FUNCTIONS ON STATIONARY SETS

Mustapha Alami

Communicated by Najib Mahdou

MSC 2010 Classifications: Primary: 03G05, 06A06. Secondary: 06E05, 08A05, 54G12.

Keywords and phrases: Stationary sets, closed and unbounded sets, Fodor's theorem, combinatorial set theory.

The author would like to thank the referees for their helpful remarks and comments.

Abstract A characterization of stationary sets is established using regressive functions, selection property, continuous functions on ordinals and real continuous functions.

1 Introduction

Whenever a number of pigeons, to be put into cages, is greater that the number of cages considered for this purpose; one cage, at least, has to contain more than one pigeon. This self-evident principle inspired many mathematicians over time and has been a basis for many generalizations indeed. The first extension of this principle to ordinals dates back to P. Alexandroff and P. Uryshon (1926), see [1]: A regressive function f on limit ordinals (i.e., $f(\alpha) \not\ge \alpha$) has a constant value on some uncountable set of ordinal numbers. Four years later, Ben Dushnik (1930), see [3], gave a more explicit generalization: Any regressive function on $\omega_{\nu+1}$ into itself is constant on some set of size $\aleph_{\nu+1}$. In 1950 P. Erdös extended Ben Dushnik result to any ω_{ν} of uncountable cofinality, see [4]. In the same year (1950) J. Novak, see [9], generalized Alexandroff-Uryshon's theorem to closed (under the order topology) and unbounded subsets of ω_1 : Any regressive function on a *club*, closed and unbounded, C of ω_1 into itself is constant on some uncountable subset of C. H. Bachman, see [2], strengthened Novak's result by showing that, in fact, whenever a cardinal κ has no countable cofinal subset every regressive function on a club of κ into κ is constant on some subset of size κ . It is with W. Neumer (1951), see [8], that the terminology of "stationary" set came into use (a set $S \subseteq \kappa$ is *stationary* in κ whenever S meets all clubs in κ): If κ is an uncountable regular cardinal and f is a regressive function on a stationary set S in κ , then f is constant on some cofinal subset of S.

2 Stationary sets and regressive functions

Throughout this paper κ shall denote any regular uncountable cardinal, ordinals are assumed to be endowed with the order topology and by *club* we mean a set of κ that is closed under the order topology and unbounded in κ . Now we say that a set $S \subseteq \kappa$ is *stationary* in κ whenever it meets all clubs of κ . Otherwise we say that S is *non-stationary*. The ideal \mathcal{NS}_{κ} of non-stationary sets of κ is indeed λ -complete for any $\lambda < \kappa$, see Corollary 2.2 below. Next, the assumption of studying stationary sets in regular cardinals is not restrictive. For let α be a limit ordinal and denote by $cf(\alpha)$ the least cardinal $\mu \geq \omega$ that μ is unbounded in α . Now, putting $\mu = cf(\alpha) > \omega$, then μ may be regarded as a club in α since one can choose $(x_{\nu})_{\nu < \mu}$ a strictly increasing and continuous cofinal set in α . Now notice that $S \cap \mu = T \cap \mu$ modulo \mathcal{NS}_{μ} implies that there is a club $D \subseteq \mu$ so that $((S \cap \mu) \land (T \cap \mu)) \cap D = \emptyset$, where \triangle is the symmetric difference. Thus $(S \triangle T) \cap (D \cap \mu) = \emptyset$, where $D \cap \mu$ is a club of α . Thus S = T modulo \mathcal{NS}_{α} . Now the mapping θ defined by $\theta(\overline{S}) = \overline{S \cap \mu}$ put $P(\alpha)/\mathcal{NS}_{\alpha}$ and $P(\mu)/\mathcal{NS}_{\mu}$ in one-to-one correspondence.

Proposition 2.1. Any intersection of less than κ clubs of κ is a club of κ .

