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Abstract A characterization of stationary sets is established using regressive functions, se-

lection property, continuous functions on ordinals and real continuous functions.

1 Introduction

Whenever a number of pigeons, to be put into cages, is greater that the number of cages consid-

ered for this purpose; one cage, at least, has to contain more than one pigeon. This self-evident

principle inspired many mathematicians over time and has been a basis for many generaliza-

tions indeed. The �rst extension of this principle to ordinals dates back to P. Alexandroff and

P. Uryshon (1926), see [1] : A regressive function f on limit ordinals (i.e., f(α) � α) has
a constant value on some uncountable set of ordinal numbers. Four years later, Ben Dushnik

(1930), see [3], gave a more explicit generalization: Any regressive function on ων+1 into it-

self is constant on some set of size ℵν+1. In 1950 P. Erdös extended Ben Dushnik result to any

ων of uncountable co�nality, see [4]. In the same year (1950) J. Novak, see [9], generalized

Alexandroff-Uryshon's theorem to closed (under the order topology) and unbounded subsets of

ω1: Any regressive function on a club, closed and unbounded, C of ω1 into itself is constant on

some uncountable subset of C. H. Bachman, see [2], strengthened Novak's result by showing

that, in fact, whenever a cardinal κ has no countable co�nal subset every regressive function on

a club of κ into κ is constant on some subset of size κ. It is with W. Neumer (1951), see [8],

that the terminology of "stationary" set came into use (a set S ⊆ κ is stationary in κ whenever S
meets all clubs in κ): If κ is an uncountable regular cardinal and f is a regressive function on a

stationary set S in κ, then f is constant on some co�nal subset of S.

2 Stationary sets and regressive functions

Throughout this paper κ shall denote any regular uncountable cardinal, ordinals are assumed to

be endowed with the order topology and by club we mean a set of κ that is closed under the order
topology and unbounded in κ. Now we say that a set S ⊆ κ is stationary in κ whenever it meets

all clubs of κ. Otherwise we say that S is non-stationary. The ideal NSκ of non-stationary

sets of κ is indeed λ-complete for any λ < κ, see Corollary 2.2 below. Next, the assumption

of studying stationary sets in regular cardinals is not restrictive. For let α be a limit ordinal and

denote by cf(α) the least cardinal µ ≥ ω that µ is unbounded in α. Now, putting µ = cf(α) > ω,
then µ may be regarded as a club in α since one can choose (xν)ν<µ a strictly increasing and

continuous co�nal set in α. Now notice that S ∩ µ = T ∩ µ modulo NSµ implies that there is a

club D ⊆ µ so that ((S ∩ µ) △ (T ∩ µ)) ∩ D = ∅, where △ is the symmetric difference. Thus

(S △ T )∩(D∩µ) = ∅, whereD∩µ is a club of α. Thus S = T moduloNSα. Now the mapping

θ de�ned by θ(S) = S ∩ µ put P (α)/NSα and P (µ)/NSµ in one-to-one correspondence.

Proposition 2.1. Any intersection of less than κ clubs of κ is a club of κ.

Proof. Let λ less than κ, and let {Cν : ν < λ} a family of clubs in κ. We shall use induc-

tion on λ. For set Dλα := ∩{Cν : ν < λα}, where λα < λα+1 for all α < cf(λ). By the
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induction hypothesis {Dλα : α < cf(λ)} is a decreasing sequence of clubs in κ. Next, pick any

ξ ∈ κ and construct an increasing sequence {xα : α < cf(λ)} so that x0 > ξ and xα ∈ Dλα .

Thus sup{xα : α < cf(λ)} ∈ Dλα for each α < cf(λ) and therefore sup{xα : α < cf(λ)} ∈
∩{Dλα : α < cf(λ)}(= ∩{Cν : ν < λ}); moreover ξ < sup{xα : α < cf(λ)}. This shows that
∩{Cν : ν < λ} is a club in κ. 2

Corollary 2.2. The ideal NSκ is λ-complete for any λ < κ.

