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Abstract This paper describes a numerical technique for determining the h@si@pation
of the exact refractive index (of an optical fiber having a circulassection), allowing a better
transmission of a given information. Mathematically, this objective leadsetoebolution of an
inverse eigenvalue problem that consists in reconstructing the re&aotiex from a prescribed
finite set of eigen data (of the direct problem), knowing only the wavdoarnm vacuum (the
frequency). The corresponding direct problem (solved by a finitmeh method) consists of
computing guided modes that propagate, under weak guidance agssnm a graded-index
optical fiber with a circular-shaped section. The numerical resolutidheoinverse problem is
due to a special Algorithm for solving a convex optimization problem ukemgyangemultipli-
ers. Examples and numerical illustrations, related to the inverse problew, the robustness
and the higher efficiency obtained by our suggested method that gesvgeometrically to the
exact refractive index.

1 Introduction

Optical fibers are one of the perfect physical environment and itaposcientific achievements
in the last century]] and they are certainly of considerable interest because they rapthse
best current way to transport very high debits of digital informatione mleds in this area are
likely to increase very strongly in the near futuE8[ 57]. It is by this means that circulate
over 80% of global long distance traffic information. The idea of usirtgcapfibers to transmit
information 7] appeared in the early 60s with the appearance of Laser, and thetagiesof
transmitting information 18, 46, 57] by optical fibers are multiple compared to other commu-
nication media 25] (one pair of optical fibers carries a rate of 10 times stronger than 2866 p
of copper wires). Thanks to comfort and energy saving providedgiical fibers, these last
are perfect for medical applications, the lighting field, the road transystem and for various
military applications requiring a high quality equipment.

In this paper, we limit ourselves on optical fibers of famous profile cdassalled power-law-
profiles (graded-index profiles)4, 18, 21, 39, 42, 46, 57, 61].

The aim of this work is to exhibit a numerical method (based on a constraime/ex optimiza-
tion procedure§, 10, 17, 47, 60]) to determine a suitable approximation of the refractive index
(of the considered optical fiber), which allows a better transmission e gnformation.
Consequently, we are interested in solving an inverse eigenvalue prid)lér, 11, 12, 26, 40],

of computing guided mode$8§, 52] (the direct problem) that propagate under weak guidance
assumptions15, 16, 18, 36, 42, 46, 52], in an optical fiber with a circular cross section (Figure
1), and a graded refractive inde¥ («-power refractive-index (Figure 2), (Figure 3) and (Fig-
ure 4)) whose radial refractive-index profibe(which is a real function of two real variables
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andy) has the form15, 46, 48, 57]:

_os( T\ _ S22
n(z,y) :{ nyqfl 25(a> ,0<r=vx*4+y?<a

Noo , otherwise
=n(r)
where
n€ L®(R?), ny = sup n(x,y), ny > ne >0,
(z,y)ER?
712 - TL2 . . . .
§= %, (0 <1, ¢ isthe normalized difference indgx
Ty
1 < «is the profile parameter, it determines the shape of the core’s profile
r is the radial component andis the characteristic radius of the fiber’'s core

Figure 1: An optical fiber (with a circular cross section)
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Figure 2: Potential of a graded-index profile for different exponerts > 1)
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Figure 4: A triangular (linear) index profilev(= 1)

1.1 Brief overview of previous works §9]

Several publications have appeared in recent years documentingeti®irament of dielectric
constant (relative permittivity) or the reconstruction of refractive iadjdor example:

« Numerical reconstruction of the variable refractive index of multi-lagecircular weakly
guiding dielectric waveguides using the measurements of the propagatistants of their
eigenwaves (se§]).

 Universal numerical methods for reconstruction of refractive iesliof dielectric objects
designed for coefficient inverse diffraction problems (&g [

« The methods for determination of the optical characteristics of dielectneguades pro-
posed for waveguides of some special forms (5dg [55]).

+ Approximation W.K.B. used in planar waveguides for the determinatiomaéx profile

(see B7)).

« The waveguide spectroscopy widely used for planar (one-dimensionti-layered waveg-
uides (seedl)).

» This last method was extended to the two-dimensional problem for thegwiakee with
the piecewise-constant refractive index and an arbitrary crosmisalcooundary (seef],
[30]).
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« A method is described for determining unambiguously, from the far-fieltiern of sin-
gle mode fibers, the core diameter and the refractive-index differbetween core and
cladding (seeZ0)).