Proof. Let λ less than κ , and let $\{C_{\nu} : \nu < \lambda\}$ a family of clubs in κ . We shall use induction on λ . For set $D_{\lambda_{\alpha}} := \cap \{C_{\nu} : \nu < \lambda_{\alpha}\}$, where $\lambda_{\alpha} < \lambda_{\alpha+1}$ for all $\alpha < cf(\lambda)$. By the

induction hypothesis $\{D_{\lambda_{\alpha}} : \alpha < \operatorname{cf}(\lambda)\}$ is a decreasing sequence of clubs in κ . Next, pick any $\xi \in \kappa$ and construct an increasing sequence $\{x_{\alpha} : \alpha < \operatorname{cf}(\lambda)\}$ so that $x_0 > \xi$ and $x_{\alpha} \in D_{\lambda_{\alpha}}$. Thus $\sup\{x_{\alpha} : \alpha < \operatorname{cf}(\lambda)\} \in D_{\lambda_{\alpha}}$ for each $\alpha < \operatorname{cf}(\lambda)$ and therefore $\sup\{x_{\alpha} : \alpha < \operatorname{cf}(\lambda)\} \in \cap\{D_{\lambda_{\alpha}} : \alpha < \operatorname{cf}(\lambda)\} (= \cap\{C_{\nu} : \nu < \lambda\})$; moreover $\xi < \sup\{x_{\alpha} : \alpha < \operatorname{cf}(\lambda)\}$. This shows that $\cap\{C_{\nu} : \nu < \lambda\}$ is a club in κ . \Box

Corollary 2.2. The ideal NS_{κ} is λ -complete for any $\lambda < \kappa$.

Next, recall that a function $f: \omega_1 \to \omega_1$ is *regressive* whenever $f(\alpha) < \alpha$ for every non-zero ordinal α in ω_1 . To have an idea of what Fodor's theorem on a stationary set of κ looks like, take $f: \omega_1 \to \omega_1$ a regressive function and suppose for all ξ 's in $\omega_1 f^{-1}(\xi) = \{\nu : f(\nu) = \xi\}$ is a non-stationary set of ω_1 . So there is for each ξ a club C_{ξ} so that $f^{-1}(\xi) \cap C_{\xi} = \emptyset$. Hence, $\omega_1 = \cup f^{-1}(\xi)$. So, is there $\alpha \in \omega_1$ so that $f(\alpha) \ge \alpha$? This may be possible if e.g., $f(\alpha) \ne \xi$, for all $\xi < \alpha$. Now, if $\alpha \in C_{\xi}$ for all $\xi < \alpha$ this shall make $f(\alpha) \ne \xi$ for all $\xi < \alpha$ whenever α is a limit ordinal. The question now is to find α so that $\alpha \in \cap \{C_{\xi} : \xi < \alpha\}$. This fixe-point like situation is actually the key in proving Fodor's theorem. To finish up the proof here construct a sequence $(\beta_n)_{n < \omega}$ so that $\beta_{n+1} \in \cap \{C_{\nu} : \nu < \beta_n\}$. Then $\sup\{\beta_n : n < \omega\} = \beta \in \cap \{C_{\nu} : \nu < \beta\}$, and $f(\beta) \ge \beta$; contradiction. Next, the set of α so that $\alpha \in \cap \{C_{\nu} : \nu < \alpha\}$ is actually a club as showed by the next proposition.

Proposition 2.3. Let $(C_{\alpha})_{\alpha < \kappa}$ be a family of clubs in κ . The diagonal intersection of $(C_{\alpha})_{\alpha < \kappa}$ is a club of κ denoted by $\Delta \{C_{\alpha} : \alpha < \kappa\}$ and defined by:

$$\alpha \in \Delta\{C_{\nu} : \nu < \kappa\} \iff \alpha \in \cap\{C_{\nu} : \nu < \alpha\}$$

Proof. First, to see that $\triangle \{C_{\alpha} : \alpha < \kappa\}$ is closed let $\langle \xi_{\nu} : \nu < \lambda \rangle$ be a strictly increasing sequence in $\triangle \{C_{\alpha} : \alpha < \kappa\}$. Put $\xi = \sup\{\xi_{\nu} : \nu < \lambda\}$. Now for each $\alpha < \xi$, there is ν_0 so that $\alpha < \xi_{\nu} < \xi$ for $\nu \ge \nu_0$. Thus $\xi_{\nu} \in C_{\alpha}$ for $\nu \ge \nu_0$. Hence $\xi \in C_{\alpha}$ and therefore $\xi \in \cap \{C_{\alpha} : \alpha < \xi\}$ i.e., $\xi \in \triangle \{C_{\alpha} : \alpha < \kappa\}$.