Next, recall that a function f : ω1 → ω1 is regressive whenever f(α) < α for every non-zero

ordinal α in ω1. To have an idea of what Fodor's theorem on a stationary set of κ looks like, take

f : ω1 → ω1 a regressive function and suppose for all ξ's in ω1 f
−1(ξ) = {ν : f(ν) = ξ} is a

non-stationary set of ω1. So there is for each ξ a club Cξ so that f−1(ξ) ∩ Cξ = ∅. Hence, ω1 =
∪f−1(ξ). So, is there α ∈ ω1 so that f(α) ≥ α? This may be possible if e.g., f(α) ̸= ξ, for all
ξ < α. Now, if α ∈ Cξ for all ξ < α this shall make f(α) ̸= ξ for all ξ < α whenever α is a limit

ordinal. The question now is to �nd α so that α ∈ ∩{Cξ : ξ < α}. This �xe-point like situation
is actually the key in proving Fodor's theorem. To �nish up the proof here construct a sequence

(βn)n<ω so that βn+1 ∈ ∩{Cν : ν < βn}. Then sup{βn : n < ω} = β ∈ ∩{Cν : ν < β}, and
f(β) ≥ β; contradiction. Next, the set of α so that α ∈ ∩{Cν : ν < α} is actually a club as

showed by the next proposition.

Proposition 2.3. Let
(
Cα

)
α<κ

be a family of clubs in κ. The diagonal intersection of
(
Cα

)
α<κ

is a club of κ denoted by △{Cα : α < κ} and de�ned by:

α ∈ △{Cν : ν < κ} ↔ α ∈ ∩{Cν : ν < α}

Proof. First, to see that △{Cα : α < κ} is closed let ⟨ξν : ν < λ⟩ be a strictly increasing

sequence in △{Cα : α < κ}. Put ξ = sup{ξν : ν < λ}. Now for each α < ξ, there is ν0
so that α < ξν < ξ for ν ≥ ν0. Thus ξν ∈ Cα for ν ≥ ν0. Hence ξ ∈ Cα and therefore

ξ ∈ ∩{Cα : α < ξ} i.e., ξ ∈ △{Cα : α < κ}.
Second, to show that △{Cα : α < κ} is co�nal in κ, let β < κ and construct an increasing

sequence ⟨βn : n < ω⟩ so that β0 > β, for some β0 ∈ C0 and βn+1 ∈ ∩{Cα : α < βn}, for each
n < ω. Thus δ = sup{βn : n < ω} is in △{Cα : α < κ} and is bigger than β. 2

Theorem 2.4 (G. Fodor). Let S be stationary in κ. Then any regressive function on S is constant

on some stationary subset S0 of S.

Proof. Towards a contradiction assume f−1(α) is non-stationary for all α's. For each α < κ, pick
a club Cα of κ so that Cα ∩ f−1(α) = ∅. By Proposition 2.3 pick ξ limit in S ∩△{Cα : α < κ}.
So f(ξ) ̸= α for all α < ξ i.e., f(ξ) ≥ ξ which is a contradiction. 2

The following is a converse of Fodor's theorem.

Proposition 2.5. For each non-stationary set in κ, there is a regressive function f so that |f−1(ξ)| <
κ for all ξ < κ.

Proof. Assume S is a non-stationary set in κ and pick C a club disjoint from S; then write

κ \ C = ∪{(xα, xα+1) : α < κ} where (xα, xα+1) is a maximal open interval and (xα)α is

an increasing continuous enumeration of C. Now since S ⊆ ∪{(xα, xα+1) : α < κ}, de�ne
f : S → κ by f(ξ) = xα(ξ) with α(ξ) is the unique ν so that ξ ∈ (xν , xν+1). f is regressive since

S and C are disjoint sets, and |f−1(ξ)| ≤ |(xα(ξ), xα(ξ)+1)| < κ. 2

3 Stationary sets and selection

De�nition 3.1.We say that S(S) is a selector of S whenever S = ∪{Sα : α < κ} implies

|S(S) ∩ Sα| = 1 for any α < κ.

Next, we give two consequences of Fodor's theorem.
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Theorem 3.2 (Selection). S is stationary in κ iff any partition of S in non-stationary sets of κ
has a stationary selector.

Proof. One direction is obvious. To see the other one, assume that S(S) = {min(Sα) : α < κ}
is non-stationary, where S = ∪{Sα : α < κ} such that Sα ∈ NSκ for each α < κ. Pick then

C a club of κ so that C ∩ S(S) = ∅. Next, de�ne ψ : S ∩ C → κ by ψ(x) = min(Sα(x))
whenever x ∈ Sα(x). ψ is a regressive function on S ∩ C; and thus ψ � S0 is constant, where S0
is stationary included in S ∩C. Hence, x ∈ S0 implies ψ(x) = min(Sα(0)). Thus S0 ⊆ Sα(0) and

this contradicts the fact that Sα(0) is non-stationary. 2

Proposition 3.3. Let S be a stationary in κ and f be a function from S into κ. Then there is a

stationary set S0 so that at least one of the following three statements holds:

(a) f � S0 is a constant function;

(b) f � S0 is the identity;

(c) f � S0 is strictly increasing and thus injective.

