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Abstract This paper describes a numerical technique for determining the best approximation
of the exact refractive index (of an optical fiber having a circular cross section), allowing a better
transmission of a given information. Mathematically, this objective leads to the resolution of an
inverse eigenvalue problem that consists in reconstructing the refractive index from a prescribed
finite set of eigen data (of the direct problem), knowing only the wavenumber in vacuum (the
frequency). The corresponding direct problem (solved by a finite element method) consists of
computing guided modes that propagate, under weak guidance assumptions, in a graded-index
optical fiber with a circular-shaped section. The numerical resolution ofthe inverse problem is
due to a special Algorithm for solving a convex optimization problem usingLagrangemultipli-
ers. Examples and numerical illustrations, related to the inverse problem,show the robustness
and the higher efficiency obtained by our suggested method that converges geometrically to the
exact refractive index.

1 Introduction

Optical fibers are one of the perfect physical environment and important scientific achievements
in the last century [1] and they are certainly of considerable interest because they represent the
best current way to transport very high debits of digital information. The needs in this area are
likely to increase very strongly in the near future [18, 57]. It is by this means that circulate
over 80% of global long distance traffic information. The idea of using optical fibers to transmit
information [57] appeared in the early 60s with the appearance of Laser, and the advantages of
transmitting information [18, 46, 57] by optical fibers are multiple compared to other commu-
nication media [25] (one pair of optical fibers carries a rate of 10 times stronger than 250 pairs
of copper wires). Thanks to comfort and energy saving provided byoptical fibers, these last
are perfect for medical applications, the lighting field, the road transport system and for various
military applications requiring a high quality equipment.
In this paper, we limit ourselves on optical fibers of famous profile classso-called power-law-
profiles (graded-index profiles) [14, 18, 21, 39, 42, 46, 57, 61].
The aim of this work is to exhibit a numerical method (based on a constrained convex optimiza-
tion procedure [8, 10, 17, 47, 60]) to determine a suitable approximation of the refractive index
(of the considered optical fiber), which allows a better transmission of a given information.
Consequently, we are interested in solving an inverse eigenvalue problem[3, 4, 5, 11, 12, 26, 40],
of computing guided modes [36, 52] (the direct problem) that propagate under weak guidance
assumptions [15, 16, 18, 36, 42, 46, 52], in an optical fiber with a circular cross section (Figure
1), and a graded refractive index [42] (α-power refractive-index (Figure 2), (Figure 3) and (Fig-
ure 4)) whose radial refractive-index profilen (which is a real function of two real variablesx
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andy) has the form [15, 46, 48, 57]:
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, (δ ≪ 1, δ is the normalized difference index),

1≤ α is the profile parameter, it determines the shape of the core’s profile,

r is the radial component anda is the characteristic radius of the fiber’s core.

Figure 1: An optical fiber (with a circular cross section)

Figure 2: Potential of a graded-index profile for different exponentsα (α ≥ 1)



A Numerical Technique to Solve an Inverse Problem in OpticalFibers 169

Figure 3: A parabolic index profile (α = 2)

Figure 4: A triangular (linear) index profile (α = 1)

1.1 Brief overview of previous works [49]

Several publications have appeared in recent years documenting the measurement of dielectric
constant (relative permittivity) or the reconstruction of refractive indices, for example:

• Numerical reconstruction of the variable refractive index of multi-layered circular weakly
guiding dielectric waveguides using the measurements of the propagation constants of their
eigenwaves (see [29]).

• Universal numerical methods for reconstruction of refractive indices of dielectric objects
designed for coefficient inverse diffraction problems (see [6]).

• The methods for determination of the optical characteristics of dielectric waveguides pro-
posed for waveguides of some special forms (see [54], [55]).

• Approximation W.K.B. used in planar waveguides for the determination ofindex profile
(see [37]).

• The waveguide spectroscopy widely used for planar (one-dimensional) multi-layered waveg-
uides (see [31]).

• This last method was extended to the two-dimensional problem for the waveguide with
the piecewise-constant refractive index and an arbitrary cross-sectional boundary (see [28],
[30]).
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• A method is described for determining unambiguously, from the far-fieldpattern of sin-
gle mode fibers, the core diameter and the refractive-index difference between core and
cladding (see [20]).

• A simple and rapid method is described for determining the refractive-index profile of an
optical fiber by the observation of the near-field intensity distribution (see [53]).

The refractive-index distribution in an optical fiber is fundamental in determining its transmis-
sion properties, it is usually inferred from preform measurements.
The objective of this paper is to reconstruct the refractive-index (as afunction of the radial com-
ponent) of an optical fiber having a graded-index profile and a circularcross section.
In this paper, we limit ourselves to stating the results obtained through the numerical process
adopted in this work with a discussion and a lot of accompanied commentaryand remarks.