Second, to show that $\triangle \{C_{\alpha} : \alpha < \kappa\}$ is cofinal in κ , let $\beta < \kappa$ and construct an increasing sequence $\langle \beta_n : n < \omega \rangle$ so that $\beta_0 > \beta$, for some $\beta_0 \in C_0$ and $\beta_{n+1} \in \cap \{C_{\alpha} : \alpha < \beta_n\}$, for each $n < \omega$. Thus $\delta = \sup \{\beta_n : n < \omega\}$ is in $\triangle \{C_{\alpha} : \alpha < \kappa\}$ and is bigger than β . \Box

Theorem 2.4 (G. Fodor). Let S be stationary in κ . Then any regressive function on S is constant on some stationary subset S_0 of S.

Proof. Towards a contradiction assume $f^{-1}(\alpha)$ is non-stationary for all α 's. For each $\alpha < \kappa$, pick a club C_{α} of κ so that $C_{\alpha} \cap f^{-1}(\alpha) = \emptyset$. By Proposition 2.3 pick ξ limit in $S \cap \triangle \{C_{\alpha} : \alpha < \kappa\}$. So $f(\xi) \neq \alpha$ for all $\alpha < \xi$ i.e., $f(\xi) \geq \xi$ which is a contradiction. \Box

The following is a converse of Fodor's theorem.

Proposition 2.5. For each non-stationary set in κ , there is a regressive function f so that $|f^{-1}(\xi)| < \kappa$ for all $\xi < \kappa$.

Proof. Assume S is a non-stationary set in κ and pick C a club disjoint from S; then write $\kappa \setminus C = \bigcup\{(x_{\alpha}, x_{\alpha+1}) : \alpha < \kappa\}$ where $(x_{\alpha}, x_{\alpha+1})$ is a maximal open interval and $(x_{\alpha})_{\alpha}$ is an increasing continuous enumeration of C. Now since $S \subseteq \bigcup\{(x_{\alpha}, x_{\alpha+1}) : \alpha < \kappa\}$, define $f : S \to \kappa$ by $f(\xi) = x_{\alpha(\xi)}$ with $\alpha(\xi)$ is the unique ν so that $\xi \in (x_{\nu}, x_{\nu+1})$. f is regressive since S and C are disjoint sets, and $|f^{-1}(\xi)| \le |(x_{\alpha(\xi)}, x_{\alpha(\xi)+1})| < \kappa$. \Box

3 Stationary sets and selection

Definition 3.1. We say that $\Sigma(S)$ is a *selector* of S whenever $S = \bigcup \{S_{\alpha} : \alpha < \kappa\}$ implies $|\Sigma(S) \cap S_{\alpha}| = 1$ for any $\alpha < \kappa$.

Next, we give two consequences of Fodor's theorem.

Theorem 3.2 (Selection). S is stationary in κ iff any partition of S in non-stationary sets of κ has a stationary selector.

Proof. One direction is obvious. To see the other one, assume that $\Sigma(S) = {\min(S_{\alpha}) : \alpha < \kappa}$ is non-stationary, where $S = \bigcup {S_{\alpha} : \alpha < \kappa}$ such that $S_{\alpha} \in \mathcal{NS}_{\kappa}$ for each $\alpha < \kappa$. Pick then C a club of κ so that $C \cap \Sigma(S) = \emptyset$. Next, define $\psi : S \cap C \to \kappa$ by $\psi(x) = \min(S_{\alpha(x)})$ whenever $x \in S_{\alpha(x)}$. ψ is a regressive function on $S \cap C$; and thus $\psi \upharpoonright S_0$ is constant, where S_0 is stationary included in $S \cap C$. Hence, $x \in S_0$ implies $\psi(x) = \min(S_{\alpha(0)})$. Thus $S_0 \subseteq S_{\alpha(0)}$ and this contradicts the fact that $S_{\alpha(0)}$ is non-stationary. \Box

Proposition 3.3. Let S be a stationary in κ and f be a function from S into κ . Then there is a stationary set S_0 so that at least one of the following three statements holds:

- (a) $f \upharpoonright S_0$ is a constant function;
- (b) $f \upharpoonright S_0$ is the identity;
- (c) $f \upharpoonright S_0$ is strictly increasing and thus injective.

