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Abstract. Let G = (V, E) be a simple graph. A subset D of V is called injective dominating
set (Inj-dominating set) if for every vertex v € V — D there exists a vertex v € D such that
IT(w,v)] > 1, where |I'(u,v)| is the number of common neighbors between the vertices v and
v. The minimum cardinality of such dominating set denoted by ~;,(G) and is called injective
domination number (Inj-domination number) of G. In this paper, we introduce the injective
domination of a graph G and analogous to that, we define the injective independence number
(Inj-independence number) S;,(G) and injective domatic number (Inj-domatic number) d;,, (G).
Bounds and some interesting results are established.

1 Introduction

By a graph we mean a finite, undirected with no loops and multiple edges. In general, we use
(X)) to denote the subgraph induced by the set of vertices X and N (v), N[v] denote the open and
closed neighborhood of a vertex v, respectively. The distance between two vertices u and v in
G is the number of edges in a shortest path connecting them, this is also known as the geodesic
distance. The eccentricity of a vertex v is the greatest geodesic distance between v and any other
vertex and denoted by e(v).
A set D of vertices in a graph G is a dominating set if every vertex in V' — D is adjacent to some
vertex in D. The domination number (G) is the minimum cardinality of a dominating set of
G. We denote to the smallest integer greater than or equal to « by [z] and the greatest integer
less than or equal to = by |z]. A strongly regular graph with parameters (n, k, A, ) is a graph
with n vertices such that the number of common neighbors of two vertices « and v is k, A or
according to whether « and v are equal, adjacent or non-adjacent, respectively. When A = 0
the strongly regular graph is called strongly regular graph with no triangles (SRNT graph). A
strongly regular graph G is called primitive if G' and G are connected.

For terminology and notations not specifically defined here we refer the reader to [5]. For
more details about domination number and neighborhood number and their related parameters,
we refer to [3], [4].

The common neighborhood domination in graph has introduced in [2]. A subset D of V' is
called common neighborhood dominating set (CN-dominating set) if for every vertex v € V — D
there exists a vertex u € D such that uv € E(G) and |T'(u,v)| > 1, where |T'(u,v)]| is the
number of common neighborhood between the vertices u and v. The minimum cardinality of
such dominating set denoted by 7., (G) and is called common neighborhood domination number
(CN-domination number) of G. The common neighborhood (CN-neighborhood) of a vertex u €
V(G) denoted by N, (u) is defined as Ny, (u) = {v € V(G) : wv € E(G) and |[T'(u,v)| > 1}.

The common neighborhood graph (congraph) of G, denoted by con(G), is the graph with the
vertex set vy, v, ..., vp, in which two vertices are adjacent if and only if they have at least one
common neighbor in the graph G [1].

In this paper, we introduce the concept of injective domination in graphs. In ordinary dom-
ination between vertices is enough for a vertex to dominate another in practice. If the persons
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have common friend then it may result in friendship. Human beings have a tendency to move
with others when they have common friends.

2 Injective Dominating Sets

In defence and domination problem in some situations there should not be direct contact between
two individuals but can be linked by a third person this motivated us to introduced the concept
of injective domination.

Definition 2.1 ([1]). Let G be simple graph with vertex set V(G) = {vi,v2,...,v,}. Fori # j,
the common neighborhood of the vertices v; and v;, denoted by I'(v;, v;), is the set of vertices,
different from v; and v; , which are adjacent to both v; and v;.

Definition 2.2. Let G = (V, E) be a graph. A subset D of V is called injective dominating set
(Inj-dominating set) if for every vertex v € V either v € D or there exists a vertex u € D such
that |I'(w,v)| > 1. The minimum cardinality of Inj-dominating set of G denoted by ~;,(G) and
called injective domination number (Inj-domination number) of G.

For example consider a graph G in Figure 1. Then {2,7} is a minimum dominating set,
{2,3,4,5,6} is a minimum CN-dominating set and {1} is a minimum injective dominating set
of G. Thus v(G) = 2, yen(G) = 5 and v;,, (G) = 1.