+ A simple and rapid method is described for determining the refractivexipdofile of an
optical fiber by the observation of the near-field intensity distribution (5&g:. [

The refractive-index distribution in an optical fiber is fundamental inreit@ng its transmis-
sion properties, it is usually inferred from preform measurements.

The objective of this paper is to reconstruct the refractive-index {asaion of the radial com-
ponent) of an optical fiber having a graded-index profile and a circutes section.

In this paper, we limit ourselves to stating the results obtained through therimainprocess
adopted in this work with a discussion and a lot of accompanied commeardrgemarks.

2 The Mathematical Model

Computing guided modes in optical fibers under weak guidance assms\gi@quivalent to
solve the following eigenvalue proble(fl) posed in the whole plarig? [15, 16, 48]:

Find XA € ]0,V2[, u € HY(R?), u# 0, such that:
()

—Du+ q(z,y)u = —Au, in R?
where
q(z,y) = —k*(n?(z,y) —n2) = —k?(n?(r) —n?2)

(2.1)

and

A is the Laplacian operator in 2 dimensions

A is an eingenvalue of the direct probléim),

k is the wavenumber in vacuum (frequency), it is assumed to quite, large
V2 =k%(n2 —n%),V is the normalized frequency

u is a transverse component of the electromagnetic. field

We note that solving the direct problefii), using a finite element metho#@3, 35, 43, 51],
consists in calculating the couplés, ), but the finite element approximation is not however
suitable for solving the problertil) because of the unboundedness of the dorRairso, we
first reduce(l) to a bounded domain as followsd, 48]:

Find)\R S ]O,VZ[,UR S Hl(QR),uR 75 0:

(n’) —Aug + q(z,y)ur = —Arug, IN Qg
ou
Yiug + Wza—R =g, On Sy
T

such that
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Ar is an eigenvalue of the direct problei’),

Qr = {(z,y) e R? /22 + y? < R?} ,Sg = {(z,y) € R? / 2® + y? = R?},
S is the artificial boundaryit encloses the optical fibre’s core defined by :
Q, = {(z,y) € R? / 2% + y? < a®} , thus R must satisfy: 0< a < R,

71,72 € R, ~1 and~, cannot vanish at the same time

g is areal function defined ofiz,

0 . -
# denotes the exterior normal derivativewgf alongSg.
”

3 The Inverse Eigenvalue Problem

The inverse eigenvalue problem to be solved (in this work) is:

Findq € L>°(Qpg), such that :
(n”)
—A’U;(J% y) + Q('x7 y)’U;(J?, y) = —)\’U,(Jﬁ, y)a in QR

knowing only:
(i) The frequencyk.

(i) A finite number of spectral dat@\, «) (associated to a certain boundary condition: Dirich-
let, Neumann, Robin,...) of the direct probléf’).

Communication implies transfer of information from one point to anothdrekMt is necessary
to transmit information, such as speech, images, or data, over a distaregenerally uses the
concept of carrier wave communication. In such a system, the infamm@ be sent modulates
an electromagnetic wave such as a radio wave, microwave, or light waieh acts as a carrier
[21].

In this work, the given information which circulates in the optical fiber isespnted by the
knowledge of the spectral data and the frequéncy

The determination of the functiog in the previous problenil”), leads (from (2.1)) to the
determination of the exact refractive indeXor at least a numerical approximation of it) which
is the objective of this work.

Remark 3.1.1n this work, we study the case: € N*.

4 Constraints’s Set and Approximation’s Functions
Letm € N*, such thatm — 1 = a.

Definition 4.1. We define the feasible sgdet of constrainisC by
m—1
C = c= (CO,C]_, ...,Cm_l)t S Rm/ Z Cja,j =0;. (41)
j=0

Definition 4.2. For eachc = (co, 1, ..., cm_l)t € C, we look for an approximation af(r) in the
form

m—1
o) ¢ (Val+y?) 0< a2 +y2<a
c ’ - jIO
0 ANr2+y2>a
m-1 4.2)
chrJ ,0<r<a
7=0
0 T>a
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moreover, we set

N(r) = n2(r) = n2. — k—lz.q(r) (4.3)
M.(r) = ngo — %.pc(r) (4.4)

for all » > 0 and for allc = (co, c1, ..., ¢m_1)" € C.