2 The Mathematical Model

Computing guided modes in optical fibers under weak guidance assumptions is equivalent to
solve the following eigenvalue problem(Π) posed in the whole planeR2 [15, 16, 48]:

(Π)
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∆ is the Laplacian operator in 2 dimensions,

λ is an eingenvalue of the direct problem(Π),

k is the wavenumber in vacuum (frequency), it is assumed to quite large,

V 2 = k2(n2
+ − n2

∞), V is the normalized frequency,
u is a transverse component of the electromagnetic field.

We note that solving the direct problem(Π), using a finite element method [23, 35, 43, 51],
consists in calculating the couples(λ, u), but the finite element approximation is not however
suitable for solving the problem(Π) because of the unboundedness of the domainR2, so, we
first reduce(Π) to a bounded domain as follows [15, 48]:
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λR is an eigenvalue of the direct problem(Π′),

ΩR =
{

(x, y) ∈ R2 / x2 + y2 < R2
}

, SR =
{

(x, y) ∈ R2 / x2 + y2 = R2
}

,

SR is the artificial boundary, it encloses the optical fibre’s core defined by :
Ωa =

{

(x, y) ∈ R2 / x2 + y2 < a2
}

, thusR must satisfy: 0< a < R,

γ1, γ2 ∈ R, γ1 andγ2 cannot vanish at the same time,

g is a real function defined onSR,
∂uR

∂r
denotes the exterior normal derivative ofuR alongSR.

3 The Inverse Eigenvalue Problem

The inverse eigenvalue problem to be solved (in this work) is:

(Π′′)
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knowing only:

(i) The frequencyk.

(ii) A finite number of spectral data(λ, u) (associated to a certain boundary condition: Dirich-
let, Neumann, Robin,...) of the direct problem(Π′).

Communication implies transfer of information from one point to another. When it is necessary
to transmit information, such as speech, images, or data, over a distance, one generally uses the
concept of carrier wave communication. In such a system, the information to be sent modulates
an electromagnetic wave such as a radio wave, microwave, or light wave, which acts as a carrier
[21].
In this work, the given information which circulates in the optical fiber is represented by the
knowledge of the spectral data and the frequencyk.
The determination of the functionq, in the previous problem(Π′′), leads (from (2.1)) to the
determination of the exact refractive indexn (or at least a numerical approximation of it) which
is the objective of this work.

Remark 3.1.In this work, we study the case:α ∈ N∗.

4 Constraints’s Set and Approximation’s Functions

Let m ∈ N∗, such that:m− 1 = α.

Definition 4.1.We define the feasible set(set of constraints) C by
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moreover, we set

N (r) = n2(r) = n2
∞ −

1
k2 .q(r) (4.3)

Mc(r) = n2
∞ −

1
k2 .pc(r) (4.4)

for all r ≥ 0 and for allc = (c0, c1, ..., cm−1)
t
∈ C.

The required radial approximationpc(r) (4.2) is represented (on the interval[0, a]) as a finite
combination of appropriately chosen basis functions: 1, r, r2, ..., rm−1. We determine the coeffi-
cients:c0, c1, c2, ..., cm−1 (of the combination) by numerical simulations. This is the perspective
of the present paper.

Remark 4.3.From(2.1), it follows thatq is a continuous and bounded piecewise radially sym-
metrical polynomial expression.

Remark 4.4.From (4.2), our approximationpc is also a continuous and bounded piecewise
radially symmetrical polynomial expression, for allc ∈ C.

Corollary 4.5. By construction, for allc ∈ C: the functionpc defined in(4.2) is bounded.

5 Objective of this Work

Our approach would be to solve numerically the inverse eigenvalue problem (Π′′), which means
the reconstruction of a good approximation of the radial functionq(r) (or equivalently (from
(4.3)), a good approximation of the radial functionN (r)).
So, we want to prove that:∃ξ = (ξ0, ξ1, ..., ξm−1)

t
∈ C such that:

Mξ(r) (Pξ(r) respectively) is the best approximation ofN (r) (q(r) respectively)(in ‖.‖∞ norm)
(a precise error estimation in the infinity norm).
In other words, our goal is to determine the componentsξ0, ξ1, ..., ξm−1 of ξ ∈ C, such that

sup
r∈[0,a]

|Mξ(r) −N (r)| = sup
r≥0
|Mξ(r)−N (r)|

= ‖Mξ(r)−N (r)‖
∞

(5.1)

is small enough (it tends to 0)
or equivalently

sup
r∈[0,a]

|pξ(r)− q(r)| = sup
r≥0
|pξ(r)− q(r)|

= ‖pξ(r)− q(r)‖
∞

(5.2)

is small enough (it tends to 0).