1

Figure 1. Graph with v;,(G) =1

Obviously, for any graph G, the vertex set V(G) is an Inj-dominating set, that means any graph
G has an Inj-dominating set and hence Inj-domination number. An injective dominating set D is
said to be a minimal Inj-dominating set if no proper subset of D is an Inj-dominating set. Clearly
each minimum Inj-dominating set is minimal but the converse is not true in general, for example
let G be a graph as in Figure 1. Then {2,3} is a minimal Inj-dominating set but not minimum
Inj-dominating set.

Let w € V. The Inj-neighborhood of u denoted by N;,(u) is defined as N;,(u) = {v €
V(G) : [I'(u,v)| > 1}. The cardinality of N;,(u) is called the injective degree of the ver-
tex w and denoted by deg;,(u) in G, and Ny, [u] = Ny, (u) U {u}. The maximum and mini-
mum injective degree of a vertex in G are denoted respectively by A;,(G) and §;,(G). That
is Ain(G) = maxyey [Nin(u)l, 6in(G) = mingey |Nin(u)|. The injective complement of G
denoted by G is the graph with same vertex set V(@) and any two vertices v and v in [€h
are adjacent if and only if they are not Inj-adjacent in G. A subset S of V' is called an injective
independent set (Inj-independent set), if for every u € S,v ¢ Ny, (u) for allv € S — {u}. An
injective independent set .S is called maximal if any vertex set properly containing S is not Inj-
independent set, the maximum cardinality of Inj-independent set is denoted by S3;,,, and the lower
Inj-independence number i;,, is the minimum cardinality of the Inj-maximal independent set. As
usual P,, C,, K, and W, are the p-vertex path, cycle, complete, and wheel graph respectively,
K., is the complete bipartite graph on r + m vertices and S, is the star with p vertices.
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Proposition 2.3. Let G = (V, E) be a graph and v € V be such that |T(u,v)| = 0 for all
v € V(G). Then u is in every injective dominating set, such vertices are called injective isolated
vertices.

Proposition 2.4. Let G = (V, E) be strongly regular graph with parameters (n,k, A\, ). Then
vin(G) =1 or 2.

Proposition 2.5. For any graph G, v;n(G) < ven(G)

Proof. From the definition of the CN-dominating set of a graph G. For any graph G any CN-
dominating set D is also Inj-dominating set. Hence 7;,(G) < ven(G). i

We note that the Inj-domination number of a graph G' may be greater than, smaller than or
equal to the domination number of G.

Example 2.6.
(i) Yin(P2) = 257(P2) = 1.
(i) ¥in(Cs) = 2;7(Cs) = 2.
(iii) If G is the Petersen graph, then v, (G) = 2;v(G) = 3.
Proposition 2.7.
(i) For any complete graph K,, where p # 2, v;n(K,) = 1.
(ii) For any wheel graph G = W, v, (G) = 1.
(iii) For any complete bipartite graph K, ,, Yin(Kym) = 2.
(iv) For any graph G, v;,,(K, + G) = 1, where p > 2.

Proposition 2.8. For any graph G with p vertices, 1 < v;,(G) < p.

Proposition 2.9. Let G be graph with p vertices. Then v;,,(G) = p if and only if G is a forest
with A(G) < 1.

Proof. Let G be a forest with A(G) < 1. Then we have two cases.

Case 1. If G is connected, then either G = K or G = K;. Hence, v, (G) = p.

Case 2. If G is disconnected, then G = ny K, U ny Ky, thus v, (G) = p.

Conversely, if v, (G) = p, then all the vertices of G are Inj-isolated, that means G is isomorphic
to K or K, or to the disjoint union of K; and K>, that is G = ny K, U ny K; for some ni,n, €
{0,1,2,...}. Hence, G is a forest with A(G) < 1. i

Proposition 2.10. Let G be a nontrivial connected graph. Then v, (G) = 1 if and only if there
exists a vertex v € V(Q) such that N(v) = N, (v) and e(v) < 2.

