On Global Bipartite Domination Polynomials

Latheeshkumar A. R. and Anil Kumar. V.

Communicated by Ayman Badawi

MSC 2010 Classifications: 05C31, 05C69

Keywords and phrases: Domination polynomial, global bipartite domination, global bipartite domination polynomial.

Abstract In this paper we introduce the concept of the *global bipartite domination polynomial* of a connected bipartite graph and study some of its general properties. We establish some relationships between domination polynomial and global bipartite domination polynomial of certain classes of graphs.

1 Introduction

In this paper we consider simple, connected and bipartite graphs. All notations and definitions not given here can be found in [2, 4]. A graph is an ordered pair G = (V(G), E(G)), where V(G) is a finite nonempty set and E(G) is a collection of 2- point subsets of V. The sets V(G) and E(G) are the vertex set and edge set of G respectively. The degree of a vertex v in G is the number of edges incident at v. The set of all neighbors of v is the open neighborhood of v, denoted by N(v). Let P_n , C_n and $K_{m,n}$ denote path, cycle and complete bipartite graph respectively. A set $A \subseteq V(G)$ of vertices in a graph G = (V, E) is called a dominating set, if every vertex $v \in V$ is either an element of A or adjacent to an element of A. The domination number $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set in G. The domination polynomial of a graph G of order n is the polynomial $\mathcal{D}(G,x) = \sum_{i=\gamma(G)}^n d(G,i)x^i$, where d(G,i) is the number of dominating sets of G of size i [1].

2 Main Results

In this section we introduce a new concept, namely, Global Bipartite Dominating Set of a simple bipartite graph G. Then we define the Global Bipartite Domination Polynomial of G.

Definition 2.1. Let G be a connected bipartite graph with bipartition (X,Y), with |X|=m and |Y|=n. The relative complement of G in $K_{m,n}$ denoted by \widehat{G} is the graph obtained by deleting all edges of G from $K_{m,n}$ (i.e., $K_{m,n} \setminus G$). A global bipartite dominating set (GBDS) of G is a set G of vertices of G such that it dominates G and its relative complement \widehat{G} . The global bipartite domination number, $\gamma_{gb}(G)$ is the minimum cardinality of a global bipartite dominating set of G.

Definition 2.2. Let $\mathcal{D}_{gb}(G,i)$ be the family of global bipartite dominating sets of a simple connected bipartite graph G with cardinality i and let $d_{gb}(G,i) = |\mathcal{D}_{gb}(G,i)|$. Then the global bipartite domination polynomial $\mathcal{D}_{gb}(G,x)$ of G is defined as $\mathcal{D}_{gb}(G,x) = \sum_{i=\gamma_{ab}(G)}^{n} d_{gb}(G,i)x^{i}$

Theorem 2.3. If G and \widehat{G} are connected, then $\mathcal{D}_{gb}(G,x) = \mathcal{D}_{gb}(\widehat{G},x)$.

Proof. The proof follows immediately from the definitions of G.B.D.S and $\mathcal{D}_{ab}(G,x)$.

Theorem 2.4. For any positive integers m and n,

- (i) $\mathcal{D}_{ab}(K_{m,n},x) = x^{m+n}$.
- (ii) If $K_{m,n} \setminus e$ is connected, then $\mathcal{D}_{gb}(K_{m,n} \setminus e, x) = x^{m+n-1}(x+2)$.

Proof. (i) Obviously $\gamma_{gb}(K_{m,n}) = m + n$. Therefore $\mathcal{D}_{gb}(K_{m,n},x) = x^{m+n}$.

(ii) We have $\gamma_{gb}(K_{m,n} \setminus e) = m+n-1$. Since $d_{gb}((K_{m,n} \setminus e, m+n-1) = 2$ and $d_{gb}((K_{m,n} \setminus e, m+n) = 1)$, the proof follows.

A bi-star graph $B_{(m,n)}$ is a tree obtained from the graph K_2 with two vertices u and v by attaching m pendant edges in u and n pendant edges in v.