Moreover f(α) ≥ α for all α ∈ S0 and f
′′S0 is non stationary.

Proof. Spilt S into three sets S1, S2, S3 de�ned as follows:

S1 = {α ∈ S : f(α) < α}, S2 = {α ∈ S : f(α) = α}, andS3 = {α ∈ S : f(α) > α}.

Now, if S1 is stationary then by Fodor's theorem f is constant on some stationary set of S1.
Hence we may assume S1 = ∅. If S2 is stationary then f � S2 is the identity and thus S0 = S2.
So, we may assume S = S3. Now, put

A(α0) = {ν ∈ S : f(ν) ≤ f(α0)}, α0 = minS;

A(α1) = {ν ∈ S : f(ν) ≤ f(α1)}, α1 = min(S \A(α0));

...

A(αξ) = {ν ∈ S : f(ν) ≤ f(αξ)}, αξ = min(S \ ∪{A(αν) : ν < ξ}).

Notice that ⟨αξ : ξ < α⟩ is increasing, and S = ∪{A(αξ) : ξ < κ} and A(αξ) are non

stationary sets. Hence by selection property (Theorem 3.2) pick S(S) a selector of S. S(S) is
stationary, S(S) = {min(A(αξ)) : ξ < κ} = {αξ : ξ < κ} and f � S(S) is increasing. 2

4 Stationary sets and continuous functions

We characterize stationary sets using continuous functions. This feature actually makes sta-

tionary sets a very important tool in set theory distinguishing between objects and therefore

constructing, at will, incomparably many of them in many areas of mathematics see [6].

Theorem 4.1. For any subset S of κ, the following statements are equivalent:

(a) S is stationary in κ.

(b) Every continuous function f from S into κ is either constant on a �nal segment of S or

Fix(f) := {ν ∈ S : f(ν) = ν} is co�nal in κ.

Proof. (a) implies (b). Suppose S stationary and let f : S → κ be a continuous function.

Case 1. S0 = {α ∈ S : f(α) < α} is stationary in κ.
Find a stationary S ⊆ S0, and a ∈ κ so that f ′′S = {a}. Now since two clubs intersect in κ, it
follows that for each ν < a, f−1(ν) is bounded in κ. Thus sup{f−1(ν) : ν < a} = δ < κ. Hence
for t ∈ S∩ [δ+1,→), we have f(t) ≥ a. Next, assume that f−1([a+1,→)) is co�nal in κ. It fol-
lows then that f−1([a+1,→)) is a club of S and thus there is t ∈ S∩f−1([a+1,→)). Therefore
f(t) ≥ a+1 : this contradicts f ′′S = {a}. So, there is δ1 < κ so that sup(f−1([a+1,→))) = δ1.
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Hence, for t ∈ S ∩ [(δ ∨ δ1) + 1,→), f(t) = a i.e., f � S ∩ [(γ,→) is constant for some γ < κ.
Case 2. S1 = {α ∈ S : f(α) ≥ α} is stationary in κ.

Construct, by induction, a sequence of size κ,
(
xξ

)
ξ<κ

so that : xξ ≤ f(xξ) ≤ xξ+1 for each

ξ < κ. Now, denote by cl(X) and lim(X) respectively the closure and the set of limit points of

X in the order topology on κ. Next, let t ∈ S ∩ lim
(
cl(S)

)
∩ lim

(
cl{xξ : ξ < κ}

)
. So, pick

(xξ(η))η so that : xξ(η) ≤ f(xξ(η)) ≤ xξ(η+1) and supη xξ(η) = t. By continuity of f we have

f(t) = t, but this shows that Fix(f) ̸= ∅, and hence is co�nal in κ.
(b) implies (a). Assume that S is non stationary. So pick C a club set in κ disjoint from S and

write κ \ C = ∪{(xα, xα+1) : α < κ}, where (xα, xα+1) is a maximal open interval and (xα)α
is an increasing continuous enumeration of C. Now de�ne f : S → κ by f(ξ) = xα(ξ) with α(ξ)
is the unique ν so that ξ ∈ (xν , xν+1).
Now, Fix(f) = ∅ since S ∩ C = ∅ and |f−1(ξ)| ≤ |(xα(ξ), xα(ξ)+1)| < κ for all ξ's. 2

5 Stationary sets and real continuous functions

The following theorem shows that modulo non-stationary sets constant functions are the only

real continuous functions on stationary sets.

