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Abstract A characterization of stationary sets is established using regressive functions, se-
lection property, continuous functions on ordinals and real continuous functions.

1 Introduction

Whenever a number of pigeons, to be put into cages, is greater that the number of cages consid-
ered for this purpose; one cage, at least, has to contain more than one pigeon. This self-evident
principle inspired many mathematicians over time and has been a basis for many generaliza-
tions indeed. The first extension of this principle to ordinals dates back to P. Alexandroff and
P. Uryshon (1926), see [1] : A regressive function f on limit ordinals (i.e., f(a) # «) has
a constant value on some uncountable set of ordinal numbers. Four years later, Ben Dushnik
(1930), see [3], gave a more explicit generalization: Any regressive function on w, into it-
self is constant on some set of size N, ;. In 1950 P. Erdos extended Ben Dushnik result to any
w, of uncountable cofinality, see [4]. In the same year (1950) J. Novak, see [9], generalized
Alexandroff-Uryshon’s theorem to closed (under the order topology) and unbounded subsets of
wi: Any regressive function on a club, closed and unbounded, C' of w; into itself is constant on
some uncountable subset of C'. H. Bachman, see [2], strengthened Novak’s result by showing
that, in fact, whenever a cardinal s has no countable cofinal subset every regressive function on
a club of x into x is constant on some subset of size «. It is with W. Neumer (1951), see [8],
that the terminology of "stationary" set came into use (a set S C « is stationary in kK whenever S
meets all clubs in k): If x is an uncountable regular cardinal and f is a regressive function on a
stationary set .S in s, then f is constant on some cofinal subset of S.

2 Stationary sets and regressive functions

Throughout this paper « shall denote any regular uncountable cardinal, ordinals are assumed to
be endowed with the order topology and by club we mean a set of « that is closed under the order
topology and unbounded in x. Now we say that a set S C & is stationary in x whenever it meets
all clubs of k. Otherwise we say that S is non-stationary. The ideal N'S,, of non-stationary
sets of « is indeed A-complete for any A < &, see Corollary 2.2 below. Next, the assumption
of studying stationary sets in regular cardinals is not restrictive. For let « be a limit ordinal and
denote by cf(«) the least cardinal p > w that  is unbounded in . Now, putting p = cf(a) > w,
then p may be regarded as a club in « since one can choose (z,),<, a strictly increasing and
continuous cofinal set in a. Now notice that S Ny = 7' N g modulo N'S,, implies that there is a
club D C psothat (SNu) A (T'Nw))ND =0, where A is the symmetric difference. Thus
(S ATYN(DNp) =0, where DNy is a club of a. Thus S = T modulo N'S,,. Now the mapping

6 defined by (S) = S N p put P(a) /NS, and P(u) /NS, in one-to-one correspondence.

Proposition 2.1. Any intersection of less than r clubs of k is a club of k.

Proof. Let A less than x, and let {C,, : v < A} a family of clubs in k. We shall use induc-
tion on \. For set Dy = N{C, : v < A}, where A\, < Ao41 for all & < cf()). By the
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induction hypothesis {D,_ : @ < cf(\)} is a decreasing sequence of clubs in . Next, pick any
¢ € k and construct an increasing sequence {z, : « < cf(\)} so that zo > £ and z, € D,,.
Thus sup{z, : a < cf(A\)} € D, for each a < cf()\) and therefore sup{z, : o < cf(\)} €
N{D,, : a < cf(\)}H= N{C, : v < A}); moreover £ < sup{z, : @ < cf(\)}. This shows that
N{C, :v < A}tisaclubin k. O

Corollary 2.2. The ideal N'S; is A-complete for any A < k.

Next, recall that a function f : w; — wy is regressive whenever f(a) < « for every non-zero
ordinal « in w;. To have an idea of what Fodor’s theorem on a stationary set of « looks like, take
f : w1 — wi aregressive function and suppose for all £’s in wy f~1(&) = {v: f(v) = ¢} isa
non-stationary set of wy. So there is for each £ a club C so that Yo n Ce = (. Hence, wy =
Uf~1(€). So, is there o € wy so that f(a) > a? This may be possible if e.g., f(a) # &, for all
¢ < a. Now, if a € Cf for all £ < « this shall make f(«) # & for all § < o whenever « is a limit
ordinal. The question now is to find « so that « € N{C¢ : £ < a}. This fixe-point like situation
is actually the key in proving Fodor’s theorem. To finish up the proof here construct a sequence
(Bn)n<w sothat 8,1 € N{C, : v < Bp}. Then sup{B, : n < w} =B € N{C, : v < B}, and
f(B) > B; contradiction. Next, the set of « so that « € N{C,, : v < «a} is actually a club as
showed by the next proposition.