6 Useful Main Tools

The following propositions will be useful

Proposition 6.1.The functionφ defined by:φ : Rm −→ R, such that

φ(c) =
m−1
∑

j=0

cja
j , ∀c = (c0, c1, ..., cm−1)

t ∈ R
m

is obviously an affine function onRm.

Corollary 6.2. From (4.1), we obtain that

C =
{

c = (c0, c1, ..., cm−1)
t
∈ Rm/ φ(c) = 0

}

.

Proposition 6.3.C is a (non empty) convex set in the normed spaceRm.

Proof. In fact, the convexity ofC is due to the affinity of the functionφ.
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7 Notations and Basic Terminology

Let R ∈ R satisfying: 0< a < R, and letl ∈ N∗.
In what follows, for eachc = (c0, c1, ..., cm−1)

t
∈ C, we denote:

c0 =
(

c0
0, c

0
1, ..., c

0
m−1

)t
∈ R

m as an arbitrary starting vector ofc,
λ1 (c) , λ2 (c) , ..., λl(c): thel first corresponding eigenvalues (of the direct problem(Π′)) to the
potentialpc(r),
λ1, λ2, ..., λl: the l first corresponding eigenvalues (of the direct problem(Π′)) to the potential
q(r),

Λ (c) = (λ1 (c) , λ2 (c) , ..., λl (c))
t
∈ Rl,

Λ = (λ1, λ2, ..., λl)
t
∈ Rl.

The parametersξ0, ξ1, ..., ξm−1 (cited in Section 5) will be evaluated by minimizing the quan-
tity:

‖Λ− Λ (c)‖
2
2

on the convex setC.
For the sake of this purpose,ξ = (ξ0, ξ1, ..., ξm−1)t will be computed by solving the following
optimization problem [8, 13, 22] (7.1) (that will be solved iteratively), posed in the convex setC:

ci = argmin
c∈C

fi(c), ∀i ∈ N
∗ (7.1)

such that: ∀c ∈ Rm, ∀i ∈ N∗:
fi(c) = ‖Λ− Li(c)‖

2
2 (7.2)

where‖.‖2 denotes the Euclidean norm, and:

Li(c) = Λ
(

ci−1)+ Γi.
(

c− ci−1)

(∀i ∈ N∗: Λ is linearized by the linear partLi(c) of its Taylor expansion atci−1)

ci−1 =
(

ci−1
0 , ci−1

1 , ..., ci−1
m−1

)t

∈ R
m

ci =
(

ci0, c
i
1, ..., c

i
m−1

)t
∈ R

m

andΓi is the reall ×m Jacobian matrix defined by

Γi =

(

∂λp

∂cj

(

ci−1)
)

1≤p≤l
0≤j≤m−1

(Γi is called ”the linear component of the linearizationLi(c)”).

In an actual computation, at each stepi the components(cij)0≤j≤m−1 of ci are computed se-
quentially from the components ofci−1 (see (7.1)).
Therefore it is advantageous, in looking at the right side of (7.1), to use those components of
ci−1 which are already known, instead of the corresponding components ofci.
In practice, this means that the components ofci immediately replace those ofci−1 in memory.
This not only saves memory, but simplifies the program [38].
The previous considerations lead to an algorithm (Algorithm 8.1 below) that describes a proce-
dure to solve (5.1) and thus (5.2) and therefore handling the resolutionof the inverse problem
(Π′′).

Remark 7.1.Let 1≤ p ≤ l, 0≤ j ≤ m− 1 andi ∈ N∗.
We note that it is a challenge to apply the following definition

∂λp

∂cj

(

ci−1) = lim
h→0

λp(c
i−1
0 , ..., ci−1

j + h, ..., ci−1
m−1)− λp(c

i−1
0 , ..., ci−1

j , ..., ci−1
m−1)

h
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on a computer, because its finite word length causes the numerator to fluctuate between 0 and
round-off error as the denominator approaches zero [33].
A simple and effective solution is to makeh small but not zero [33]:

∂λp

∂cj

(

ci−1) ≈
δλp

δcj

(

ci−1)

therefore

∂λp

∂cj

(

ci−1) ≈
λp

(

ci−1
0 , ..., ci−1

j + h, ..., ci−1
m−1

)

− λp

(

ci−1
0 , ..., ci−1

j , ..., ci−1
m−1

)

h
(7.3)

(7.3) known as the ”forward-difference rule”, is not the most accurate approximation, but it will
suffice [33].

Proposition 7.2.For eachi ∈ N
∗:

The cost functionfi defined in(7.2) is a twice differentiable convex function onRm (and thus
on the convex setC).

