neq j$ and so K_{5} is a subgraph of $\mathbb{A} \mathbb{G}(R)$, a contradiction. Hence \mathfrak{m}_{2} is the only non-trivial ideal in R_{2}. Similarly one can prove that \mathfrak{m}_{1} is the only non-trivial ideal in R_{1}.

Lemma 2.3. Let (R, \mathfrak{m}) be a local ring. If $\operatorname{dim}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)=1$ and for some positive integer t, $\mathfrak{m}^{t}=(0)$, then the set of all non-trivial ideals of R is the set $\left\{\mathfrak{m}^{i}: 1 \leq i<t\right\}$.

Proof. Since $\operatorname{dim}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)=1$, by Nakayama's lemma, $\mathfrak{m}=R x$ for some $x \in R$. Now, let I be a non-trivial ideal of R. Since $\mathfrak{m}^{t}=(0)$, there exists a natural number $i \leq t$ such that $I \subseteq \mathfrak{m}^{i}$ and $I \nsubseteq \mathfrak{m}^{i+1}$. Let $a \in I \backslash \mathfrak{m}^{i+1}$. We have $a=b x^{i}$ for some $b \in R$. If $b \in \mathfrak{m}$, then $a \in \mathfrak{m}^{i+1}$, a contradiction. Thus b is an unit. Hence $x^{i} \in I$. This implies that $I=\left\langle x^{i}\right\rangle=\mathfrak{m}^{i}$, as desired. Thus, the set of all non-trivial ideals of R is the set $\left\{\mathfrak{m}^{i}: 1 \leq i<t\right\}$.

The next Proposition has a crucial role in this paper.
Proposition 2.4. If (R, \mathfrak{m}) is a local ring and there is an ideal I of R such that $I \neq \mathfrak{m}^{i}$ for every i, then R has at least three distinct non-trivial ideals J, K and L such that $J, K, L \neq \mathfrak{m}^{i}$ for every i.

Proof. Assume that R has an ideal I such that $I \neq \mathfrak{m}^{i}$ for every i. Then by Lemma 2.3, $\operatorname{dim}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)=n \geq 2$. Therefore, by Nakayama's Lemma, we can find $x_{1}, x_{2}, \ldots, x_{n} \notin \mathfrak{m}^{2}$ such that $\mathfrak{m}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$. Thus, $R x_{1}, R x_{2}$ and $R\left(x_{1}+x_{2}\right)$ are the distinct non-trivial ideals with desired properties.
Theorem 2.5. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n} \times F_{1} \times F_{2} \times \cdots \times F_{m}$ be a commutative ring with identity where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq\{0\}$ and F_{j} is a field, $n, m \geq 1$. Let n_{i} be the nilpotency of \mathfrak{m}_{i}. Then $\mathbb{A} \mathbb{G}(R)$ is planar if and only if one of the following condition holds:
(i) $R=R_{1} \times F_{1} \times F_{2}, n_{1}=2$ and \mathfrak{m}_{1} is the only non-trivial ideal in R_{1};
(ii) $R=R_{1} \times F_{1}$ and one of the following holds:
(a) $n_{1}=2$ and \mathfrak{m}_{1} is the only non-trivial ideal in R_{1};
(b) $n_{1}=3$ and $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$ are the only non-trivial ideals in R_{1};
(c) $n_{1}=4$ and $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}$ are the only non-trivial ideals in R_{1}.

Proof. Suppose $R=R_{1} \times F_{1} \times F_{2}, n_{1}=2$ and \mathfrak{m}_{1} is the only non-trivial ideal in R_{1}. Then $\mathbb{A} \mathbb{G}(R)$ is isomorphic to the graph given in Fig 2.2(a). Hence $\mathbb{A} \mathbb{G}(R)$ is planar.

Suppose $R=R_{1} \times F_{1}, n_{1}=2$ and \mathfrak{m}_{1} is the only non-trivial ideal in R_{1}. Then $\mathbb{A} \mathbb{G}(R)$ is isomorphic to the graph given in Fig $2.2(d)$. Hence $\mathbb{A} \mathbb{G}(R)$ is planar.

Suppose $n_{1}=3$ and $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$ are the only non-trivial ideals in R_{1}. Then $\mathbb{A} \mathbb{G}(R)$ is isomorphic to the graph given in Fig 2.2(c). Hence $\mathbb{A} \mathbb{G}(R)$ is planar.

Suppose $n_{1}=4$ and $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}$ are the only non-trivial ideals in R_{1}. Then $\mathbb{A} \mathbb{G}(R)$ is isomorphic to the graph given in Fig $2.2(b)$. Hence $\mathbb{A} \mathbb{G}(R)$ is planar.

Fig 2.2

Conversely, assume that $\mathbb{A} \mathbb{G}(R)$ is planar. Suppose $n>1$. Consider the non-trivial ideals $x_{1}=\mathfrak{m}_{1}^{n_{1}-1} \times(0) \times(0) \times \cdots \times(0), x_{2}=(0) \times \mathfrak{m}_{2}^{n_{2}-1} \times(0) \times \cdots \times(0), x_{3}=\mathfrak{m}_{1}^{n_{1}-1} \times \mathfrak{m}_{2}^{n_{2}-1} \times$ $(0) \times \cdots \times(0), y_{1}=(0) \times(0) \times \cdots \times F_{1} \times(0) \times \cdots \times(0), y_{2}=\mathfrak{m}_{1} \times(0) \times \cdots \times F_{1} \times(0) \times \cdots \times(0)$, $y_{3}=(0) \times \mathfrak{m}_{2} \times \cdots \times F_{1} \times(0) \times \cdots \times(0)$ in R. Then $x_{i} y_{j}=(0)$ for every i, j and so $K_{3,3}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$, a contradiction. Hence $n=1$.