Proposition 2.3. Let (Ca)a s be a family of clubs in k. The diagonal intersection of (Ca)
is a club of k denoted by N{C,, : a < k} and defined by:

a<k

aeNMCy:iv<k} < aen{C,:v<a}

Proof. First, to see that A{C, : a < &} is closed let ({, : v < A) be a strictly increasing
sequence in A{C, : a < k}. Put{ = sup{¢, : v < A}. Now for each o < ¢, there is vy
sothat « < &, < £ forv > . Thus &, € C, for v > 1y. Hence £ € C, and therefore
Een{Cy:a<lie, e ANCy:a< K}

Second, to show that A{C,, : « < k} is cofinal in «, let 8 < k and construct an increasing
sequence (3, : n < w) so that By > 3, for some 5y € Cy and 8,11 € N{Cy : @ < B}, for each
n < w. Thus § = sup{B, : n <w}isin A{C, : o < k} and is bigger than 5. O

Theorem 2.4 (G. Fodor). Let S be stationary in k. Then any regressive function on S is constant
on some stationary subset Sy of S.

Proof. Towards a contradiction assume f~!(«) is non-stationary for all a’s. For each a < &, pick
aclub C,, of k so that C,, N f~!(a) = (). By Proposition 2.3 pick ¢ limitin SN A{C, : @ < k}.
So f(€) # aforall a < £ie., f(£) > £ which is a contradiction. O

The following is a converse of Fodor’s theorem.

Proposition 2.5. For each non-stationary set in k, there is a regressive function f so that | f ~1(¢)| <
K forall £ < K.

Proof. Assume S is a non-stationary set in x and pick C' a club disjoint from S; then write
K\ C = U{(Za,Tar1) @ a < k} Where (z24,T411) is @ maximal open interval and (z4), is
an increasing continuous enumeration of C. Now since S C U{(zq,ZTa+1) : o < x}, define
[ 18 = Kby f(§) = x4 with a(§) is the unique v so that § € (x,,2,41). f is regressive since
S and C are disjoint sets, and | f~1(&)| < [(za(e), Ta(e)+1)] < K. O

3 Stationary sets and selection

Definition 3.1. We say that X(S) is a selector of S whenever S = U{S, : a < x} implies
|Z(S) N Sy| = 1forany a < k.

Next, we give two consequences of Fodor’s theorem.
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Theorem 3.2 (Selection). S is stationary in k iff any partition of S in non-stationary sets of k
has a stationary selector.

Proof. One direction is obvious. To see the other one, assume that £(S) = {min(S,) : o < k}
is non-stationary, where S = U{S, : @ < &} such that S, € NS, for each a < k. Pick then
C aclub of « so that C' N E(S) = (. Next, define 1) : SN C — & by ¢(z) = min(Sy(,))
whenever z € S,(,). ¥ is a regressive function on S N C; and thus ¢ [ Sy is constant, where Sy
is stationary included in S N C. Hence, = € Sy implies ¢(x) = min(Sy(q)). Thus Sy € S,(g) and
this contradicts the fact that S, ) is non-stationary. O

Proposition 3.3. Let S be a stationary in k and f be a function from S into k. Then there is a
stationary set Sy so that at least one of the following three statements holds:

(a) f | Sy isa constant function;
(b) f T Sy is the identity;
(c) f | Sois strictly increasing and thus injective.

Moreover f(a) > « for all o € Sy and Sy is non stationary.
Proof. Spilt S into three sets 51, S», Sz defined as follows:
Si={a€eS:fla)<a},Sa={aeS: f(a)=a},andS3={a e S: f(a) > a}.

Now, if S; is stationary then by Fodor’s theorem f is constant on some stationary set of .S;.
Hence we may assume S; = (). If S, is stationary then f [ S, is the identity and thus Sy = S,.
So, we may assume S = S3. Now, put

Alag) ={reS: f(v)

< f(o‘o)}v ap = min S}
Alg) ={reS: f(v) < f(a1)}, ag =min(S'\ A(ag));

Alag) ={veS: f(v) < flag)}, ag =min(S\ U{A(e,) 1 v < &}).

Notice that (o : { < «) is increasing, and S = U{A(a¢) : £ < k} and A(c) are non
stationary sets. Hence by selection property (Theorem 3.2) pick X(S) a selector of S. X(S) is
stationary, (S) = {min(A(c¢)) : £ < k} = {ae : £ <k} and f [ £(S) is increasing. O

4 Stationary sets and continuous functions

We characterize stationary sets using continuous functions. This feature actually makes sta-
tionary sets a very important tool in set theory distinguishing between objects and therefore
constructing, at will, incomparably many of them in many areas of mathematics see [6].

Theorem 4.1. For any subset S of k, the following statements are equivalent:
(a) S is stationary in k.

(b) Every continuous function f from S into k is either constant on a final segment of S or
Fix(f):={veS: f(v) =v}iscofinal in k.