Moreover $f(\alpha) \ge \alpha$ for all $\alpha \in S_0$ and $f''S_0$ is non stationary.

Proof. Spilt S into three sets S_1 , S_2 , S_3 defined as follows:

$$S_1 = \{\alpha \in S : f(\alpha) < \alpha\}, S_2 = \{\alpha \in S : f(\alpha) = \alpha\}, \text{and } S_3 = \{\alpha \in S : f(\alpha) > \alpha\}$$

Now, if S_1 is stationary then by Fodor's theorem f is constant on some stationary set of S_1 . Hence we may assume $S_1 = \emptyset$. If S_2 is stationary then $f \upharpoonright S_2$ is the identity and thus $S_0 = S_2$. So, we may assume $S = S_3$. Now, put

$$A(\alpha_0) = \{\nu \in S : f(\nu) \le f(\alpha_0)\}, \ \alpha_0 = \min S;$$

$$A(\alpha_1) = \{\nu \in S : f(\nu) \le f(\alpha_1)\}, \ \alpha_1 = \min(S \setminus A(\alpha_0));$$

$$\vdots$$

$$A(\alpha_{\xi}) = \{\nu \in S : f(\nu) \le f(\alpha_{\xi})\}, \ \alpha_{\xi} = \min(S \setminus \cup \{A(\alpha_{\nu}) : \nu < \xi\}).$$

Notice that $\langle \alpha_{\xi} : \xi < \alpha \rangle$ is increasing, and $S = \bigcup \{A(\alpha_{\xi}) : \xi < \kappa\}$ and $A(\alpha_{\xi})$ are non stationary sets. Hence by selection property (Theorem 3.2) pick $\Sigma(S)$ a selector of S. $\Sigma(S)$ is stationary, $\Sigma(S) = \{\min(A(\alpha_{\xi})) : \xi < \kappa\} = \{\alpha_{\xi} : \xi < \kappa\}$ and $f \upharpoonright \Sigma(S)$ is increasing. \Box

4 Stationary sets and continuous functions

We characterize stationary sets using continuous functions. This feature actually makes stationary sets a very important tool in set theory distinguishing between objects and therefore constructing, at will, incomparably many of them in many areas of mathematics see [6].

Theorem 4.1. For any subset S of κ , the following statements are equivalent:

- (a) S is stationary in κ .
- (b) Every continuous function f from S into κ is either constant on a final segment of S or $Fix(f) := \{\nu \in S : f(\nu) = \nu\}$ is cofinal in κ .

Proof. (a) implies (b). Suppose S stationary and let $f: S \to \kappa$ be a continuous function.

Case 1. $S_0 = \{ \alpha \in S : f(\alpha) < \alpha \}$ is stationary in κ .

Find a stationary $\Sigma \subseteq S_0$, and $a \in \kappa$ so that $f''\Sigma = \{a\}$. Now since two clubs intersect in κ , it follows that for each $\nu < a$, $f^{-1}(\nu)$ is bounded in κ . Thus $\sup\{f^{-1}(\nu) : \nu < a\} = \delta < \kappa$. Hence for $t \in \Sigma \cap [\delta+1, \rightarrow)$, we have $f(t) \ge a$. Next, assume that $f^{-1}([a+1, \rightarrow))$ is cofinal in κ . It follows then that $f^{-1}([a+1, \rightarrow))$ is a club of S and thus there is $t \in \Sigma \cap f^{-1}([a+1, \rightarrow))$. Therefore $f(t) \ge a+1$: this contradicts $f''\Sigma = \{a\}$. So, there is $\delta_1 < \kappa$ so that $\sup(f^{-1}([a+1, \rightarrow))) = \delta_1$.