The required radial approximatign(r) (4.2) is represented (on the intery@J«|) as a finite
combination of appropriately chosen basis functions; #, ..., 1. We determine the coeffi-
cients:co, c1, ¢z, ..., ¢, 1 (Of the combination) by numerical simulations. This is the perspective
of the present paper.

Remark 4.3.From (2.1), it follows thatq is a continuous and bounded piecewise radially sym-
metrical polynomial expression.

Remark 4.4.From (4.2), our approximatiorp, is also a continuous and bounded piecewise
radially symmetrical polynomial expression, for ak C.

Corollary 4.5. By construction, for alk € C: the functionp,.. defined in(4.2) is bounded.

5 Objective of this Work

Our approach would be to solve numerically the inverse eigenvalue pn@bl€), which means
the reconstruction of a good approximation of the radial funciier) (or equivalently (from
(4.3)), a good approximation of the radial functiaf{(r)).

So, we want to prove thai¢ = (£, 1, ..., &m_1)" € C such that:

M¢(r) (Pe(r) respectively) is the best approximation'dtr) (¢(r) respectively)in |||, norm)
(a precise error estimation in the infinity norm).

In other words, our goal is to determine the componénts, ..., &,,—1 of € € C, such that

:[l(l)p} (Me(r) =N(r)| = fg(I)OIMs(T) —N(r)|
= [[Me(r) =N ()]l

is small enough (it tends to 0)

(5.1)

oo

or equivalently

Sup [pe(r) —q(r)| = suplp(r) — q(r)]
rel0,a] r>0 (5.2)

= [lpe(r) —a(r)ll o
is small enough (it tends to 0).

6 Useful Main Tools

The following propositions will be useful
Proposition 6.1.The functionp defined by: ¢ : R™ — R, such that

m—1

o(c) = Z cjal Ve = (co,c1, oy C1) € R™
j=0

is obviously an affine function dR™.

Corollary 6.2. From (4.1), we obtain that
C= {C = (607 Cly.ery CﬂL—l)t € Rm/ ¢(C> = 0}
Proposition 6.3.C is a (non empty) convex set in the normed spaké'.

Proof. In fact, the convexity of is due to the affinity of the functioa.



A Numerical Technique to Solve an Inverse Problem in Opffdaérs 173

7 Notations and Basic Terminology

Let R € R satisfying: 0< a < R, and letl € N*.

In what follows, for eachr = (co, cs, ..., cm,l)t € C, we denote:

P = (3,2, ..., )" € R™ as an arbitrary starting vector af

A1 (), A2(e), ..., \i(c): thel first corresponding eigenvalues (of the direct prob(€i) to the
potentialp.(r),

A1, A2, ..., Ao thel first corresponding eigenvalues (of the direct probléi)) to the potential
q(r),

N(e)=(A1(e),A2(c), s N (c))t e R,

A= (A2, N) €RL

The parametergo, &1, ..., &1 (cited in Section 5) will be evaluated by minimizing the quan-
tity:

IA =A@
on the convex set.

For the sake of this purposé,= (&o, &1, .-, &m—1)" Will be computed by solving the following
optimization problem§, 13, 22] (7.1) (that will be solved iteratively), posed in the convex&et

¢ = argminf;(c),Vi € N* (7.2)
ceC

such that: Ve € R™, Vi € N*: ,
fie) = IN= Li(c)ll; (7.2)

where||.||, denotes the Euclidean norm, and:
Li(c) =N (ci_l) + T (c— ci’_l)
(vi € N*: Ais linearized by the linear paft;(c) of its Taylor expansion at'~1)

t
i—1 i—1 -1 i—1 m
= (Co ,C e cm_l) eR

. . . t
o ] 2 3 m
Cc = (00,617 ...7Cm71) S R

andrl; isthe real x m Jacobian matrix defined by

(0N i
rl_<8_cj(c )) 1<p<i

0<j<m-—1
(I'; is called "the linear component of the linearizatiby{c)").

In an actual computation, at each stethe componentsscg)ogjgm,l of ¢! are computed se-
quentially from the components ef ! (see (7.1)).

Therefore it is advantageous, in looking at the right side of (7.1), ¢éothisse components of
¢~1 which are already known, instead of the corresponding components of

In practice, this means that the components’ afnmediately replace those of ! in memory.
This not only saves memory, but simplifies the progr&gj.|

The previous considerations lead to an algorittg¢rithm 8.1 below) that describes a proce-
dure to solve (5.1) and thus (5.2) and therefore handling the resobitithre inverse problem
(n").