Suppose that $m>2$. Consider the non-trivial ideals $u_{1}=\mathfrak{m}_{1} \times(0) \times(0) \times \cdots \times(0)$, $u_{2}=\mathfrak{m}_{1} \times F_{1} \times(0) \times(0) \times \cdots \times(0), u_{3}=(0) \times F_{1} \times(0) \times(0) \times \cdots \times(0), v_{1}=(0) \times(0) \times$ $F_{2} \times(0) \times \cdots \times(0), v_{2}=(0) \times(0) \times(0) \times F_{3} \times \cdots \times(0), v_{3}=(0) \times(0) \times F_{2} \times F_{3} \times \cdots \times(0)$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,3}$ is a subgraph of $\mathbb{A}(R)$, a contradiction. Hence $m \leq 2$.

Suppose that $m=2$. Let $n_{1}>2$. Consider the non-trivial ideals $a_{1}=R_{1} \times(0) \times(0)$, $a_{2}=\mathfrak{m}_{1} \times(0) \times(0), a_{3}=\mathfrak{m}_{1}^{2} \times(0) \times(0), b_{1}=(0) \times F_{1} \times(0), b_{2}=(0) \times(0) \times F_{2}$, $b_{3}=(0) \times F_{1} \times F_{2}$ in R. Then $a_{i} b_{j}=(0)$ for every i, j and so $K_{3,3}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$, a contradiction. Hence $n_{1}=2$.

Suppose that I is any non-trivial ideal in R_{1} with $I \neq \mathfrak{m}_{1}$. Consider the non-trivial ideals $d_{1}=R_{1} \times(0) \times(0), d_{2}=\mathfrak{m}_{1} \times(0) \times(0), d_{3}=I \times(0) \times(0), e_{1}=(0) \times F_{1} \times(0)$, $e_{2}=(0) \times(0) \times F_{2}, e_{3}=(0) \times F_{1} \times F_{2}$ in R. Then $d_{i} e_{j}=(0)$ for every i, j and so $K_{3,3}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$, a contradiction. Hence \mathfrak{m}_{1} is the only non-trivial ideal in R_{1}.

Suppose that $m=1$. Let $n_{1}>4$. Consider the non-trivial ideals $x_{1}=\mathfrak{m}_{1}^{n_{1}-1} \times(0)$, $x_{2}=\mathfrak{m}_{1}^{n_{1}-2} \times(0), x_{3}=\mathfrak{m}_{1}^{n_{1}-3} \times(0), y_{1}=(0) \times F_{1}, y_{2}=\mathfrak{m}_{1}^{n_{1}-1} \times F_{1}, y_{3}=\mathfrak{m}_{1}^{n_{1}-2} \times F_{1}$ in R. Then $x_{i} y_{j}=(0)$ for every i, j and so $K_{3,3}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$, a contradiction. Hence $n_{1} \leq 4$.

Assume that $n_{1}=2$. Suppose there is an ideal I of R_{1} such that $I \neq \mathfrak{m}_{1}^{i}$ for $i=1,2$. Then by Proposition 2.4, R_{1} has at least three distinct non-trivial ideals I_{1}, I_{2} and I_{3} such that $I_{1}, I_{2}, I_{3} \neq \mathfrak{m}_{1}$. Consider the non-trivial ideals $d_{1}=\mathfrak{m}_{1} \times(0), d_{2}=I_{1} \times(0), d_{3}=I_{2} \times(0)$, $e_{1}=(0) \times F_{1}, e_{2}=\mathfrak{m}_{1} \times F_{1}, e_{3}=I_{1} \times F_{1}$ in R. Then $d_{i} e_{j}=(0)$ for every i, j and so $K_{3,3}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$, a contradiction. Hence \mathfrak{m}_{1} is the only non-trivial ideal in R_{1}.

Assume that $n_{1}=3$. Suppose there is an ideal I of R_{1} such that $I \neq \mathfrak{m}_{1}^{i}$ for all $i=1,2,3$. Then by Proposition 2.4, R_{1} has at least three distinct non-trivial ideals I_{1}, I_{2} and I_{3} such that $I_{1}, I_{2}, I_{3} \neq \mathfrak{m}_{1}^{i}$ for all $i=1,2$. Consider the non-trivial ideals $u_{1}=\mathfrak{m}_{1} \times(0), u_{2}=I_{1} \times(0)$, $u_{3}=I_{2} \times(0), v_{1}=(0) \times F_{1}, v_{2}=\mathfrak{m}_{1}^{2} \times F_{1}, v_{3}=\mathfrak{m}_{1}^{2} \times(0)$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,3}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$, a contradiction. Hence $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$ are the only non-trivial ideals in R_{1}.