Hence, for $t \in S \cap [(\delta \lor \delta_1) + 1, \rightarrow)$, f(t) = a i.e., $f \upharpoonright S \cap [(\gamma, \rightarrow)$ is constant for some $\gamma < \kappa$. Case 2. $S_1 = \{\alpha \in S : f(\alpha) \ge \alpha\}$ is stationary in κ .

Construct, by induction, a sequence of size κ , $(x_{\xi})_{\xi < \kappa}$ so that : $x_{\xi} \leq f(x_{\xi}) \leq x_{\xi+1}$ for each $\xi < \kappa$. Now, denote by cl(X) and lim(X) respectively the closure and the set of limit points of X in the order topology on κ . Next, let $t \in S \cap lim(cl(S)) \cap lim(cl\{x_{\xi} : \xi < \kappa\})$. So, pick $(x_{\xi(\eta)})_{\eta}$ so that : $x_{\xi(\eta)} \leq f(x_{\xi(\eta)}) \leq x_{\xi(\eta+1)}$ and $\sup_{\eta} x_{\xi(\eta)} = t$. By continuity of f we have f(t) = t, but this shows that $Fix(f) \neq \emptyset$, and hence is cofinal in κ .

(b) implies (a). Assume that S is non stationary. So pick C a club set in κ disjoint from S and write $\kappa \setminus C = \bigcup \{(x_{\alpha}, x_{\alpha+1}) : \alpha < \kappa\}$, where $(x_{\alpha}, x_{\alpha+1})$ is a maximal open interval and $(x_{\alpha})_{\alpha}$ is an increasing continuous enumeration of C. Now define $f : S \to \kappa$ by $f(\xi) = x_{\alpha(\xi)}$ with $\alpha(\xi)$ is the unique ν so that $\xi \in (x_{\nu}, x_{\nu+1})$.

Now, Fix $(f) = \emptyset$ since $S \cap C = \emptyset$ and $|f^{-1}(\xi)| \le |(x_{\alpha(\xi)}, x_{\alpha(\xi)+1})| < \kappa$ for all ξ 's. \Box

5 Stationary sets and real continuous functions

The following theorem shows that modulo non-stationary sets constant functions are the only real continuous functions on stationary sets.

Theorem 5.1. For any subset S of κ , the following statements are equivalent:

- (a) S is stationary in κ .
- (b) Every continuous function $f: S \to \mathbb{R}$ is constant on some cofinal segment of S.