Proof. In fact, for eachi ∈ N∗ and for eachc ∈ Rm, we have

fi(c) = ‖Γic‖
2
2 − 2. < Γic,Λ− Λ(ci−1) + Γic

i−1 > +
∥

∥Λ− Λ(ci−1) + Γic
i−1

∥

∥

2
2

= ‖Γic‖
2
2 − 2.ctΓt

i.(Λ− Λ(ci−1) + Γic
i−1) +

∥

∥Λ− Λ(ci−1) + Γic
i−1

∥

∥

2
2

(where< ., . > denotes the inner product defined on the spaceR
l)

thus, we can easily show that: lim
h→0

fi(c+ h)− fi(c)−∇fi(c).h

‖h‖2
= 0, where

∇fi(c) = 2.Γt
i.Γi.c− 2.Γt

i.(Λ− Λ(ci−1) + Γic
i−1)

= 2.Γt
i.(Γi.c− Γi.c

i−1 + Λ(ci−1)− Λ).

Since∇fi : Rm −→ Rm is an affine function, then, it is differentiable [24, 32, 59] on Rm and
we have

∇2fi(c) = 2.Γt
i.Γi, ∀c ∈ Rm.

Otherwise:∀c ∈ Rm, ∀c
′

∈ Rm, ∀η ∈ [0,1], we have
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2

2

=
∥
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′
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=
∥
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∥η.(Λ− Λ(ci−1) + Γi.c
i−1 − Γi.c) + (1− η).(Λ− Λ(ci−1) + Γi.c
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′
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2
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∥
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∥η.(Λ− Li(c)) + (1− η).(Λ− Li(c
′

))
∥
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2

but, since the functiong : Rm −→ R+ defined by

g(x) = ‖x‖2
2 , ∀x ∈ Rm

is convex (it is even strongly convex [2, 34, 44]) on Rm, it follows

fi(η.c+ (1− η).c
′

) ≤ η. ‖Λ− Li(c)‖
2
2 + (1− η).

∥

∥

∥Λ− Li(c
′

)
∥

∥

∥

2

2
= η.fi(c) + (1− η).fi(c

′

)

hence, the functionfi is convex onRm and consequently onC.

FromProposition 7.2., we deduce that (7.1) is a constrained convex optimization problem.
Otherwise, the following well known Theorem (which will be useful for thepresent work) sum-
marizes necessary and sufficient conditions for convex optimization
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Theorem 7.3.([47], page 57)
LetU be an open convex set. Iff is a differentiable convex function onU , φ1, φ2, ..., φp (p ∈ N∗)
are affine functions onU , and

D =

{

c ∈ U : φi(c) = 0, ∀i = 1,2, ..., p
}

then:

(c∗ is a global minimum of f onD)⇐⇒ ∃(µi)1≤i≤p∇f(c∗) +

p
∑

i=1

µi∇φi(c
∗) = 0.

µ1, µ2, ..., µp ∈ R are called ”Lagrange multipliers”[8, 17, 56, 58, 60].

The method ofLagrangemultipliers is the usual elegant approach taught in multivariable cal-
culus courses for locating the extrema of a function of several variables subject to one or more
constraints [41].

8 The Algorithm of Adopted Method

In this section, we will describe an optimization-based algorithm for solving the inverse problem
previously considered. Here is the description of our method’s genericAlgorithm

Algorithm 8.1

Let α, m andl be fixed numbers (previously defined in Section 1, Section 4 and Section 7(re-
spectively)).
Chooseǫ > 0 (a tolerance error) small enough (this will ensure the convergence of our Algo-
rithm).
Pick an arbitrary starting vectorc0 ∈ R

m of c ∈ C, wherec0 =
(

c0
0, c

0
1, ..., c

0
m−1

)t
and

c = (c0, c1, ..., cm−1)
t.

The beginning of the Algorithm. Iterate until convergence

• Step 1: i = 1: (Initialization) .

Applying Theorem 7.3.andProposition 7.2., we conclude that

c1 = argmin
c∈C

f1(c)⇐⇒ ∃µ
1 ∈ R : ∇f1(c

1) + µ1∇φ(c1) = 0.

• Computeµ1 and the components ofc1.

• Step i: i ≥ 2.

FromTheorem 7.3.andProposition 7.2., it follows

ci = argmin
c∈C

fi(c)⇐⇒ ∃µ
i ∈ R : ∇fi(ci) + µi∇φ(ci) = 0.

• Computeµi and the components ofci.

• While: ‖Mci −N‖∞ > ǫ, do: update:i←− i+ 1.

• Last Step: (The stopping criterion)
Repeat the last minimization process (stepi), until we get:
∃i0 ≥ 2 : ci0 ∈ C such that

‖Mci0 −N‖∞ =
1
k2 . ‖pci0 − q‖∞ ≤ ǫ (henceforth, we set:ξ = ci0)

(the convergence is satisfied).

Stop (The end of the Algorithm).