Remark 7.1.Let 1< p <[,0<j <m—1landi € N*
We note that it is a challenge to apply the following definition

ONp i1 . )\p(cé*l,...,c;fl—l—h,...,cin*_ll) —/\p(céfl,..wcifl,... -1
-2 (¢ = lim
aCj h—0 h




174 Hayat REZGUI and Abdelaziz CHOUTRI

on a computer, because its finite word length causes the numerator taftubetween 0 and
round-off error as the denominator approaches Z&8p [
A simple and effective solution is to makesmall but not zero33:

aCj (C ) - 50]' (C )
therefore
% (Ciil) N Ap (cffl, e c;‘-*l + h, ..., c;;ll) - (céﬁl, e c;‘-*l, e 027;11) 7.3)
aCj h '

(7.3) known as the "forward-difference rule”, is not the most accurapg@pmation, but it will
suffice B3].

Proposition 7.2.For eachi € N*:
The cost functiory; defined in(7.2) is a twice differentiable convex function & (and thus
on the convex set).

Proof. In fact, for each € N* and for each: € R™, we have

file) = ||r1c|\§ —2.<Tie,\N— /\(cifl) + M 1>+ H/\ — /\(ci’l) + ricHHi
— IFe]2 = 2./ TE (A = A(d=Y) + Tac™) + A = A=) + T

(where< .,. > denotes the inner product defined on the s{Rige

Lilc+h) — fi(c) = Vfi(c).h

thus, we can easily show that: lim =0, where
h—0 (2P

Viie) =2MtMe— 2L (A=A 4+ Tieh)
= 2Tt (Tie =T L+ A1) = A).

SinceVf; : R™ — R™ is an affine function, then, it is differentiabl24, 32, 59] on R™ and
we have
V2fi(c) = 2T, Ve e R™.

Otherwiseve € R™, V¢ € R™, ¥ € [0, 1], we have

T
N—Li(nc+(1—n).c) ,

= [IN=AE Y =Ti(nc+ (1—n).c — ci—l)Hz
= [+ @ m A=A ) n e~ @i+ (4 () P
=l (A =A@ T T + (L= ) (A= A+ Toe = T z
= [nn 2 + @ mn - L)

but, since the functiog : R™ — R, defined by

g(x) = |lo[3, Yz € R™
is convex (it is even strongly conveg,[34, 44]) on R™, it follows

fi(n.e+(1—n).c)

filne+ @=m)c) < A= L@l + @ —n). [A— L)

=n.fi(c) + (L=n).fi(c)

hence, the functiorf; is convex orR™ and consequently of. m|

FromProposition 7.2, we deduce that (7.1) is a constrained convex optimization problem.
Otherwise, the following well known Theorem (which will be useful for tiresent work) sum-
marizes necessary and sufficient conditions for convex optimization
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Theorem 7.3.([47], page 57)
Letl/ be an open convex set. flfis a differentiable convex function éf ¢1, ¢2, ..., ¢, (p € N*)
are affine functions otr, and

D= {c eU: ¢i(c) =0,Vi=1,2, ...,p}
then: )
(c* is a global minimum of f o) <= 3(ui)1<i<, V. (¢*) + > i Vi(c*) =0,

=1
w1, 2, -, iy € R are called "Lagrange multipliers”8, 17, 56, 58, 60].

The method of.agrangemultipliers is the usual elegant approach taught in multivariable cal-
culus courses for locating the extrema of a function of several vasahibject to one or more
constraints41].

8 The Algorithm of Adopted Method
In this section, we will describe an optimization-based algorithm for solviagrverse problem
previously considered. Here is the description of our method’s geA&garithm

Algorithm 8.1

Let a, m and! be fixed numbers (previously defined in Section 1, Section 4 and Secfien 7
spectively)).

Choosers > 0 (a tolerance error) small enough (this will ensure the convergeheoardlgo-
rithm).

Pick an arbitrary starting vecto? € R™ of ¢ € ¢, where® = (3,2, ..., % ;)" and

o Pm—1
t

c¢=(co,C1y e, Cm—1)" -
The beginning of the Algorithm. Iterate until convergence
e Step 1 7 = 1: (Initialization) .