Proof. Letv € V(G) be any vertex in G such that N(v) = N, (v) and e(v) < 2. Then for any
vertex u € V(G) — {v} if u is adjacent to v, since N (v) = N, (v), then obvious u € N;,(v). If
u is not adjacent to v, then |I'(u,v)| > 1. Thus for any vertex u € V(G) — {v}, [['(u,v)| > 1.
Hence, v;,(G) = 1.

Conversely, if G is a graph with p vertices and v;,,(G) = 1, then there exist at least one vertex
v € V(G) such that deg;,(v) = p — 1, then any vertex u € V(G) — {v} either contained in a
triangle with v or has distance two from v. Hence, N (v) = N, (v) and e(v) < 2. o

Theorem 2.11 ([6]). For any path P, and any cycle C,, where p > 3, we have,

() =) =[5

Proposition 2.12 ([2]). For any path P, and any cycle C,,
(i) COTL(Pp) = P[%" U PL%J‘
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Cp, ifpisoddandp > 3;
(ii) con(Cp) =< PUP, ifp=4;
Cg U Cg, if p is even.

From the definition of the common neighborhood graph and the Inj-domination in a graph
the following proposition can easily verified.

Proposition 2.13. For any graph G, v, (G) = v(con(Q)).

The proof of the following proposition is straightforward from Theorem 2.11 and Proposition
2.12.

Proposition 2.14. For any cycle C, with odd number of vertices p > 3,

n(C) =6 = [ 5]

Theorem 2.15. For any cycle Cy, with even number of vertices p > 3,

n(Cy) = 2@

Proof. From Proposition 2.13, Theorem 2.11 and Proposition 2.12, if p is even, then ~;,,(C})

o |l

A(Ce) U(Cy)) = 29(C) = 2[2].
Proposition 2.16. For any odd number p > 3,
p+1 p—1
m(P) = ||+ |22
(B = |+ | 2
Proof. From Proposition 2.13, Theorem 2.11 and Proposition 2.12, if p is odd then,
p+1 p—1
Vin(Bp) = y(Pryy U Pg)) = 1(Pop UPss) = | = | 4 | = |.
|
Proposition 2.17. For any even number p > 4,
p
Yin(Pp) =2 [6—‘ .

Proof. From Proposition 2.13, Theorem 2.11 and Proposition 2.12, if p is even then, [§] =
|5] = 5. Hence v (P,) = 2[£]. o

Theorem 2.18. Let G = (V, E) be a graph without Inj-isolated vertices. If D is a minimal
Inj-dominating set, then V. — D is an Inj-dominating set.

Proof. Let D be a minimal Inj-dominating set of G. Suppose V' — D is not Inj-dominating set.
Then there exists a vertex u in D such that u is not Inj-dominated by any vertex in V' — D, that
is |T'(u, v)| = O for any vertex v in V' — D. Since G has no Inj-isolated vertices, then there is at
least one vertex in D — {u} has common neighborhood with u. Thus D — {u} is Inj-dominating
set of G, which contradicts the minimality of the Inj—-dominating set D. Thus every vertex in D
has common neighborhood with at least one vertex in V' — D. Hence V' — D is an Inj-dominating
set. |

Theorem 2.19. Let G be a graph. Then the injective dominating set D is minimal if and only if
for every vertex v € D, one of the following conditions holds

(i) v is Inj-isolated vertex.

(ii) There exists a vertex u in V — D such that Ny, (u) N D = {v}.
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Proof. Suppose D is a minimal Inj-dominating set of G. Then D — {v} is not Inj-dominating
set, then there exists at least one vertex u € (V — D) U {v} is not Inj-dominated by any vertex in
D, so we have two cases.

Case 1. If u € D, then u is Inj-isolated vertex.

Case 2. If u € V — D, then v has common neighborhood with only one vertex v in D, that means
Nin(u)N D = {v}.

Conversely, suppose D is an Inj-dominating set of G and for each vertex v € D one of the two
conditions holds, we want to prove that D is a minimal Inj-dominating set. Suppose that D is
not minimal. Then there is at least one vertex v € D such that D — {v} is an Inj-dominating set.
Thus v has common neighborhood with at least one vertex in D — {v}. Hence, condition (i) is
not hold.