Assume that $n_{1}=4$. Let I be any non-trivial ideal in R_{1} with $I \neq \mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}$. Consider the non-trivial ideals $q_{1}=\mathfrak{m}_{1}^{2} \times(0), q_{2}=\mathfrak{m}_{1} \times(0), q_{3}=I \times(0), w_{1}=(0) \times F_{1}, w_{2}=\mathfrak{m}_{1}^{3} \times F_{1}$, $w_{3}=\mathfrak{m}_{1}^{3} \times(0)$ in R. Then $q_{i} w_{j}=(0)$ for every i, j and so $K_{3,3}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$, a contradiction. Hence $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}$ are the only non-trivial ideals in R_{1}.

3 Crosscap of $\mathbb{A} \mathbb{G}(R)$

The main goal of this section is to determine all commutative Artinian non-local rings R for which $\mathbb{A} \mathbb{G}(R)$ has crosscap one. The following two results about the crosscap formulae of a complete graph and a complete bipartite graph are very useful in the subsequent sections.

Lemma 3.1. Let m, n be integers and for a real number $x,\lceil x\rceil$ is the least integer that is greater than or equal to x. Then
(i) $\bar{\gamma}\left(K_{n}\right)= \begin{cases}\left\lceil\frac{1}{6}(n-3)(n-4)\right\rceil & \text { if } n \geq 3 \text { and } n \neq 7 \\ 3 & \text { if } n=7\end{cases}$

In particular, $\bar{\gamma}\left(K_{n}\right)=1$ if $n=5,6$.
(ii) $\bar{\gamma}\left(K_{m, n}\right)=\left\lceil\frac{1}{2}(m-2)(n-2)\right\rceil$, where $n, m>1$. In particular, $\bar{\gamma}\left(K_{3, n}\right)=1$ if $n=3,4$.

Theorem 3.2. Let $R=F_{1} \times F_{2} \times \cdots \times F_{n}$ be a commutative ring with identity where each F_{i} is a field and $n>1$. Then $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))=1$ if and only if $n=4$.

Proof. Assume that $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))=1$. Suppose that $n>4$. Consider the non-trivial ideals $x_{1}=F_{1} \times(0) \times(0) \times(0) \times(0) \times \cdots \times(0), x_{2}=(0) \times F_{2} \times(0) \times(0) \times(0) \times \cdots \times(0)$, $x_{3}=F_{1} \times F_{2} \times(0) \times(0) \times(0) \times \cdots \times(0), y_{1}=(0) \times(0) \times F_{3} \times(0) \times(0) \times \cdots \times(0)$, $y_{2}=(0) \times(0) \times(0) \times F_{4} \times(0) \times \cdots \times(0), y_{3}=(0) \times(0) \times(0) \times(0) \times F_{5} \times \cdots \times(0)$, $y_{4}=(0) \times(0) \times F_{3} \times F_{4} \times(0) \times \cdots \times(0), y_{5}=(0) \times(0) \times F_{3} \times(0) \times F_{5} \times \cdots \times(0)$ in R. Then $x_{i} y_{j}=(0)$ for every i, j and so $K_{3,5}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 3.1, $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence by Theorem 2.1, $n=4$.

Fig 3.1: Projective embedding of $\mathbb{A} \mathbb{G}\left(F_{1} \times F_{2} \times F_{3} \times F_{4}\right)$
Conversely, suppose that $n=4$. Consider all the non-trivial ideals $a_{1}=F_{1} \times(0) \times(0) \times(0), a_{2}=$ $(0) \times F_{2} \times(0) \times(0), a_{3}=F_{1} \times F_{2} \times(0) \times(0), b_{1}=(0) \times(0) \times F_{3} \times(0), b_{2}=(0) \times(0) \times(0) \times F_{4}$, $b_{3}=(0) \times(0) \times F_{3} \times F_{4}, x_{1}=F_{1} \times(0) \times(0) \times F_{4}, x_{2}=(0) \times F_{2} \times(0) \times F_{4}, x_{3}=F_{1} \times(0) \times F_{3} \times(0)$,
$x_{4}=(0) \times F_{2} \times F_{3} \times(0), x_{5}=(0) \times F_{2} \times F_{3} \times F_{4}, x_{6}=F_{1} \times F_{2} \times(0) \times F_{4}, x_{7}=F_{1} \times F_{2} \times F_{3} \times(0)$, $x_{8}=F_{1} \times(0) \times F_{3} \times F_{4}$ in R. Then $a_{i} b_{j}=(0)$ for every i, j and so $K_{3,3}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. Therefore by Lemma 3.1, $\bar{\gamma}(\mathbb{A} \mathbb{G}(R)) \geq 1$. The embedding given in Fig 3.1 explicitly shows that $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))=1$.

Theorem 3.3. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ be a commutative ring with identity, where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq\{0\}$ and $n>1$. Let n_{i} be the nilpotency of \mathfrak{m}_{i}. If $\mathbb{A} \mathbb{G}(R)$ is non-planar, then $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$.