Applying Theorem 7.3.andProposition 7.2, we conclude that

ct = argminfi(c) <= It e R: Vfi(c) + pVo(ct) = 0.
ceC

« Computeu! and the components of.
e Stepi: i > 2.

FromTheorem 7.3.andProposition 7.2, it follows
¢ = argminfi;(c) <= 3u’ € R: Vf;(c") + pu'Ve(c') = 0.
ceC

« Computey’ and the components of.
« While: M. — N, > ¢, do: updatei «— i + 1.

e Last Step: (The stopping criterion)
Repeat the last minimization process (sfgpintil we get:
Jig > 2 : ¢ € C such that

[Meio = Nl

o= k—lz |Peio — 4l < € (henceforth, we set = c”)
(the convergence is satisfied).
Stop (The end of the Algorithm).

Remark 8.1.In the previous Algorithm, we note that at each stép < i < ip): ' # 0 andy’
can have either sigfas we will see in the next sectighlumerical results and discussion
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8.1 Properties of Algorithm 8.1
It is striking to remark thaf\lgorithm 8.1 satisfies some basic properties

« No calculation of second derivatives is required, only the gradient efctst function
defined in (7.2) and the gradient of the functipdefined inProposition 6.1.are calculated
at each iteration.

« Only one vector £; and the components of) to be stored at each iteratior N*, contrary
to other methods (that need, for example, to store all the elements of #sgaHenatrix).

« Algorithm 8.1 is attractive for its very cheap computational cost.
« Numerical errors which are generated during the solution of discretigedtions are small.

» Correctness and convergence: The numerical solution tends to tttesekation from one
step to the next one.

- Finiteness and effectiveness: This algorithm always finishes after stéps (small number
of steps).

Remark 8.2.The properties mentioned above will be justified in the next segfumerical
results and discussion

Remark 8.3.At each stepi > 1 in Algorithm 8.1 (which is of order 1, since it uses the
gradient of the cost function the use ofTheorem 7.3. amounts to solving the following
non-homogeneous linear systéf; ) of (m + 1) equations in(m + 1) unknowns(reals):
choch, ., andut:

2. Z Ap = Ap (¢71) = %(ci_l).(cé — c;i_l) : (—%(ci_l)) +u' =0.... (1 equation)
] = 9 Oco
l m—1
23 (d =AY = 0 GG - Y | (<G ) e = 0. (2 cquation)
p=1 7=0 J 1

ch+ach +a?ch+ ... +a™ el =0...((m+ 1) equation)

For better understanding, it was found that for each iteratiorl, the matrixA; associated
to the linear systenil; ) is invertible (since we can rewritéM; , ) in the form: A;.z; = b;,
wherez;=(cb, ci, ...\, 1, 1*)*), thus proving the existence and the uniqueness of the minimum
of the cost functionf;. Fortunately, the syster(rﬂ;"m) is often easy to solve. Its resolution is
done using MPLE [9, 19, 27, 45).

9 Numerical Results and Discussion

In order to construct a best approximation of the exact refractiorxingle, we usedAlgorithm
8.1 Three realized numerical tests have been made by considering thlerprd1’) with the
homogeneous Dirichlet condition (foy; = 0 andg = 0).

In Figures:
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Figure 5 and Figure 6 (Lexample),

Figure 9 and Figure 10 (2 example),

Figure 15 and Figure 16 (3example),

we plot the curves of the true functiong(r) and¢(r), and their approximationd,(r) and
pe(r) (respectively) in terms af, and in Figures:

Figure 7 and Figure 8 (1 example),

Figure 11, Figure 12, Figure 13 and Figure 1442xample),

Figure 17 and Figure 18 (8example),

we present the variations 0, — A, (c*)|, (1 < p < 1) in terms of the number of iteratiorisWe
also note that in Table 1, Table 2 and Table 3, the differeéhge- A, (c’)| converges to 0 when
¢’ converges tg. This proves that the approximate eigenvaltgé’) converge to the exact
eigenvalues\, whenc’ converges tg.

In Figures: Figure 19, Figure 20 and Figure 21, we plot fice 1, « = 2 anda = 3 respec-
tively) the curves representing the true functioand its approximatiop,, and this in cartesian
coordinates, so:  z = g(z,y) andz = p¢(z,y) where: 0< r = /22 + y? < a.

(We note thatg(z,y) = pe(z,y) = 0,¥(z,y) € R% r = /22 + 42 > a).