Also, V' — D is an Inj-dominating set, then every vertex in V' — D has common neighborhood
with at least one vertex in D — {v}. Therefore condition (ii) is not hold. Hence, neither condition
(i) nor condition (ii) holds, which is a contradiction. O

Theorem 2.20. A graph G has a unique minimal Inj-dominating set if and only if the set of all
Inj-isolated vertices forms an Inj-dominating set.

Proof. Let G has a unique minimal Inj-dominating set D, and suppose S = {u € V : u is
Inj-isolated vertex}. Then S C D. Now suppose D # S, let v € D — S, since v is not Inj-
isolated vertex, then V' — {v} is an Inj-dominating set. Hence there is a minimal Inj-dominating
set D} C V — {v} and D; # D a contradiction to the fact that G has a unique minimal Inj-
dominating set. Therefore S = D.

Conversely, if the set of all Inj-isolated vertices in G forms an Inj-dominating set, then it is clear
that G has a unique minimal Inj-dominating set. O

Theorem 2.21. For any (p, q)-graph G, v, (G) > p — q.

Proof. Let D be a minimum Inj-dominating set of G. Since every vertex in V' — D has common
neighborhood with at least one vertex of D, then ¢ > |V — D|. Hence, v;,(G) > p — q. O

Theorem 2.22. For any graph G with p vertices, [W] < vin(G). Further, the equality
holds if and only if for every minimum Inj-dominating set D in G the following conditions are

satisfied:
(i) for any vertex v in D, deg;,(v) = Ain(G);
(ii) D is Inj-independent set in G;
(iii) every vertex in V. — D has common neighborhood with exactly one vertex in D.

Proof. Let S be any minimum Inj-dominating set in G. Clearly each vertex in G will Inj-
dominate at most (A;,(G) + 1) vertices, so p = |Nin[S]| < 7in(G)(Ain(G) + 1), hence
#;(G) < 9in(G). Therefore (#;(G)] < Yin(G).

Suppose the given conditions are hold for any minimum Inj-dominating set D in G. Then obvi-
OUSIY '71n(G)Azn(G) + 71n(G) =p. HCHCC, (ﬁl(gﬂ = ’an(G)

Conversely, suppose the equality holds, and suppose that one from the conditions is not satisfied.
Then p < Yin (G)Ain(G) + vin(G), a contradiction. O

Example 2.23. Let G = C,,, where p > 3 and p is odd number. Then the equality in Theorem
2.22 is hold. Since [#;(G)] = [%7 and by Proposition 2.14 we have v;,(G) = [£].

Theorem 2.24. Let G be a graph on p vertices and 6;,(G) > 1. Then v;,,(G) < 5.

Proof. Let D be any minimal Inj-dominating set in G. Then by Theorem 2.18, V' — D is also an
Inj-dominating set in G. Hence, v;,(G) < min{|D|,|V — D|} < p/2. i
Theorem 2.25. For any graph G on p vertices, vin(G) < p — Ain(G)

Proof. Let v be a vertex in G such that deg;, (v) = A;,,(G). Then v has common neighborhood
with | Ny, (v)| = A (G) vertices. Thus, V — Ny, (v) is an Inj-dominating set. Therefore ;, (G) <
|V — N;»(v)]. Hence, 7, (G) < p — Ai (G). o
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Proposition 2.26. For any graph G with diameter less than or equal three and maximum degree
A(G), vin(G) < A(G) + 1.

Proof. Letdiam(G) < 3 and v € V(G) such that deg(v) = A(G). Clearly that, if diam(G) = 1,
then G is a complete graph and the result holds. Suppose diam(G) = 2 or 3. Let V;(G) C V(G)
be the sets of vertices of G which have distance i from v, where i = 1,2,3. Obviously, the set
S = V1(G)U{v} is an Inj-dominating set of G of order A(G)+ 1. Hence, v;,(G) < A(G)+1. O

The Cartesian product G O H of two graphs G and H is a graph with vertex set V(G) x V (H
andedge set E(GOH) = {((u,v), (v,v")) tw=wvand (v',v") € E(H), oru/ =v"and (u,v) €
E(G)}.