Proof. Assume that $\mathbb{A} \mathbb{G}(R)$ is non-planar. Suppose that $n>2$. Consider the non-trivial ideals $x_{1}=\mathfrak{m}_{1}^{n_{1}-1} \times(0) \times(0) \times \cdots \times(0), x_{2}=(0) \times \mathfrak{m}_{2}^{n_{2}-1} \times(0) \times \cdots \times(0), x_{3}=\mathfrak{m}_{1}^{n_{1}-1} \times \mathfrak{m}_{2}^{n_{2}-1} \times$ $\cdots \times(0), y_{1}=(0) \times(0) \times \mathfrak{m}_{3} \times(0) \cdots \times(0), y_{2}=\mathfrak{m}_{1} \times(0) \times \mathfrak{m}_{3} \times(0) \times \cdots \times(0), y_{3}=$ $(0) \times \mathfrak{m}_{2} \times \mathfrak{m}_{3} \times(0) \times \cdots \times(0), y_{4}=\mathfrak{m}_{1} \times \mathfrak{m}_{2} \times \mathfrak{m}_{3} \times(0) \times \cdots \times(0), y_{5}=(0) \times(0) \times R_{3} \times(0) \times \cdots \times(0)$ in R. Then $x_{i} y_{j}=(0)$ for every i, j and so $K_{3,5}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 3.1, $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$. Hence $n=2$.

Suppose that $n_{1}>2$ and $n_{2}>2$. Consider the non-trivial ideals $a_{1}=\mathfrak{m}_{1}^{n_{1}-1} \times(0), a_{2}=$ $(0) \times \mathfrak{m}_{2}^{n_{2}-1}, a_{3}=\mathfrak{m}_{1}^{n_{1}-1} \times \mathfrak{m}_{2}^{n_{2}-1}, b_{1}=\mathfrak{m}_{1} \times(0), b_{2}=(0) \times \mathfrak{m}_{2}, b_{3}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, b_{4}=\mathfrak{m}_{1}^{n_{1}-1} \times \mathfrak{m}_{2}$, $b_{5}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{n_{2}-1}$ in R. Then $a_{i} b_{j}=(0)$ for all i, j and so $K_{3,5}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 3.1, $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$. Hence $n_{1}=2$ or $n_{2}=2$. Without loss of generality, we assume that $n_{1}=2$.

Suppose that $n_{2}>3$. Consider the set $\Omega=\left\{e_{1}, \ldots, e_{9}\right\}$, where $e_{1}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{n_{2}-2}, e_{2}=$ $\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{n_{2}-1}, e_{3}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, e_{4}=\mathfrak{m}_{1} \times(0), e_{5}=(0) \times \mathfrak{m}_{2}^{n_{2}-1}, e_{6}=(0) \times \mathfrak{m}_{2}, e_{7}=(0) \times \mathfrak{m}_{2}^{n_{2}-2}$, $e_{8}=R_{1} \times(0), e_{9}=R_{1} \times \mathfrak{m}_{2}^{n_{2}-1}$ are the non-trivial ideals in R. Then the subgraph induced by Ω in $\mathbb{A} \mathbb{G}(R)$ contains a subgraph isomorphic to the graph given in Fig 3.2. and so by Theorem 6.5.1 [15, p.197], $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$. Hence $n_{2} \leq 3$.

Fig 3.2: Forbidden subgraph for the projective plane
Case 1. Suppose that $n_{2}=3$. Let J_{1} be a non-trivial ideal in R_{2} such that $J_{1} \neq \mathfrak{m}_{2}, \mathfrak{m}_{2}^{2}$. Consider the set $\Omega^{\prime}=\left\{f_{1}, \ldots, f_{9}\right\}$ where $f_{1}=\mathfrak{m}_{1} \times J_{1}, f_{2}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{2}, f_{3}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, f_{4}=\mathfrak{m}_{1} \times(0)$, $f_{5}=(0) \times \mathfrak{m}_{2}^{2}, f_{6}=(0) \times \mathfrak{m}_{2}, f_{7}=(0) \times J_{1}, f_{8}=R_{1} \times(0), f_{9}=R_{1} \times \mathfrak{m}_{2}^{2}$ are the non-trivial ideals in R. Then the subgraph induced by Ω^{\prime} in $\mathbb{A}(R)$ contains a subgraph isomorphic to the graph given in Fig 3.2. and so by Theorem 6.5.1 [15, p.197], $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$.

Let I_{1} be a non-trivial ideal in R_{1} such that $I_{1} \neq \mathfrak{m}_{1}$. Consider the non-trivial ideals $x_{1}=$ $(0) \times \mathfrak{m}_{2}^{2}, x_{2}=\mathfrak{m}_{1} \times(0), x_{3}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}^{2}, y_{1}=(0) \times \mathfrak{m}_{2}, y_{2}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}, y_{3}=I_{1} \times(0)$, $y_{4}=I_{1} \times \mathfrak{m}_{2}, y_{5}=I_{1} \times \mathfrak{m}_{2}^{2}$ in R. Then $x_{i} y_{j}=(0)$ for every i, j and so $K_{3,5}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 3.1, $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$.