Theorem 2.5. The global bipartite domination polynomial of bi-star graph is

$$\mathcal{D}_{qb}(B_{(m,n)}) = x^2 \left[x^m + x^n + \left[(1+x)^m - 1 \right] \left[(1+x)^n - 1 \right] \right]$$

Proof. Let U and V be the set of all pendant vertices in u and v respectively. Suppose S is a G.B.D.S of $B_{(m,n)}$. Since the vertices u and v are isolated in $\widehat{B}_{(m,n)}$, $\{u,v\}\subseteq S$. For $|S|-2\neq m$ or $n,\ S\cap U\neq \phi$ and $S\cap V\neq \phi$. If |S|-2=m, then $U\cup\{u,v\}$ and if |S|-2=n, then $V\cup\{u,v\}$ are G.B.D.S of $B_{(m,n)}$. This completes the proof.

The next theorem follows immediately from the definition of global bipartite domination polynomial.

Theorem 2.6. For any spanning subgraph G of $K_{m,n}$,

- (i) $d_{ab}(G, m+n) = 1$.
- (ii) $d_{ab}(G, i) = 0$ if and only if $i < \gamma_{ab}(G)$ or i > m + n
- (iii) $\mathcal{D}_{ab}(G,x)$ has no constant term.
- (iv) $\mathcal{D}_{ab}(G,x)$ is a strictly increasing function in $[0,\infty)$.
- (v) If H is an induced subgraph of G, then $deg(\mathcal{D}_{qb}(G,x)) \geq deg(\mathcal{D}_{qb}(H,x))$
- (vi) Zero is a root of $\mathcal{D}_{ab}(G,x)$ with multiplicity $\gamma_{ab}(G)$.

Theorem 2.7. Let G be a graph with bipartition (X,Y). If G has a γ -set $S = V_1 \cup V_2$, where $V_1 \subseteq X$ and $V_2 \subseteq Y$ then S is a γ_{gb} -set of G if and only if $\bigcap_{x \in V_1} N(x) \subseteq V_2$ and $\bigcap_{y \in V_2} N(y) \subseteq V_1$.

Proof. Let $\bigcap_{x\in V_1} N(x)\subseteq V_2$ and $\bigcap_{y\in V_2} N(y)\subseteq V_1$. Since S is a γ - set of G, it suffices to show

that S dominates the relative compliment of G. Let $u \in X$. If $u \in \bigcap_{y \in V_2} N(y)$, then $u \in V_1$. If

 $u \notin \bigcap_{y \in V_2} N(y)$ then u is adjacent to at least one vertex of V_2 in \widehat{G} . Similarly, we can prove that if

 $v \in Y$ then $v \in V_2$ or v is adjacent to at least one vertex of V_1 in \widehat{G} . Conversely, let S dominates \widehat{G} . Let x be an arbitrary vertex in X. If $x \in \bigcap_{y \in V_2} N(y)$, then in \widehat{G} , x is not adjacent to any vertex

of V_2 . Since S dominates \widehat{G} , we can deduce that $x \in V_1$. If $x \notin \bigcap_{y \in V_2} N(y)$, then x is adjacent to

at least one element of V_2 in \widehat{G} . Hence the proof.

Corollary 2.8. For $n \geq 10$, $\gamma_{gb}(P_n) = \gamma(P_n) = \lceil \frac{n}{3} \rceil$.

Proof. Let $V(P_n)=\{1,2,3,\ldots,n\}$. Then $X=\{x:x \text{ is even},x\leq n\},Y=\{y:y \text{ is odd},y\leq n\}$ is the bipartition of P_n . Let $S_1=\{i:i\equiv 1 (mod\ 3),i\leq n\}$ and $S_2=\{i:i+1\equiv 0 (mod\ 3),i\leq n\}$. Then either S_1 or S_2 is a γ -set of P_n . Also for $i=1,2,\bigcap_{x\in S_i\cap X}N(x)=\phi$ and

 $\bigcap_{y \in S_i \cap Y} N(y) = \phi.$ Thus the proof follows from Theorem 2.7.

Corollary 2.9. For an even integer $n \ge 10$, $\gamma_{gb}(C_n) = \gamma(C_n) = \lceil \frac{n}{3} \rceil$.

Proof. The proof is exactly similar to corollary 2.8.