Remark 8.1.In the previous Algorithm, we note that at each stepi (1≤ i ≤ i0): µi 6= 0 andµi

can have either sign(as we will see in the next section(Numerical results and discussion)).
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8.1 Properties of Algorithm 8.1

It is striking to remark thatAlgorithm 8.1 satisfies some basic properties

• No calculation of second derivatives is required, only the gradient of the cost function
defined in (7.2) and the gradient of the functionφ defined inProposition 6.1.are calculated
at each iteration.

• Only one vector (µi and the components ofci) to be stored at each iterationi ∈ N
∗, contrary

to other methods (that need, for example, to store all the elements of the Hessian matrix).

• Algorithm 8.1 is attractive for its very cheap computational cost.

• Numerical errors which are generated during the solution of discretizedequations are small.

• Correctness and convergence: The numerical solution tends to the exact solution from one
step to the next one.

• Finiteness and effectiveness: This algorithm always finishes after a few steps (small number
of steps).

Remark 8.2.The properties mentioned above will be justified in the next section(Numerical
results and discussion).

Remark 8.3.At each stepi ≥ 1 in Algorithm 8.1 (which is of order 1, since it uses the
gradient of the cost function), the use ofTheorem 7.3. amounts to solving the following
non-homogeneous linear system(Πi

l,m) of (m + 1) equations in(m + 1) unknowns(reals):
ci0, c

i
1, ..., c

i
m−1 andµi:
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2.
l

∑

p=1



λp − λp

(

ci−1)−
m−1
∑

j=0

∂λp

∂cj
(ci−1).(cij − ci−1

j )



 .

(

−
∂λp

∂c0
(ci−1)

)

+ µi = 0 .... (1st equation)

2.
l

∑

p=1



λp − λp

(

ci−1)−
m−1
∑

j=0

∂λp

∂cj
(ci−1).(cij − ci−1

j )



 .

(

−
∂λp

∂c1
(ci−1)

)

+ µia = 0 .... (2nd equation)
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2.
l

∑

p=1



λp − λp

(

ci−1)−
m−1
∑

j=0

∂λp

∂cj
(ci−1).(cij − ci−1

j )



 .

(

−
∂λp

∂cm−1
(ci−1)

)

+ µiam−1 = 0 .... (mth equation)

ci0 + aci1 + a2ci2 + ...+ am−1cim−1 = 0 .... ((m+ 1)th equation)

For better understanding, it was found that for each iterationi ≥ 1, the matrixAi associated
to the linear system(Πi

l,m) is invertible(since we can rewrite(Πi
l,m) in the form: Ai.xi = bi,

wherexi=(ci0, c
i
1, ..., c

i
m−1, µ

i)t), thus proving the existence and the uniqueness of the minimum
of the cost functionfi. Fortunately, the system(Πi

l,m) is often easy to solve. Its resolution is
done using MAPLE [9, 19, 27, 45].

9 Numerical Results and Discussion

In order to construct a best approximation of the exact refraction index n(r), we usedAlgorithm
8.1. Three realized numerical tests have been made by considering the problem (Π′) with the
homogeneous Dirichlet condition (for:γ2 = 0 andg = 0).
In Figures:
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Figure 5 and Figure 6 (1st example),
Figure 9 and Figure 10 (2nd example),
Figure 15 and Figure 16 (3rd example),
we plot the curves of the true functionsN (r) andq(r), and their approximationsMξ(r) and
pξ(r) (respectively) in terms ofr, and in Figures:
Figure 7 and Figure 8 (1st example),
Figure 11, Figure 12, Figure 13 and Figure 14 (2nd example),
Figure 17 and Figure 18 (3rd example),
we present the variations of

∣

∣λp − λp(ci)
∣

∣, (1≤ p ≤ l) in terms of the number of iterationsi. We
also note that in Table 1, Table 2 and Table 3, the difference

∣

∣λp − λp(ci)
∣

∣ converges to 0 when
ci converges toξ. This proves that the approximate eigenvaluesλp(ci) converge to the exact
eigenvaluesλp whenci converges toξ.
In Figures: Figure 19, Figure 20 and Figure 21, we plot (forα = 1, α = 2 andα = 3 respec-
tively) the curves representing the true functionq and its approximationpξ, and this in cartesian
coordinates, so: z = q(x, y) andz = pξ(x, y) where: 0≤ r =

√

x2 + y2 ≤ a.
(We note that:q(x, y) = pξ(x, y) = 0, ∀(x, y) ∈ R2: r =

√

x2 + y2 ≥ a).
In these Figures: The Blue surface represents the true functionq whereas its approximation func-
tion pξ is represented in red (lines), the three Figures demonstrate the potential of our adopted
technique, since we see that the curves ofq andpξ are almost identical in the three examples
(cited in this section).
All the curves, presented in what follows, prove a good accuracy (ofthe numerical adopted
method in this work), and the rapid convergence of our results to the exact solution. In fact, we
found that the functionMξ represents a good approximation of the functionN = n2, which
is none other than the square of the exact refractive indexn. Otherwise, the numerical method
adopted in our work converges geometrically since:

∃s ∈ ]0,1[ , ∃β > 0, ∃j0 ∈ N : ‖Mcj −N‖∞ ≤ β.sj (9.1)

at each iterationj ≥ j0.