Suppose \mathfrak{m}_{1} and $\mathfrak{m}_{2}, \mathfrak{m}_{2}^{2}$ are the only non-trivial ideals in R_{1} and R_{2} respectively. Then by Theorem 2.2, $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))=0$, a contradiction.
Case 2. Assume that $n_{2}=2$. Suppose there is an ideal I of R_{2} such that $I \neq \mathfrak{m}_{2}^{i}$ for all $i=1,2$. Then by Proposition 2.4, R_{2} has at least three distinct non-trivial ideals J_{1}, J_{2} and J_{3} such that $J_{1}, J_{2}, J_{3} \neq \mathfrak{m}_{2}$. Consider the non-trivial ideals $a_{1}=\mathfrak{m}_{1} \times(0), a_{2}=(0) \times \mathfrak{m}_{2}, a_{3}=\mathfrak{m}_{1} \times \mathfrak{m}_{2}$, $a_{4}=(0) \times J_{1}, a_{5}=\mathfrak{m}_{1} \times J_{1}, a_{6}=(0) \times J_{2}, a_{7}=\mathfrak{m}_{1} \times J_{2}$ in R. Then $a_{i} a_{j}=(0)$ for every $i \neq j$ and so K_{7} is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 3.1, $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$.

If R_{2} has at most two non-trivial ideals different from \mathfrak{m}_{2}, then by Proposition 2.4 and Lemma 2.3, \mathfrak{m}_{2} is the only non-trivial ideal in R_{2} and if R_{1} has at most two non-trivial ideals different
from \mathfrak{m}_{1}, then by Proposition 2.4 and Lemma 2.3, \mathfrak{m}_{1} is the only non-trivial ideal in R_{1}. Hence by Theorem $2.5, \bar{\gamma}(\mathbb{A} \mathbb{G}(R))=0$, a contradiction.

Theorem 3.4. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n} \times F_{1} \times F_{2} \times \cdots \times F_{m}$ be a commutative ring with identity, where each $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a local ring with $\mathfrak{m}_{i} \neq\{0\}$ and each F_{j} is a field and $n, m \geq 1$. Let n_{i} be the nilpotency of \mathfrak{m}_{i}. Then $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))=1$ if and only if $R=R_{1} \times F_{1}$ and one of the following condition holds:
(i) $n_{1}=3$ and R_{1} has exactly 5 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, I_{1}, I_{2}, I_{3}$ with $I_{i} \mathfrak{m}_{1} \neq(0)$ for every $i=1,2,3$ and $I_{i} I_{j}=(0)$ for some $i \neq j$.
(ii) $n_{1}=5$ and R_{1} has exactly 4 distinct non-trivial ideals, say $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}, \mathfrak{m}_{1}^{4}$.

Proof. Assume that $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))=1$. Suppose that $n>1$. Consider the set $\Omega=\left\{x_{1}, \ldots, x_{4}\right.$, $\left.y_{1}, \ldots, y_{4}\right\}$, where $x_{1}=\mathfrak{m}_{1}^{n_{1}-1} \times(0) \times \cdots \times(0) \times F_{1} \times(0) \times \cdots \times(0), x_{2}=(0) \times \mathfrak{m}_{2}^{n_{2}-1} \times \cdots \times(0) \times$ $F_{1} \times(0) \times \cdots \times(0), x_{3}=(0) \times(0) \times \cdots \times(0) \times F_{1} \times(0) \times \cdots \times(0), x_{4}=\mathfrak{m}_{1}^{n_{1}-1} \times \mathfrak{m}_{2}^{n_{2}-1} \times \cdots \times$ $(0) \times F_{1} \times(0) \times \cdots \times(0), y_{1}=\mathfrak{m}_{1} \times(0) \times \cdots \times(0) \times \cdots \times(0), y_{2}=(0) \times \mathfrak{m}_{2} \times \cdots \times(0) \times \cdots \times(0)$, $y_{3}=\mathfrak{m}_{1} \times \mathfrak{m}_{2} \times \cdots \times(0) \times \cdots \times(0), y_{4}=\left[R_{1} \times(0) \times \cdots \times(0),(0) \times R_{2} \times \cdots \times(0)\right]$. Then the subgraph induced by Ω in $\mathbb{A} \mathbb{G}(R)$ contains a subgraph isomorphic to the graph given in Fig 3.3. and so by Theorem 6.5.1 [15, p.197], $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $n=1$

Fig 3.3: Forbidden subgraph for the projective plane

Suppose that $m>2$. Consider the non-trivial ideals $a_{1}=(0) \times F_{1} \times(0) \times(0) \times \cdots \times(0)$, $a_{2}=\mathfrak{m}_{1}^{n_{1}-1} \times F_{1} \times(0) \times(0) \times \cdots \times(0), a_{3}=\mathfrak{m}_{1}^{n_{1}-1} \times(0) \times(0) \times \cdots \times(0), b_{1}=(0) \times(0) \times$ $F_{2} \times(0) \times \cdots \times(0), b_{2}=(0) \times(0) \times(0) \times F_{3} \times \cdots \times(0), b_{3}=(0) \times(0) \times F_{2} \times F_{3} \times \cdots \times(0)$, $b_{4}=\mathfrak{m}_{1} \times(0) \times F_{2} \times(0) \times \cdots \times(0), b_{5}=\mathfrak{m}_{1} \times(0) \times(0) \times F_{3} \times \cdots \times(0)$ in R. Then $a_{i} b_{j}=(0)$ for every i, j and so $K_{3,5}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 3.1, $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $m \leq 2$.
Case 1. Assume that $m=2$.
Suppose that $n_{1}>2$. Consider the set $\Omega^{\prime}=\left\{e_{1}, \ldots, e_{9}\right\}$, where $e_{1}=\mathfrak{m}_{1}^{n_{1}-1} \times(0) \times F_{2}$, $e_{2}=\mathfrak{m}_{1}^{n_{1}-1} \times F_{1} \times(0), e_{3}=\mathfrak{m}_{1} \times(0) \times F_{2}, e_{4}=\mathfrak{m}_{1}^{n_{1}-1} \times(0) \times(0), e_{5}=(0) \times F_{1} \times(0)$, $e_{6}=(0) \times F_{1} \times F_{2}, e_{7}=(0) \times(0) \times F_{2}, e_{8}=R_{1} \times(0) \times(0), e_{9}=\mathfrak{m}_{1} \times(0) \times(0)$ are the non-trivial ideals in R. Then the subgraph induced by Ω^{\prime} in $\mathbb{A} \mathbb{G}(R)$ contains a subgraph isomorphic to the graph given in Fig 3.2. and so by Theorem 6.5.1 [15, p.197], $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $n_{1}=2$.