Corollary 2.10. If G is an n-1-regular connected bipartite graph, then

$$\mathcal{D}_{ab}(G, x) = [x(x+2)]^n - 2nx^n.$$

Proof. Since G is n-1 regular, each component of \widehat{G} is P_2 . Therefore a G.B.D.S of G contains at least one vertex from each component of \widehat{G} . So $\gamma_{qb}(G)=n$ and for $1 \leq i \leq n$, $d_{qb}(G,n+1)$

$$i)=\binom{n}{i}2^{n-i}.$$
 It follows from Theorem 2.7 that $d_{gb}(G,n)=2^n-2n.$ This completes the proof.

Next, we shall study the relation between domination polynomials and global bipartite domination polynomials of paths. For, we need the following:

Theorem 2.11. [1] For every $n \ge 4$, $\mathcal{D}(P_n, x) = x[\mathcal{D}(P_{n-1}, x) + \mathcal{D}(P_{n-2}, x) + \mathcal{D}(P_{n-3}, x), \text{ with initial values } \mathcal{D}(P_1, x) = x, \ \mathcal{D}(P_2, x) = x^2 + 2x, \ \mathcal{D}(P_3, x) = x^3 + 3x^2 + x.$

Lemma 2.12. For a path P_n with bipartition (X,Y), let $S = V_1 \cup V_2$ where $V_1 \subseteq X$ and $V_2 \subseteq Y$ be a dominating set. If $|V_i| > 2$, $\forall i$ then S is a G.B.D.S. of P_n .

Proof. In P_n if $|V_i| > 2$, then $\bigcap_{v \in V_i} N(v) = \phi$. Then by Theorem 2.7, S is a G.B.D.S of P_n . \square

Theorem 2.13. Let G be a connected bipartite graph with partite sets X and Y. Let $S = V_1 \cup V_2$ be a GBDS of G, where $V_1 \subseteq X$ and $V_2 \subseteq Y$. Then if $V_1 = \phi$, then $V_2 = Y$ and if $V_2 = \phi$, then $V_1 = X$.

Proof. Let $S = V_1 \cup V_2$, where $V_1 \subseteq X$ and $V_2 \subseteq Y$. If $V_1 = \phi$, then $S \subseteq Y$. Since G is bipartite, the vertices in Y are not adjacent and so $S \supseteq Y$. Therefore $S = V_2 = Y$. Similarly, we can prove that if $V_2 = \phi$ then $V_1 = X$.

So for $n \ge 12$, to find $d(P_n,i) - d_{gb}(P_n,i)$ it suffices to consider the dominating sets $S = V_1 \cup V_2$ of P_n with $1 \le |V_1| \le 2$ or $1 \le |V_2| \le 2$. To prove theorems 2.14 to 2.17, we take $X = \{1,3,5,\ldots,2n-1\}$ and $Y = \{2,4,6,\ldots,2n\}$ be the bipartition of P_{2n} and $S = V_1 \cup V_2$, where $V_1 \subseteq X$ and $V_2 \subseteq Y$ be a dominating set. Using the following theorems we can find the number of dominating sets which are not global bipartite dominating sets.

Theorem 2.14. *For* $|V_1| = 1$, *we have*

- (i) $d(P_{2n}, n) d_{qb}(P_{2n}, n) = 2n 2$.
- (ii) $d(P_{2n}, n-1) d_{ab}(P_{2n}, n-1) = n-2$.

Proof. Since a vertex in X is adjacent to atmost two vertices in Y, $n-2 \le |V_2| \le n$. If $|V_2| = n$, then $S = V_1 \cup V_2$ is a G.B.D.S and the proof is complete. So $|V_2| = n-2$ or n-1. We consider the following cases:

Case 1: $V_1 = \{1\}$. Here $V_2 = \{4, 6, 8, \dots, 2n\}$. Since $N(1) = \{2\} \nsubseteq V_2$, S is not a G.B.D.S.

Case 2: $V_1 = \{3\}$. Here also $|V_2| = n - 1$ and $V_2 = \{2, 6, 8, ..., 2n\}$. Since $N(3) = \{2, 4\} \nsubseteq V_2$, S is not a G.B.D.S.