In these Figures: The Blue surface represents the true fungctitrereas its approximation func-
tion p, is represented in red (lines), the three Figures demonstrate the potémtial adopted
technique, since we see that the curveg ahdp, are almost identical in the three examples
(cited in this section).

All the curves, presented in what follows, prove a good accuracyh@fumerical adopted
method in this work), and the rapid convergence of our results to theé sakation. In fact, we
found that the function\, represents a good approximation of the functidn= n?, which
is none other than the square of the exact refractive indeRtherwise, the numerical method
adopted in our work converges geometrically since:

35€10,1[,38>0,Fjo e N: [My — N, < B8 (9.1)

at each iteratio > jo.

9.1 Firstexample: A linear index profile (« = 1)
Required data for Algorithm 8.1: m —1=1,1 =2,e =3 x 10",

Opto-geometrical data:
V =3k=187602n, = 1.5085n,, =15 a=1 R=a+ 20.h,h = 0.04

Here, in (9.1) we found thap3 = 10~%, s = 0.10013 andj, = 0.

For eachi : 0 < < 4, we have: Al = [A\; — Ar(c)| andA) = |\ — Xao(c)].
In this example, we took:

0 ,a<r<R

-9+9 ,0<r<a
q(r) =

Ve = (cg,c1)' €C:

(r) = co+cr ,0<r<a
Pelr) = 0 ,a<r<R

We deduce from (4.3) and (4.4) that:
n?(r) = N(r) = 2.25—0.00284¢(r) and M.(r) = 2.25— 0.00284p.(r).
After five iterations, we have reached the following result:
[pe — qll, = 0,0001,| M — N =2.8414x 10~7, AT = A = 0.00000,
for ¢ = (—8.9999 8.9999" = ¢*, and then:
—8.9999+ 89999 ,0<r<a
re(r) =19 ¢
,a<r<R
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Mo)e The Curve M)

The Curve Me(N X X X X X X

Af(l) .

0.5 a

Figure 5: The curves of/(r) andM¢(r) foré =c* & a =1

10

The Curve ¢(r)

The Curve Pe(r) o o o 0 0 0 @

1 12 13 14 15 16 L7 18 19

Figure 6: The curves af(r) andpg(r) for ¢ = c* & a =1

We summarize the achieved results during the five iterations within Table ér¢wie see
that the accuracy (in the seventh columnPid0~7) for o = 1):
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Table 1: The running oflgorithm 8.1 fora =1

Iteration Solution Magnitude of the errors
R ¢ | o B pe—dlle Mo =N |
0 1 0. 4.07298 185147 10 8414x 1072
1 —-12524 12524 | 1.67031 07032 3524 10013x 102
2 -9.175 9175 || 0.07894 003259 0175 49724x 104
3 —9.0006 90006 || 0.00031 000013 00006 17048x 10°°
4 —8.9999 89999 || 0.00000 000000 00001 28414x 10~/

Lagrange multiplier ~ Cost function at ¢!

] i e
0 / /

1 7.2637x 1073 3.670333
2 ~7.0776x 1073 4.964810
3 7.4367x 10°° 4.407511
4 9.1648x 10~/ 4.370587

. izl
P -
4 >
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Figure 7: Variation of \; — A1(c)| in terms of number of iterationis
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9.2 Second example: A parabolic index profilda = 2)
Required data for Algorithm 8.1: m —1=2,1=4,¢ =1.5x 1076,

Opto-geometrical data:
V =4 k= 25013561, = 150851, =15a=1 R=a+ 20h h = 0.04

Here, in (9.1), we found thatt = 10~%, s = 0.27171 andj, = 4.

Foreachi:0<i <8, wehave: ‘ ‘ ‘ ‘
All = ‘)\1 — Al(cl)‘ ,Aé = ‘)\2 — )\z(cl)‘ ,AZ = ‘)\3 — Ag(cl)‘ ,AZ = ‘)\4 — )\4(Cl)‘ .
In this example, we took:

) ~-16+16r2 ,0<r<a
T) =
1 0 ,a<r<R
2 <r<
Ve = (Co,cl,CZ)t eC: po(r)= { (0)0+61r+62r :2;:;2

We deduce from (4.3) and (4.4) that:

n?(r) = N(r) = 2.25— 0.001598¢(r) and M.(r) = 2.25— 0.001598p. ().
After nine iterations, we have reached the following result:
lpe — qll, = 7.7222x 1074, || M — N|| = 1.2342x 107,
A% = 0.0000Q A8 = 0.000177A8 = 0.00001 A% = 0.00027,
for ¢ = (—16.002 0.008156815.994) = 8, and then:

(r) = —16.002+ 0.0081568 + 15994° ,0<r<a
e 0 ,a<r<R

The Curve N(r)

The Curve Me(r) X X X X X

j\f(l) .