Proof. (a) implies (b). Let $f : S \to \mathbb{R}$ be continuous. We claim that there is $n_0 \in \omega$ so that $f^{-1}([n_0, +\infty))$ is bounded in κ . Indeed, if $f^{-1}([n, +\infty))$ are clubs in κ , it follows then that $\cap \{f^{-1}([n, +\infty)) : n > 0\}$ is not empty and thus $f(t) \ge n$ for some $t < \kappa$ and all n > 00. This is impossible. Likewise there is $m_0 \in \omega$ so that $f^{-1}((-\infty, -m_0])$ is bounded in κ . Thus $\sup(f^{-1}([n_0, +\infty)) \cup f^{-1}((-\infty, -m_0])) = \delta < \kappa$. Now construct a sequence of closed intervals $(J_k)_{k\in\omega}$ so that $J_0 = [-m_0, m_0]$ and $J_{k+1} \subseteq J_k$, $d(J_k) = \frac{d(J_0)}{2^k}$. Set $A = \{k \in \omega :$ $f^{-1}(J_k)$ is bounded in κ }, $B = \{k \in \omega : f^{-1}(J_k) \text{ is unbounded in } \kappa\}$. Let $\delta_1 = \sup\{f^{-1}(J_k) :$ $k \in A$. For any $t \in]\delta \lor \delta_1, \rightarrow) \cap S \cap (\cap \{f^{-1}(J_k) : k \in B\})$, we have $f(t) \in \cap \{J_k : k \in B\}$ B = {a}. Next set $T = S \setminus (S \cap (\cap \{f^{-1}(J_k) : k \in B\}))$. Assume that T is cofinal and write $T = \{t_{\alpha} : \alpha < \kappa\}$. Then for each $\alpha < \kappa$, $f(t_{\alpha}) \neq a$. Since κ is regular uncountable pick a cofinal set $D \subseteq \{t_{\alpha} : \alpha < \kappa\}$ and some $k_0 \in \omega$ so that $f(D) \subseteq J_{k_0} \setminus J_{k_0+1}$. Write $J_k = [a_k, b_k]$ for all $k \in \omega$. Now let $t \in S \cap \lim(cl(D)) \cap (\cap \{f^{-1}(J_k) : k \geq k_0\})$. Pick $d_{\nu(\eta)} \in D$ so that $\lim_{\eta} d_{\nu(\eta)} = \sup_{\eta} d_{\nu(\eta)} = t$. It follows then that f(t) = a and $f(\lim_{\eta} d_{\nu(\eta)}) = \lim_{\eta \to 0} f(d_{\nu(\eta)})$, where $f(d_{\nu(\eta)}) \in [a_{k_0}, a_{k_0+1}[\cup]b_{k_0+1}, b_{k_0}[$. Thus $f(t) \in [a_{k_0}, a_{k_0+1}] \cup [b_{k_0+1}, b_{k_0}[$ and f(t) = a: contradiction. Therefore $\gamma = \sup T < \kappa$. Thus for $t \in [\xi_0, \rightarrow) \cap S$, f(t) = a, where $\xi_0 > 0$ $\max(\gamma, \delta, \delta_1).$

(b) implies (a). Suppose S is non-stationary. So pick C a club set in κ disjoint from S and write $\kappa \setminus C = \bigcup \{(x_{\alpha}, x_{\alpha+1}) : \alpha < \kappa\}$, where $(x_{\alpha}, x_{\alpha+1})$ is a maximal open interval and $(x_{\alpha})_{\alpha}$ is an increasing continuous enumeration of C. $S \subseteq \kappa \setminus C = \bigcup \{(x_{\alpha}, x_{\alpha+1}) : \alpha < \kappa\}$. Define $f : S \setminus C \to \mathbb{R}$ by:

$$f(\xi) := \begin{cases} 0 & \text{if } \xi \in (x_{\alpha}, x_{\alpha+1}) \text{ and } \alpha = \lambda + 2n, \\ \frac{1}{n} & \text{if } \xi \in (x_{\alpha}, x_{\alpha+1}) \text{ and } \alpha = \lambda + 2n + 1. \end{cases}$$

f is the continuous function that works. \Box

References

- P.S. Alexandroff and P. Uryshon Mémoire sur les espaces topologiques compacts, Verh. Abad. Wiss. Amsterdam (1) 45 (1) 1-96, 1926.
- [2] H. Bachman *Transfinite Zahlen*, Ergebnisse der Math. und ihnen Grenzgebiete Neme Folge, Heft (1) (Berlin-Heidelberg-Gottingen) p.43, 1955.

- [3] B. Dushnik A note on transfinite ordinals, Bull-Amer. Math. Soc 37, 1931.
- [4] P. Erdös Some remarks on Set Theory, Proc. Amer. Math . Soc 1, 127-141, 1950.
- [5] G. Fodor Eine Bermerkung Zur theorie der regressiven Functionen, Acta Sci. Math. 17, 139-142, 1956.
- [6] T.J. Jech Set Theory, Academic Press, New York, 1978.
- [7] K. Kunen Set Theory: an Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
- [8] W. Neumer Verallgemeinerung eines Satze Von Alexandroff and Uryshon, Math. 54 (2) 254-261; MR 13, 331, 1954.
- [9] J. Novak A paradoxical theorem, Fund. Math. 37, 77-83, 1950.

Author information

Mustapha Alami, Regional Center of Education and Professional Training, Fez, Morocco. E-mail: alami08@yahoo.fr

Received: October 22, 2016.

Accepted: March 22, 2017.