Proof. (a) implies (b). Suppose S stationary and let f : S — « be a continuous function.

Case 1. Sy ={a € S: f(a) < a} is stationary in k.
Find a stationary X C Sp, and a € & so that f”X = {a}. Now since two clubs intersect in &, it
follows that for each v < a, f~!(v) is bounded in . Thus sup{f~!(v) : v < a} = § < x. Hence
fort € ZN[0+1,—), we have f(t) > a. Next, assume that f~!([a+ 1, —)) is cofinal in &. It fol-
lows then that f~!([a+1,—)) is a club of S and thus thereis t € N f~!([a+1,—)). Therefore
f(t) > a+1: this contradicts 'Y = {a}. So, there is §; < & so that sup(f~!([a+1,—))) = d;.
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Hence, fort € SN[(6 V1) +1,—), f(t) =aie., f [ SN][(y,—) is constant for some 7 < k.
Case 2. Sy ={a € S: f(a) > a} is stationary in k.

Construct, by induction, a sequence of size k, ($5)§<K so that : z¢ < f(l'g) < x¢4q for each

¢ < k. Now, denote by cl(X) and lim(X) respectively the closure and the set of limit points of
X in the order topology on . Next, let ¢ € S N lim (cI(S)) N lim (cl{z¢ : £ < k}). So, pick
(Te(n))n so that : zey < f(xe(y)) < T¢(yr1) and sup, z¢(,) = t. By continuity of f we have
f(t) = t, but this shows that Fix(f) # 0, and hence is cofinal in .

(b) implies (a). Assume that .S is non stationary. So pick C' a club set in « disjoint from S and
write £\ C' = U{(zq, Zat1) 1 @ < K}, where (24, 2+1) is @ maximal open interval and (24 )q
is an increasing continuous enumeration of C. Now define f : S — k by f(§) = Tq(e) With a(f)
is the unique v so that £ € (z,,,x,11).

Now, Fix(f) = () since SN C = () and | f~1(¢)| < [(Ta(e), Ta(e)+1)| < w forall &s. O

S Stationary sets and real continuous functions

The following theorem shows that modulo non-stationary sets constant functions are the only
real continuous functions on stationary sets.

Theorem 5.1. For any subset S of k, the following statements are equivalent:
(a) S is stationary in k.
(b) Every continuous function f : S — R is constant on some cofinal segment of S.

Proof. (a) implies (b). Let f : S — R be continuous. We claim that there is ng € w so
that f~!([ng, +00)) is bounded in x. Indeed, if f~!([n,+oc)) are clubs in &, it follows then
that N{f~!([n,+00)) : m > 0} is not empty and thus f(¢) > n for some ¢ < x and all n >
0. This is impossible. Likewise there is mg € w so that f~1((—oc, —my]) is bounded in k.
Thus sup(f~!([no, +00)) U f~1((—00, —mg])) = § < k. Now construct a sequence of closed
intervals (Jy)kew so that Jo = [—mg, mp] and J11 C Ji, d(Jx) = %. Set A ={k e€w:
f~Y(Jx)is bounded inx}, B = {k € w : f~!(J;)is unbounded inx}. Let &; = sup{f~1(Jy) :
k € A}. Forany t €]6 Vv d1,—) N SN (N{f~(Jx) : k € B}), we have f(t) € N{Jy : k €
B} = {a}. Nextset T = S\ (SN (N{f~1(Jx) : k € B})). Assume that T is cofinal and write
T = {to : @ < k}. Then for each < &, f(to) # a. Since « is regular uncountable pick a
cofinal set D C {t, : o < k} and some ko € w so that f(D) C Jy, \ Ji,+1. Write J = [ax, bk]
for all k € w. Now let t € S Nlim(cl(D)) N (N{f~'(Jx) : k > ko}). Pick d,(, € D so that
lim;, d,,() = sup, dy(, = t. It follows then that f(t) = a and f(lim, d, ) = lim, f(d, ).
where f(d,,(n)) S [ako, ak0+1[U]bk0+1,bko [ Thus f(t) S [ako,akoﬂ] @] [bk0+17 bko[ and f(t) = a:
contradiction. Therefore v = supT < k. Thus for ¢t € [§,—) NS, f(¢) = a, where & >
max (v, §,d1).

(b) implies (a). Suppose S is non-stationary. So pick C' a club set in « disjoint from S and
write k \ C = U{(za, Ta+1) : @ < K}, Where (24, Tat1) is @ maximal open interval and (z4)q
is an increasing continuous enumeration of C. S C k \ C = U{(z4,2a+1) @ a < k}. Define
f:5\C — Rby:

f(g) ._ 0 if§e (xaaonrl) and o = X\ + 2n,
. % iffe(ﬂca,maﬂ) anda=\A+2n+ 1.

f is the continuous function that works. O
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