V1 (%) U3 V4 Um

U1 uy U3 Ugq Um

Figure 2. P,,1P,

Proposition 2.27. For any graph G = P,,[0Ps, i (G) = 2[ % ].

Proof. Let G = P,,1P,. From Figure 2, it is easy to see that any two adjacent vertices v;, u;
can Inj-dominate all the vertices of distance less than or equal two from v; or u;, then ~;, (G) <
2[%2]. obviously from Figure 2, A;,(G) = 4, then by Theorem 2.22, v;,(G) > [2%1 Now,
if m < 5o0rm = 0 (mod 5), then 2[2] = [22] and hence ;,(G) = 2[Z]. Otherwise,
2[%] = [%] + 1, but in this case the equality of Theorem 2.22 does not hold because the third
condition is not satisfied. Hence, i, (G) = 2[%]. i

Proposition 2.28. For any graph G = C,,, (0P, v, (G) = 2[ 2 ].
Proof. The proof is same as in Proposition 2.27. O

The Composition G - H or G[H] has its vertex set V(G) x V(H), with (u,u’) is adjacent to
(v,v") if either u is adjacent to v in G or u = v and v’ is adjacent to v’ in H.

Proposition 2.29. For any graph G isomorphic to P, - P, or Py, - C,, or Cy,, - P, or Cy, - Cy,
’Yin(G) = [%1

Proof. Let G be a graph isomorphic to P, - P,, or P, - C,, or C,, - P, or Cy, - C,,. Then
from the definition of the Composition product, N(w) = N, (w), Vw € V(G), then each vertex
w = (u,v) in G Inj-dominates its neighbors and all the vertices of distance two of it, then
Yin(G) < [%], but in this graph A, (G)) = 5n.— 1, so by Theorem 2.22, v;,, (G) > [%22] = [%Z].
Hence, i, (G) = [%]. m|
Definition 2.30. Let G = (V, E) be a graph. S C V(G) is called Inj-independent set if no
two vertices in S have common neighbor. An Inj-independent set S is called maximal Inj-
independent set if no superset of S is Inj-independent set. The Inj-independent set with maxi-
mum size called the maximum Inj-independent set in G and its size called the Inj-independence
number of G and denoted by 3;,(G).

Theorem 2.31. Ler S be a maximal Inj-independent set. Then S is a minimal Inj-dominating set.
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Proof. Let S be a maximal Inj-independent set and v € V — S. If u ¢ Ny, (v) for every
v € S, then S U {u} is an Inj-independent set, a contradiction to the maximality of S. Therefore
u € Ny, (v) for some v € S. Hence, S is an Inj-dominating set. To prove that S is a minimal
Inj-dominating set, suppose S is not minimal. Then for some v € S the set S — {u} is an
Inj-dominating set. Then there exist some vertex in .S has a common neighborhood with w,
a contradiction because .S is an Inj-independent set. Therefore .S is a minimal Inj-dominating
set. O

Corollary 2.32. For any graph G, v, (G) < Bin(G).

3 Injective domatic number in a graph

Let G = (V, E) be a graph. A partition A of its vertex set V(G) is called a domatic partition of
G if each class of A is a dominating set in G. The maximum order of a partition of V(G) into
dominating sets is called the domatic number of G and is denoted by d(G).

Analogously as to y(G) the domatic number d(G) was introduced, we introduce the injec-
tive domatic number d;,(G), and we obtain some bounds and establish some properties of the
injective domatic number of a graph G.

Definition 3.1. Let G = (V, E) be a graph. A partition A of its vertex set V(G) is called an
injective domatic (in short Inj-domatic) partition of G if each class of A is an Inj-dominating
set in G. The maximum order of a partition of V(G) into Inj-dominating sets is called the Inj-
domatic number of G and is denoted by d;,(G).

For every graph G there exists at least one Inj-domatic partition of V(G), namely {V(G)}.
Therefore d;, (G) is well-defined for any graph G.