9.1 First example: A linear index profile (α = 1)

Required data for Algorithm 8.1: m− 1 = 1, l = 2, ǫ = 3× 10−7.

Opto-geometrical data:
V = 3, k = 18.7602, n+ = 1.5085, n∞ = 1.5, a = 1, R = a+ 20.h, h = 0.04.

Here, in (9.1) we found that:β = 10−1, s = 0.10013 andj0 = 0.

For eachi : 0≤ i ≤ 4, we have:∆i
1 =

∣

∣λ1 − λ1(ci)
∣

∣ and∆i
2 =

∣

∣λ2 − λ2(ci)
∣

∣ .
In this example, we took:

q(r) =

{

−9+ 9r ,0≤ r ≤ a

0 , a ≤ r ≤ R

∀c = (c0, c1)
t ∈ C : pc(r) =

{

c0 + c1r ,0≤ r ≤ a

0 , a ≤ r ≤ R

We deduce from (4.3) and (4.4) that:
n2(r) = N (r) = 2.25− 0.00284.q(r) and Mc(r) = 2.25− 0.00284.pc(r).

After five iterations, we have reached the following result:

‖pξ − q‖
∞

= 0,0001,‖Mξ −N‖∞ = 2.8414× 10−7, ∆4
1 = ∆4

2 = 0.00000,
for ξ = (−8.9999,8.9999)t = c4, and then:

pξ(r) =

{

−8.9999+ 8.9999r ,0≤ r ≤ a

0 , a ≤ r ≤ R
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Figure 5: The curves ofN (r) andMξ(r) for ξ = c4 & α = 1

Figure 6: The curves ofq(r) andpξ(r) for ξ = c4 & α = 1

We summarize the achieved results during the five iterations within Table 1 (where we see
that the accuracy (in the seventh column) isO(10−7) for α = 1):
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Table 1: The running ofAlgorithm 8.1 for α = 1

Iteration Solution Magnitude of the errors

i ci0 ci1 ∆i
1 ∆i

2 ‖pci − q‖∞ ‖Mci −N‖∞

0 1. 0. 4.07298 1.85147 10 2.8414× 10−2

1 −12.524 12.524 1.67031 0.7032 3.524 1.0013× 10−2

2 −9.175 9.175 0.07894 0.03259 0.175 4.9724× 10−4

3 −9.0006 9.0006 0.00031 0.00013 0.0006 1.7048× 10−6

4 −8.9999 8.9999 0.00000 0.00000 0.0001 2.8414× 10−7

Lagrange multiplier Cost function at ci

i µi fi(ci)

0 / /

1 7.2637× 10−3 3.670333

2 −7.0776× 10−3 4.964810

3 7.4367× 10−5 4.407511

4 9.1648× 10−7 4.370587

Figure 7: Variation of
∣

∣λ1 − λ1(ci)
∣

∣ in terms of number of iterationsi

Figure 8: Variation of
∣

∣λ2 − λ2(ci)
∣

∣ in terms of number of iterationsi
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9.2 Second example: A parabolic index profile(α = 2)

Required data for Algorithm 8.1: m− 1 = 2, l = 4, ǫ = 1.5× 10−6.

Opto-geometrical data:
V = 4, k = 25.01356, n+ = 1.5085, n∞ = 1.5, a = 1, R = a+ 20.h, h = 0.04.

Here, in (9.1), we found that:β = 10−1, s = 0.27171 andj0 = 4.

For eachi : 0≤ i ≤ 8, we have:
∆i

1 =
∣

∣λ1 − λ1(ci)
∣

∣ ,∆i
2 =

∣

∣λ2 − λ2(ci)
∣

∣ ,∆i
3 =

∣

∣λ3 − λ3(ci)
∣

∣ ,∆i
4 =

∣

∣λ4 − λ4(ci)
∣

∣ .
In this example, we took:

q(r) =

{

−16+ 16r2 ,0≤ r ≤ a

0 , a ≤ r ≤ R

∀c = (c0, c1, c2)
t ∈ C : pc(r) =

{

c0 + c1r + c2r
2 ,0≤ r ≤ a

0 , a ≤ r ≤ R

We deduce from (4.3) and (4.4) that:

n2(r) = N (r) = 2.25− 0.001598.q(r) and Mc(r) = 2.25− 0.001598.pc(r).