0.5 a

Figure 9: The curves of/(r) and M (r) foré =& a =2
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The Curve q(r)

The Curve Pe(r) o o o o o »

Figure 10: The curves af(r) andpe(r) foré =2 & a =2

We summarize the achieved results during the nine iterations within Tablectdwle see
that the accuracy (in the eleventh columnigl0—°) for a = 2):

Table 2: The running oflgorithm 8.1 for o = 2

Iteration Solution

) H 06 ci1 cé

0 1 0. 0.

1 26766  —15715 13038
2 —-15098 51149 52659
3 -9508 22411 31919
4 —-16.451 11768 15274
5 —16.003 Q01092 15992
6 -16.002 Q008114 1994
7 —16.002 Q008208 1994
8 —16.002 Q0081568 1994
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Remaining of Table 2

Magnitude of the errors

i oA Y A iy Ipet = alle IMes =Nl |
0 1058557 569479 1340442 1565374 17 21171x 1072
1 1884316 743456 5434838 1190609 11212 1792x 1072
2 0.27665 15431 050241 021555 33516 53567x 103
3 0.35756 059013 027649 (051484 13956 22305x 1073
4 0.10751 0021264 003999 000209 2588x 102 4.1363x 10°°
5 0.00026 0000282 (000014 000022 72645x 10°* 1.1611x 10°°
6 0.00002 0000199 (000002 000025 74321x 1074 1.1878x 10°°
7 0.00002 0000151 000000 000029 80714x 104 1.29x10°°©
8 0.00000 0000177 000001 000027 77222x 1074 1.2342x 10°°
Lagrange multiplier ~ Cost function at ¢!

i i [ fi(c)

0 / /

1 1.1603x 101 14.48687x 1071

2 1.6458x 101 16.15612x 1071

3 1.0011x 101 9.848410x 101

4 1.2859x 1072 6.393739x 10?2

5 1.4066x 104 7.856362x 104

6 —3.6208x 10°° 3.2723x 1074

7 —3.708x 10°° 3.244157x 104

8 ~3.6781x 10°° 3.232053x 104

25

i: 20 '3

< 75

Zz B

§ 10“ "-\.

N

05 1 15 2 25 3 33
Number of iterations (i)

4 45 5 55

65

Figure 11: Variation ofA; — A1(c?)| in terms of number of iterationis
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Figure 12: Variation ofA; — A\2(c’)| in terms of number of iterations
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Figure 13: Variation of A3 — A3(c’)| in terms of number of iterationis
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[ )

; 85 9 9510
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Figure 14: Variation of A4 — A4(c")| in terms of number of iterations
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9.3 Third example: A cubic index profile (o = 3)
Required data for Algorithm 8.1: m —1=3,1=2,¢ =45x 10>,

Opto-geometrical data:
V =3k=187602n, = 1.5085n,, =15 a=1 R=a+ 20.h,h = 0.04

Here, in (9.1) we found that3 = 101, s = 0.28414 andj, = 3.

Foreachi : 0 <i <5, we have: A = |A; — A1(ch)|, A) = | A2 — Aa(c)].
In this example, we took:

9492 0<r<a
q(r) =
0 a<r<R

co+cr+er?+ezr® 0<r<a
0 a<r<R

Ve = (co,c1,¢0,¢3)' €C 1 pe(r) = {
We deduce from (4.3) and (4.4) that:

n?(r) = N(r) = 225 0.00284¢(r) and M.(r) = 2.25— 0.00284p.(r).
After six iterations, we have reached the following result:
[pe — ql|,, = 0.015572 || M — N|| , = 4.4246x 1075,
A3 = 0.00000,A3 = 0.00000,
for ¢ = (—9.0514 0.23249 —0.232499.0514* = ¢°, and then:

(r) = —9.0515+ 0.23249 — 0.232492 +9.05152 ,0<r<a
Pelr) = 0 ,a<r<R

The Curve N(r)
The Curve Me(r) X X X X X

Moy s

Ay

0.5 a

Figure 15: The curves of/(r) andM¢(r) foré = & a =3
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10+ The Curve 4(r)