Theorem 3.2.
(i) For any complete graph K, d;n,(Kp) = den(Kp) = d(K,) = p.
(ii) din(G) = 1 if and only if G has at least one Inj-isolated vertex.
(iii) For any wheel graph of p vertices, d;,,(W,) = p.

(iv) For any complete bipartite graph K, ,,

dln(Krm) — { min{ram}y l:fT,m Z 2’.

1, otherwise.

(v) For any graph G, if N;,(v) = N(v) for any vertex v in V(G), then

din(G) = d(Q).

Proof.

(i) If G = (V, E) is the complete graph K, then for any vertex v the set {v} is a minimum
CN-dominating set and also a minimum Inj-dominating set. Then the maximum order of
a partition of V(G) into Inj-dominating or CN-dominating sets is p. Hence, d;,,(K,) =
den(Kp) = p.

(i) Let G be a graph which has an Inj-isolated vertex say v, then every Inj-dominating set of
G must contain the vertex v. Then d;,,(G) = 1.
Conversely, if d;,, (G) = 1 and suppose G has no Inj-isolated vertex, then by Theorem 2.24,
Yin(G) < &, so if we suppose D is a minimal Inj-dominating set in G, then V' — D is also
a minimal Inj-dominating set. Thus d;,(G) > 2, a contradiction. Therefore G has at least
one Inj-isolated vertex.

(iii) Since for every vertex v of the wheel graph the deg;,(v) = p — 1. Hence, d;,(W),,) = p.

(iv) and (v) the proof is obvious. O
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Evidently each CN-dominating set in GG is an Inj-dominating set in G, and any CN-domatic
partition is an Inj-domatic partition. We have the following proposition.

Proposition 3.3. For any graph G, d;,(G) > den(G).

Theorem 3.4. For any graph G with p vertices, d;,(G) < A,.,p((;)-
Proof. Assume that d;,(G) = d and {D;, D, ..., D4} is a partition of V(G) into d numbers of
Inj-dominating sets, clearly |D;| > 7, (G) for i = 1,2,...,d and we have p = % | |D;| >

dvin(G). Hence, d;, (G) < #(G) D

Theorem 3.5. For any graph G with p vertices, d;,(G) > Lpff (G)J.

Proof. Let D be any subset of V' (G) such that |D| > p — 6;,,(G). For any vertex v € V — D, we
have | Ny, [v]] > 1 4 6;n(G). Therefore Ny, (v) N D # ¢. Thus D is an Inj-dominating set of G.
So, we can take any L#@J disjoint subsets each of cardinality p — §;,(G). Hence,

din(G) 2 LJ—;:n(G)J .

O

Theorem 3.6. For any graph G with p vertices d;,(G) < 8;,(G) + 1. Further the equality holds
if G is complete graph K.

Proof. Let G be a graph such that d;,,(G) > 0;,,(G) + 1. Then there exists at least §;,(G) + 2
Inj-dominating sets which they are mutually disjoint. Let v be any vertex in V(@) such that
degin(v) = 6;»(G). Then there is at least one of the Inj-dominating sets which has no intersection
with N;,[v]. Hence, that Inj-dominating set can not dominate v, a contradiction. Therefore
din(G) < 6;»(G) + 1. It is obvious if G is complete, then d;, (G) = §;,(G) + 1. i

Theorem 3.7. For any graph G with p vertices, d;,(G) + din (émj) <p+1

— —ingj

Proof. From Theorem 3.6, we have d;,,(G) < 6;,(G) + 1 and d;s,(G™) < §;(G™) + 1, and
clearly 6;,(G"”) = p — 1 — A, (G). Hence,
din(G) + din(G™) < 6:0(G) +p — An(G) + 1 < p+ 1.

O

Theorem 3.8. For any graph G with p vertices and without Inj-isolated vertices, d;,(G) +

Proof. Let G be a graph with p vertices. Then by Theorem 2.25, we have
Vin(G) < p = Ain(G) < p = 6in(G),
and also from Theorem 3.6, d;,,(G) < §;,(G) + 1. Then
din(G) + %in(G) < 0in(G) + 14 p = 0in(G).

Hence,
din(G) +7in(G) < p+ 1.
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