After nine iterations, we have reached the following result:

‖pξ − q‖
∞

= 7.7222× 10−4, ‖Mξ −N‖∞ = 1.2342× 10−6,

∆8
1 = 0.00000,∆8

2 = 0.000177,∆8
3 = 0.00001,∆8

4 = 0.00027,

for ξ = (−16.002,0.0081568,15.994)t = c8, and then:

pξ(r) =

{

−16.002+ 0.0081568r + 15.994r2 ,0≤ r ≤ a

0 , a ≤ r ≤ R

Figure 9: The curves ofN (r) andMξ(r) for ξ = c8 & α = 2
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Figure 10: The curves ofq(r) andpξ(r) for ξ = c8 & α = 2

We summarize the achieved results during the nine iterations within Table 2 (where we see
that the accuracy (in the eleventh column) isO(10−6) for α = 2):

Table 2: The running ofAlgorithm 8.1 for α = 2

Iteration Solution

i ci0 ci1 ci2

0 1. 0. 0.

1 26.766 −157.15 130.38

2 −1.5098 −51.149 52.659

3 −9.508 −22.411 31.919

4 −16.451 1.1768 15.274

5 −16.003 0.01092 15.992

6 −16.002 0.008114 15.994

7 −16.002 0.008208 15.994

8 −16.002 0.0081568 15.994
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Remaining of Table 2

Magnitude of the errors

i ∆i
1 ∆i

2 ∆i
3 ∆i

4 ‖pci − q‖∞ ‖Mci −N‖∞

0 10.58557 5.69479 13.40442 15.65374 17 2.7171× 10−2

1 18.84316 7.43456 5.434838 11.90609 11.212 1.792× 10−2

2 0.27665 1.5431 0.50241 0.21555 3.3516 5.3567× 10−3

3 0.35756 0.59013 0.27649 0.51484 1.3956 2.2305× 10−3

4 0.10751 0.021264 0.03999 0.00209 2.588× 10−2 4.1363× 10−5

5 0.00026 0.000282 0.00014 0.00022 7.2645× 10−4 1.1611× 10−6

6 0.00002 0.000199 0.00002 0.00025 7.4321× 10−4 1.1878× 10−6

7 0.00002 0.000151 0.00000 0.00029 8.0714× 10−4 1.29× 10−6

8 0.00000 0.000177 0.00001 0.00027 7.7222× 10−4 1.2342× 10−6

Lagrange multiplier Cost function at ci

i µi fi(ci)

0 / /

1 1.1603× 10−1 14.48687× 10−1

2 1.6458× 10−1 16.15612× 10−1

3 1.0011× 10−1 9.848410× 10−1

4 1.2859× 10−2 6.393739× 10−2

5 1.4066× 10−4 7.856362× 10−4

6 −3.6208× 10−5 3.2723× 10−4

7 −3.708× 10−5 3.244157× 10−4

8 −3.6781× 10−5 3.232053× 10−4

Figure 11: Variation of
∣

∣λ1 − λ1(ci)
∣

∣ in terms of number of iterationsi
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Figure 12: Variation of
∣

∣λ2 − λ2(ci)
∣

∣ in terms of number of iterationsi

Figure 13: Variation of
∣

∣λ3 − λ3(ci)
∣

∣ in terms of number of iterationsi

Figure 14: Variation of
∣

∣λ4 − λ4(ci)
∣

∣ in terms of number of iterationsi
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9.3 Third example: A cubic index profile (α = 3)

Required data for Algorithm 8.1: m− 1 = 3, l = 2, ǫ = 4.5× 10−5.

Opto-geometrical data:
V = 3, k = 18.7602, n+ = 1.5085, n∞ = 1.5, a = 1, R = a+ 20.h, h = 0.04.

Here, in (9.1) we found that:β = 10−1, s = 0.28414 andj0 = 3.

For eachi : 0≤ i ≤ 5, we have:∆i
1 =

∣

∣λ1 − λ1(ci)
∣

∣ ,∆i
2 =

∣

∣λ2 − λ2(ci)
∣

∣ .
In this example, we took:

q(r) =

{

−9+ 9r3 ,0≤ r ≤ a

0 , a ≤ r ≤ R

∀c = (c0, c1, c2, c3)
t ∈ C : pc(r) =

{

c0 + c1r + c2r
2 + c3r

3 ,0≤ r ≤ a

0 , a ≤ r ≤ R

We deduce from (4.3) and (4.4) that:

n2(r) = N (r) = 2.25− 0.00284.q(r) and Mc(r) = 2.25− 0.00284.pc(r).