The Curve Pe(r) esoesos

2

0.1 0.1 02 03 04 05 0.6 07 08 0.9 11 12 13 14 L5 16 1.7 L8

Figure 16: The curves af(r) andpe(r) foré =c® & a =3

We summarize the achieved results during the six iterations within Table 3w see
that the accuracy (in the tenth column)1$10-°) for o = 3):

Table 3: The running oflgorithm 8.1 for o = 3

Iteration Solution
| ) || & cq 5 g
0 1. 0. 0. 0.
1 —5.4627 —-25902 25902 54627
2 -8.1109 -3.8288 38288 81109
3 —9.0693 029702 —-0.29702 90693
4 —-9.0522 023516 -0.23516 90522
5 —9.0515 023249 -0.23249 90515
Magnitude of the errors
i oA By e —alee Mo =N, |
6.47533 360217 10 28414 x 102

217024 1962653 8852 2553 x 1072
0.04486 011331 29397 83527x 1073
0.00144 000052 0017306  49173x 10°°
0.00003 000004 001567  44524x 10°°
0.00000 000000 0015572  44246x 107°

gaa b wWwNPEFLO
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Remaining of Table 3
Cost function at ¢

Lagrange multiplier

i ' fi(e) |
0 / /
1 48 x 108 4.599891x 105
2 4.885x 1078 2.095131x 10°°
3 —7.4582x 108 3.247850% 10°°
4 —1.9042x 108 4.232537x 108
5 —45234%x 108 9.852650x 107
T
_ ¢
T o
< |
< 5y
2|
e \\
N
\
1 \
\

35 45 35 6.5

Number of iterations (i)

Figure 17: Va

Values of |Az-N2(ch)|

riation op\l — Al(ci)\ in terms of number of iterations

35 45 35 65

Number of iterations (i)

Figure 18: Va

riation of A2 — Az(¢) | in terms of number of iterationis
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Pﬁ(xay) (Where:\/ﬁy2 < a)
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10 Conclusion

In conclusion, this paper deals with a special inverse eigenvalue prciked by a finite Al-
gorithm.

In fact, in this work, we aimed to the development of a numerical methasl(® implement) in
order to solve an inverse eigenvalue problem of computing guided nmodesded-index optical
fibers (direct problem). This last was solved by a finite element method.

The numerical reconstruction of the exact refractive-index wasoboer ultimate goals in this
paper.

We have proposed a fast algorithm to accomplish this objective, then weesyathesized ob-
tained numerical results usihggrangemultipliers and a constrained convex optimization (min-
imization) method to solve the inverse eigenvalue problem mentioned above.

Numerical results obtained in this work, show that the reconstructeattefe-index agrees with
the true refractive-index (with relatively high accuracy), proving ttiectiveness, computational
efficiency and good accuracy of our approach.

During the numerical resolution of each linear system (obtained from ithienization process),
it was found that its associated matrix is invertible proving the existence anghiueness of
this minimum.

In the other hand, it was also found, that the obtained extremum is a gifobahum (since all
the used domains and functions are convex). Thus, proving the ecéstenl the uniqueness of
the sought refractive-index.

We note here that any information on specific values of eigenfunctidrtdalirect problem)
was not required.

The interest of the work realized in this paper is to determine a perfecbxdpgation of the
exact refractive-index profile of an optical fiber having a circulassesrsection, and this knowing
only the frequency and a finite number of spectral data (associatedda¢iceproblem).

11 Future Works and Perspectives

The numerical method (that converges geometrically) proposed indpisrhas been success-
fully introduced for estimating the exact refractive-index, and it caextended in the same way
to more similar or general cases:

« It can be extended to optical fibers of any refractive-index (nots=arily graded-index as
we have seen in this paper).

- It can be extended to arbitrarily shaped optical fibers (the cross seutgmot be neces-
sarily circular, it may be triangular, square, rectangular or even arpjtr

- It can be extended too to optical fibers of graded-index profile, erfg power parameter
a (o may not be an integer as it was taken in this work).

« The same numerical method adopted in this article can be proposed toosmdremore
complicated mathematical or physical problems.

Strictly speaking, much more hard and productive work is required j@pexpected to further
our assessment and understanding of the promising obtained reslik&ili® outlined in this
paper, which will be needed across future works.
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