Let I_{1} be any non-trivial ideal in R_{1} with $I_{1} \neq \mathfrak{m}_{1}$. Consider the set $\Omega_{1}=\left\{f_{1}, \ldots, f_{9}\right\}$, where $f_{1}=I_{1} \times(0) \times F_{2}, f_{2}=I_{1} \times F_{1} \times(0), f_{3}=\mathfrak{m}_{1} \times(0) \times F_{2}, f_{4}=I_{1} \times(0) \times(0)$, $f_{5}=(0) \times F_{1} \times(0), f_{6}=(0) \times F_{1} \times F_{2}, f_{7}=(0) \times(0) \times F_{2}, f_{8}=R_{1} \times(0) \times(0)$, $f_{9}=\mathfrak{m}_{1} \times(0) \times(0)$ are the non-trivial ideals in R. Then the subgraph induced by Ω_{1} in $\mathbb{A} \mathbb{G}(R)$ contains a subgraph isomorphic to the graph given in Fig 3.2. and so by Theorem 6.5.1 [15, p.197], $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence \mathfrak{m}_{1} is the only non-trivial ideal in R_{1} and so by Theorem 2.5, $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))=0$, a contradiction.
Case 2. Assume that $m=1$.
Let $n_{1}>5$. Consider the set $\Omega_{2}=\left\{x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{4}\right\}$, where $x_{1}=(0) \times F_{1}, x_{2}=$ $\mathfrak{m}_{1}^{n_{1}-1} \times F_{1}, x_{3}=\mathfrak{m}_{1}^{n_{1}-1} \times(0), x_{4}=\mathfrak{m}_{1}^{n_{1}-2} \times F_{1}, y_{1}=\mathfrak{m}_{1}^{4} \times(0), y_{2}=\mathfrak{m}_{1}^{3} \times(0), y_{3}=\mathfrak{m}_{1}^{2} \times(0)$, $y_{4}=\mathfrak{m}_{1} \times(0)$ are the non-trivial ideals in R. Then the subgraph induced by Ω_{2} in $\mathbb{A} \mathbb{G}(R)$ contain a subgraph isomorphic to the graph given in Fig 3.3. and so by Theorem 6.5.1 [15, p.197], $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $n_{1} \leq 5$.

Subcase 2.1. $n_{1}=2$.

Suppose there is an ideal I of R_{1} such that $I \neq \mathfrak{m}_{1}^{i}$ for all $i=1,2$. Then by Proposition $2.4, R_{1}$ has at least three distinct non-trivial ideals I_{1}, I_{2} and I_{3} such that $I_{1}, I_{2}, I_{3} \neq \mathfrak{m}_{1}^{i}$ for all $i=1,2$. Consider the non-trivial ideals $u_{1}=(0) \times F_{1}, u_{2}=\mathfrak{m}_{1} \times F_{1}, u_{3}=I_{1} \times F_{1}, u_{4}=I_{2} \times F_{1}$, $v_{1}=\mathfrak{m}_{1} \times(0), v_{2}=I_{1} \times(0), v_{3}=I_{2} \times(0), v_{4}=I_{3} \times(0)$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{4,4}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 3.1, $\bar{\gamma}(\mathbb{G}(R))>1$, a contradiction. Hence by Proposition 2.4 and Lemma 2.3, \mathfrak{m}_{1} is the only non-trivial ideal in R_{1} and so by Theorem 2.5, $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))=0$, a contradiction.
Subcase 2.2. $n_{1}=3$.
Suppose there is an ideal I of R_{1} such that $I \neq \mathfrak{m}_{1}^{i}$ for all $i=1,2,3$. Then by Proposition 2.4, R_{1} has at least three distinct non-trivial ideals I_{1}, I_{2} and I_{3} such that $I_{1}, I_{2}, I_{3} \neq \mathfrak{m}_{1}^{i}$ for all $i=1,2$. Suppose R_{1} has at least 4 non-trivial ideals different from \mathfrak{m}_{1}^{i} for all $i=1,2$. Let I_{1}, I_{2}, I_{3}, I_{4} be the distinct non-trivial ideals in R_{1} such that $I_{i} \neq \mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}$ for every i. Consider the non-trivial ideals $u_{1}=(0) \times F_{1}, u_{2}=\mathfrak{m}_{1}^{2} \times F_{1}, u_{3}=\mathfrak{m}_{1}^{2} \times(0), v_{1}=\mathfrak{m}_{1} \times(0), v_{2}=I_{1} \times(0)$, $v_{3}=I_{2} \times(0), v_{4}=I_{3} \times(0), v_{5}=I_{4} \times(0)$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,5}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 3.1, $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence R_{1} has exactly 3 non-trivial ideals different from \mathfrak{m}_{1}^{i} for $i=1,2$. Hence $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, I_{1}, I_{2}, I_{3}$ are the only non-trivial ideals in R_{1}.