After six iterations, we have reached the following result:

‖pξ − q‖
∞

= 0.015572,‖Mξ −N‖∞ = 4.4246× 10−5,
∆5

1 = 0.00000,∆5
2 = 0.00000,

for ξ = (−9.0514,0.23249,−0.23249,9.0514)t = c5, and then:

pξ(r) =

{

−9.0515+ 0.23249r − 0.23249r2 + 9.0515r3 ,0≤ r ≤ a

0 , a ≤ r ≤ R

Figure 15: The curves ofN (r) andMξ(r) for ξ = c5 & α = 3
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Figure 16: The curves ofq(r) andpξ(r) for ξ = c5 & α = 3

We summarize the achieved results during the six iterations within Table 3 (where we see
that the accuracy (in the tenth column) isO(10−5) for α = 3):

Table 3: The running ofAlgorithm 8.1 for α = 3

Iteration Solution
i ci0 ci1 ci2 ci3

0 1. 0. 0. 0.
1 −5.4627 −25.902 25.902 5.4627
2 −8.1109 −3.8288 3.8288 8.1109
3 −9.0693 0.29702 −0.29702 9.0693
4 −9.0522 0.23516 −0.23516 9.0522
5 −9.0515 0.23249 −0.23249 9.0515

Magnitude of the errors

i ∆i
1 ∆i

2 ‖pci − q‖∞ ‖Mci −N‖∞

0 6.47533 3.60217 10 2.8414× 10−2

1 2.17024 1.962653 89.852 2.553× 10−2

2 0.04486 0.11331 2.9397 8.3527× 10−3

3 0.00144 0.00052 0.017306 4.9173× 10−5

4 0.00003 0.00004 0.01567 4.4524× 10−5

5 0.00000 0.00000 0.015572 4.4246× 10−5
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Remaining of Table 3

Lagrange multiplier Cost function at ci

i µi fi(ci)

0 / /
1 4.8× 10−8 4.599891× 10−5

2 4.885× 10−8 2.095131× 10−5

3 −7.4582× 10−8 3.247850× 10−5

4 −1.9042× 10−8 4.232537× 10−6

5 −4.5234× 10−8 9.852650× 10−7

Figure 17: Variation of
∣

∣λ1 − λ1(ci)
∣

∣ in terms of number of iterationsi

Figure 18: Variation of
∣

∣λ2 − λ2(ci)
∣

∣ in terms of number of iterationsi
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Figure 19: The curves:z = q(x, y) & z = pξ(x, y) (where:
√

x2 + y2 ≤ a)
for ξ = c4 & α = 1 (First example)

Figure 20: The curves:z = q(x, y) & z = pξ(x, y) (where:
√

x2 + y2 ≤ a)
for ξ = c8 & α = 2 (Second example)

Figure 21: The curves:z = q(x, y) & z = pξ(x, y) (where:
√

x2 + y2 ≤ a)
for ξ = c5 & α = 3 (Third example)
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10 Conclusion

In conclusion, this paper deals with a special inverse eigenvalue problemsolved by a finite Al-
gorithm.
In fact, in this work, we aimed to the development of a numerical method (easy to implement) in
order to solve an inverse eigenvalue problem of computing guided modesin graded-index optical
fibers (direct problem). This last was solved by a finite element method.
The numerical reconstruction of the exact refractive-index was oneof our ultimate goals in this
paper.
We have proposed a fast algorithm to accomplish this objective, then we have synthesized ob-
tained numerical results usingLagrangemultipliers and a constrained convex optimization (min-
imization) method to solve the inverse eigenvalue problem mentioned above.
Numerical results obtained in this work, show that the reconstructed refractive-index agrees with
the true refractive-index (with relatively high accuracy), proving the effectiveness, computational
efficiency and good accuracy of our approach.
During the numerical resolution of each linear system (obtained from the minimization process),
it was found that its associated matrix is invertible proving the existence and the uniqueness of
this minimum.
In the other hand, it was also found, that the obtained extremum is a globalminimum (since all
the used domains and functions are convex). Thus, proving the existence and the uniqueness of
the sought refractive-index.
We note here that any information on specific values of eigenfunctions (of the direct problem)
was not required.
The interest of the work realized in this paper is to determine a perfect approximation of the
exact refractive-index profile of an optical fiber having a circular cross section, and this knowing
only the frequency and a finite number of spectral data (associated to thedirect problem).

11 Future Works and Perspectives

The numerical method (that converges geometrically) proposed in this paper has been success-
fully introduced for estimating the exact refractive-index, and it can beextended in the same way
to more similar or general cases:

• It can be extended to optical fibers of any refractive-index (not necessarily graded-index as
we have seen in this paper).

• It can be extended to arbitrarily shaped optical fibers (the cross sectionmay not be neces-
sarily circular, it may be triangular, square, rectangular or even arbitrary).

• It can be extended too to optical fibers of graded-index profile, but for any power parameter
α (α may not be an integer as it was taken in this work).

• The same numerical method adopted in this article can be proposed to solveother more
complicated mathematical or physical problems.

Strictly speaking, much more hard and productive work is required, and is expected to further
our assessment and understanding of the promising obtained results and skills outlined in this
paper, which will be needed across future works.
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