Theorem 5.1. For any subset S of κ, the following statements are equivalent:

(a) S is stationary in κ.

(b) Every continuous function f : S → R is constant on some co�nal segment of S.

Proof. (a) implies (b). Let f : S → R be continuous. We claim that there is n0 ∈ ω so

that f−1([n0,+∞)) is bounded in κ. Indeed, if f−1([n,+∞)) are clubs in κ, it follows then
that ∩{f−1([n,+∞)) : n > 0} is not empty and thus f(t) ≥ n for some t < κ and all n >
0. This is impossible. Likewise there is m0 ∈ ω so that f−1((−∞,−m0]) is bounded in κ.
Thus sup(f−1([n0,+∞)) ∪ f−1((−∞,−m0])) = δ < κ. Now construct a sequence of closed

intervals (Jk)k∈ω so that J0 = [−m0,m0] and Jk+1 ⊆ Jk, d(Jk) = d(J0)
2k

. Set A = {k ∈ ω :

f−1(Jk) is bounded inκ}, B = {k ∈ ω : f−1(Jk) is unbounded inκ}. Let δ1 = sup{f−1(Jk) :
k ∈ A}. For any t ∈]δ ∨ δ1,→) ∩ S ∩ (∩{f−1(Jk) : k ∈ B}), we have f(t) ∈ ∩{Jk : k ∈
B} = {a}. Next set T = S \ (S ∩ (∩{f−1(Jk) : k ∈ B})). Assume that T is co�nal and write

T = {tα : α < κ}. Then for each α < κ, f(tα) ̸= a. Since κ is regular uncountable pick a

co�nal set D ⊆ {tα : α < κ} and some k0 ∈ ω so that f(D) ⊆ Jk0
\ Jk0+1. Write Jk = [ak, bk]

for all k ∈ ω. Now let t ∈ S ∩ lim(cl(D)) ∩ (∩{f−1(Jk) : k ≥ k0}). Pick dν(η) ∈ D so that

limη dν(η) = supη dν(η) = t. It follows then that f(t) = a and f(limη dν(η)) = limη f(dν(η)),
where f(dν(η)) ∈ [ak0

, ak0+1[∪]bk0+1, bk0
[. Thus f(t) ∈ [ak0

, ak0+1] ∪ [bk0+1, bk0
[ and f(t) = a:

contradiction. Therefore γ = supT < κ. Thus for t ∈ [ξ0,→) ∩ S, f(t) = a, where ξ0 >
max(γ, δ, δ1).

(b) implies (a). Suppose S is non-stationary. So pick C a club set in κ disjoint from S and

write κ \ C = ∪{(xα, xα+1) : α < κ}, where (xα, xα+1) is a maximal open interval and (xα)α
is an increasing continuous enumeration of C. S ⊆ κ \ C = ∪{(xα, xα+1) : α < κ}. De�ne
f : S \ C → R by:

f(ξ) :=

{
0 if ξ ∈ (xα, xα+1) and α = λ+ 2n,
1

n if ξ ∈ (xα, xα+1) and α = λ+ 2n+ 1.

f is the continuous function that works. 2

References

[1] P.S. Alexandroff and P. Uryshon Mémoire sur les espaces topologiques compacts, Verh. Abad. Wiss.

Amsterdam (1) 45 (1) 1-96, 1926.

[2] H. Bachman Trans�nite Zahlen, Ergebnisse der Math. und ihnen Grenzgebiete Neme Folge, Heft (1)

(Berlin-Heidelberg-Gottingen) p.43, 1955.



226 Mustapha Alami

[3] B. Dushnik A note on trans�nite ordinals, Bull-Amer. Math. Soc 37, 1931.

[4] P. Erdös Some remarks on Set Theory, Proc. Amer. Math . Soc 1, 127-141, 1950.

[5] G. Fodor Eine Bermerkung Zur theorie der regressiven Functionen, Acta Sci. Math. 17, 139-142, 1956.

[6] T.J. Jech Set Theory, Academic Press, New York, 1978.

[7] K. Kunen Set Theory: an Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.

[8] W. Neumer Verallgemeinerung eines Satze Von Alexandroff and Uryshon, Math. 54 (2) 254-261; MR 13,

331, 1954.

[9] J. Novak A paradoxical theorem, Fund. Math. 37, 77-83, 1950.

Author information

Mustapha Alami, Regional Center of Education and Professional Training, Fez, Morocco.

E-mail: alami08@yahoo.fr

Received: October 22, 2016.

Accepted: March 22, 2017.