Suppose $I_{i} \mathfrak{m}_{1}=(0)$ for some i. Consider the non-trivial ideals $u_{1}=(0) \times F_{1}, u_{2}=\mathfrak{m}_{1}^{2} \times F_{1}$, $u_{3}=\mathfrak{m}_{1}^{2} \times(0), u_{4}=I_{i} \times F_{1}, v_{1}=\mathfrak{m}_{1} \times(0), v_{2}=I_{1} \times(0), v_{3}=I_{2} \times(0), v_{4}=I_{3} \times(0)$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{4,4}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 3.1, $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{i} \mathfrak{m}_{1} \neq(0)$ for every i.

Suppose I_{i} is adjacent to I_{j} for every $j \neq i$. Let us assume that $I_{1} I_{2}=(0), I_{2} I_{3}=(0)$ and $I_{1} I_{3}=(0)$. Consider the set $\Omega=\left\{u_{1} \ldots u_{9}\right\}$, where $u_{1}=\mathfrak{m}_{1}^{2} \times(0), u_{2}=I_{1} \times(0), u_{3}=I_{3} \times F_{1}$, $u_{4}=(0) \times F_{1}, u_{5}=I_{2} \times F_{1}, u_{6}=I_{1} \times F_{1}, u_{7}=\mathfrak{m}_{1}^{2} \times F_{1}, u_{8}=I_{2} \times(0), u_{9}=I_{3} \times(0)$ are the non-trivial ideals in R. Then the subgraph induced by Ω in $\mathbb{A} \mathbb{G}(R)$ contain a subgraph isomorphic to the graph given in Fig 3.4. and so by Theorem 6.5.1 [15, p.197], $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence $I_{1} I_{2} \neq(0)$ or $I_{2} I_{3} \neq(0)$ or $I_{1} I_{3} \neq(0)$.

Fig 3.4: Forbidden subgraph for the projective plane

Fig 3.5: Projective embedding of $\mathbb{A} \mathbb{G}\left(R_{1} \times F_{1}\right)$ with $n_{1}=3$,

$$
I_{i} \mathfrak{m}_{1} \neq(0) \forall i, I_{1} I_{2}=(0), I_{2} I_{3}=(0) \text { and } I_{1} I_{3} \neq(0)
$$

Subcase 2.3. $n_{1}=4$.
Suppose R_{1} has at least 3 non-trivial ideals different from \mathfrak{m}_{1}^{i} for every i. Let J_{1}, J_{2}, J_{3} be the distinct non-trivial ideals in R_{1} such that $J_{i} \neq \mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}$ for every i. Consider the non-trivial ideals $u_{1}=(0) \times F_{1}, u_{2}=\mathfrak{m}_{1}^{3} \times F_{1}, u_{3}=\mathfrak{m}_{1}^{3} \times(0), v_{1}=\mathfrak{m}_{1}^{2} \times(0), v_{2}=\mathfrak{m}_{1} \times(0), v_{3}=J_{1} \times(0)$, $v_{4}=J_{2} \times(0), v_{5}=J_{3} \times(0)$ in R. Then $u_{i} v_{j}=(0)$ for every i, j and so $K_{3,5}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 3.1, $\bar{\gamma}(\mathbb{A G}(R))>1$, a contradiction. Hence by Proposition 2.4 and Lemma 2.3, $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}$ are the only non-trivial ideals in R_{1} and so by Theorem $2.5, \bar{\gamma}(\mathbb{A} G(R))=0$ a contradiction.
Subcase 2.4. $n_{1}=5$.
Suppose R_{1} contains at least two distinct non-trivial ideals I_{1}, I_{2} such that $I_{i} \neq \mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}$, \mathfrak{m}_{1}^{4} for $i=1,2$. Consider the non-trivial ideals $c_{1}=(0) \times F_{1}, c_{2}=\mathfrak{m}_{1}^{4} \times F_{1}, c_{3}=\mathfrak{m}_{1}^{4} \times(0)$, $d_{1}=\mathfrak{m}_{1}^{3} \times(0), d_{2}=\mathfrak{m}_{1}^{2} \times(0), d_{3}=\mathfrak{m}_{1} \times(0), d_{4}=I_{1} \times(0), d_{5}=I_{2} \times(0)$ in R. Then $c_{i} d_{j}=(0)$ for every i, j and so $K_{3,5}$ is a subgraph of $\mathbb{A} \mathbb{G}(R)$. By Lemma 3.1, $\bar{\gamma}(\mathbb{A} \mathbb{G}(R))>1$, a contradiction. Hence R_{1} contains at most one non-trivial ideal I such that $I \neq \mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}, \mathfrak{m}_{1}^{4}$. By Proposition 2.4, $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}, \mathfrak{m}_{1}^{4}$ are the only non-trivial ideals in R_{1}.

Fig 3.6: Projective embedding of $\mathbb{A} \mathbb{G}\left(R_{1} \times F_{1}\right)$ with $n_{1}=5$ and $\mathfrak{m}_{1}, \mathfrak{m}_{1}^{2}, \mathfrak{m}_{1}^{3}, \mathfrak{m}_{1}^{4}$ are the only non-trivial ideals in R_{1}

Converse follows from Fig. 3.5 and Fig. 3.6.

References

[1] G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr and F. Shaveisi, On the coloring of the annihilatingideal graph of a commutative ring, Discrete Math. 312, 2620-2626 (2012).
[2] G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr and F. Shaveisi, Minimal prime ideals and cycles in annihilating-ideal graphs, Rocky Mountain J. Math. 43 (5), 1415-1425 (2013).
[3] M. Afkhami, K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, Southeast Asian Bull. Math. 35, 753-762 (2011).
[4] D. F. Anderson, M. C. Axtell, J. A. Stickles, Zero-divisor graphs in commutative rings, Commutative Algebra, Noetherian and Non-Noetherian Perspectives (M. Fontana, S. E. Kabbaj, B. Olberding, I. Swanson), 23-45, Springer-Verlag, New York (2011).
[5] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217, 434447 (1999).
[6] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320, 2706-2719 (2008).
[7] D. F. Anderson and A. Badawi, The total graph of a commutative ring without zero element, J. Algebra Appl. 11 (18 pages) (2012).
[8] D. F. Anderson and A. Badawi, The generalized total graph of a commutative ring, J. Algebra Appl. 12 (18 pages) (2013).
[9] D. Archdeacon, Topological graph theory: a survey, Congr. Number. 115, 5-54 (1996).
[10] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, (1969).
[11] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42 (1), 108-121 (2014), doi: 10.1080/00927872.2012.707262.
[12] I. Beck, Coloring of commutative rings, J. Algebra 116, 208-226 (1988).
[13] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (4), 727-739 (2011).
[14] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (4), 741-753 (2011).
[15] Bojan Mohar and Carsten Thomassen, Graphs on Surfaces, The Johns Hopkins University Press, Baltimore and London, (1956).
[16] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, (1976).
[17] A. Bouchet, Orientable and nonorientable genus of the complete bipartite graph, J. Combin. Theory Ser. B 24 (1), 24-33 (1978).
[18] H. J. Chiang-Hsieh, Classification of rings with projective zero-divisor graphs, J. Algebra 319, 2789-2802 (2008).
[19] H. H. Glover, J. P. Huneke and C. S. Wang, 103 graphs that are irreducible for the projective plane, J. Combin. Theory Ser. B 27, 332-370 (1979).
[20] H. R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319, 1801-1808 (2008).
[21] W. Massey, Algebraic Topology: An Introduction, Harcourt, Brace \& World, Inc., New York, (1967).
[22] G. Ringel, Map Color Theorem, Springer-Verlag, New York/Heidelberg, (1974).
[23] K. Selvakumar, V. Ramanathan, Classification of nonlocal rings with genus one 3-zero-divisor hypergraphs, Comm. Algebra 45 (1), 275-284 (2017).
[24] K. Selvakumar, V. Ramanathan, Classification of non-local rings with projective 3-zero-divisor hypergraph, Ricerche di Matematica, 1-12, (2016), doi: 10.1007/s11587-016-0313-9.
[25] K. Selvakumar, M. Subajini, Crosscap of the non-cyclic graph of groups, AKCE Inter. J. of Graphs and Combin. 13 (3), 235-240 (2016).
[26] T. Tamizh Chelvam and K. Selvakumar, Central sets in the annihilating-ideal graph of a commutative ring, J. Combin. Math. Combin. Comput. 88, 277-288 (2014).
[27] T. Tamizh Chelvam and K. Selvakumar, On the connectivity of the annihilating-ideal graphs, Discussiones Math. Gen. Alg. App. 35 (2), 195-204 (2015).
[28] T. Tamizh Chelvam and K. Selvakumar, On the genus of the annihilator graph of a commutative ring, accepted for publication in Algebra and Dis. Math. (2015).
[29] T. Tamizh Chelvam, K. Selvakumar and V. Ramanathan, On the planarity of the k-zerodivisor hypergraphs, AKCE Inter. J. of Graphs and Combin. 12 (2), 169-176 (2015), http://dx.doi.org/10.1016/j.akcej2015.11.011.
[30] K. Wagner, Über eine Erweiterung des satzes von Kuratowski, Deutsche Math. 2 , 280-285 (1937).
[31] H. J. Wang, Graphs associated to co-maximal ideals of commutative rings, J. Algebra 320, 2917-2933 (2008).
[32] A. T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam, (1973).

Author information

K. Selvakumar and P. Subbulakshmi, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627 012, India..
E-mail: selva_158@yahoo.co.in
Received: August 24, 2016.
Accepted: February 14, 2017.