Case 3: $V_1 = \{i\}, i \neq 1, 3$. Then for each $i, V_1 \cup Y \setminus \{i-1, i+1\}, V_1 \cup Y \setminus \{i-1\}$ and $V_1 \cup Y \setminus \{i+1\}$ are dominating sets of P_{2n} . Since $N(i) = \{i-1, i+1\} \nsubseteq V_2$, these are not G.B.D.S of P_{2n} .

In cases 1 and 2 we have two dominating sets of order n. In case 3 we have 2(n-2) dominating sets of order n and n-2 dominating sets of order n-1. Therefore the result follows.

Theorem 2.15. *For* $|V_2| = 1$, *we have*

(i)
$$d(P_{2n}, n) - d_{qb}(P_{2n}, n) = 2n - 2$$
.

(ii)
$$d(P_{2n}, n-1) - d_{ab}(P_{2n}, n-1) = n-2$$
.

Proof. The proof is exactly similar to Theorem 2.14.

Theorem 2.16. *For* $|V_1| = 2$, *we have*

(i)
$$d(P_{2n}, n-1) - d_{qb}(P_{2n}, n-1) = n-3$$
.

(ii)
$$d(P_{2n}, n) - d_{ab}(P_{2n}, n) = 2n - 4$$
.

(iii)
$$d(P_{2n}, n+1) - d_{qb}(P_{2n}, n+1) = n-1.$$

Proof. Since $|V_1|=2$, we have $n-3\leq |V_2|\leq n$. If $|V_2|=n$, then $S=V_1\cup V_2$ is a G.B.D.S. So it suffices to consider the cases $|V_2| = n - 3, n - 2$ and n - 1.

Case 1: $V_1 = \{1, 3\}.$

Subcase 1: $|V_2| = n - 2$.

Then $V_2 = \{6, 8, \dots, 2n\}$. Since $N(1) \cup N(3) = \{2\} \not\subseteq V_2$, S is not a G.B.D.S of P_{2n} .

Subcase 2: $|V_2| = n - 1$.

Then $V_2 = \{4, 6, 8, \dots, 2n\}$. Since $N(1) \cup N(3) = \{2\} \not\subseteq V_2$, the dominating set S is not a G.B.D.S.

Case 2: $V_1 = \{3, 5\}.$

As in case 1 we get two dominating sets which are not G.B.D.S of P_{2n} .

Case 3: $V_1 = \{i, i+2\}, i \neq 1, 3$.

Subcase 1: $|V_2| = n - 3$.

Then $V_2 = Y \setminus \{i-1, i+1, i+3\}.$

Subcase 2: $|V_2| = n - 2$.

In this case we have the possibilities, $V_2 = Y \setminus \{i-1, i+1\}$ and $V_2 = Y \setminus \{i+1, i+3\}$.

Subcase 3: $|V_2| = n - 1$.

Then $V_2 = Y \setminus \{i+1\}.$

In subcase 1,2 and 3, $S = V_1 \cup V_2$ is a dominating set but since $N(i) \cap N(i+1) = \{i+1\} \nsubseteq$ V_2 , S is not a G.B.D.S of P_{2n} .

In cases 1 and 2 we have two dominating sets of order n and n + 1. In case 3 we have n - 3dominating sets of order n-1, 2(n-3) dominating sets of order n and n-3 dominating sets of order n + 1. Hence the result follows.

Theorem 2.17. For $|V_2| = 2$, we have

(i)
$$d(P_{2n}, n-1) - d_{gb}(P_{2n}, n-1) = n-3$$
.

(ii)
$$d(P_{2n}, n) - d_{qb}(P_{2n}, n) = 2n - 4$$
.

(iii)
$$d(P_{2n}, n+1) - d_{ab}(P_{2n}, n+1) = n-1.$$

Proof. The proof is exactly similar to Theorem 2.16.

Theorem 2.18. *For* n > 6,

$$\mathcal{D}(P_{2n},x) - \mathcal{D}_{gb}(P_{2n},x) = (4n-10)x^{n-1} + (8n-12)x^n + (2n-2)x^{n+1}.$$

Proof. It follows from Theorems 2.14, 2.15, 2.16 and 2.17.

Next, we find the relationship between domination polynomials and global bipartite domination polynomials of P_{2n+1} . To prove theorems 2.19 to 2.22, we take $X = \{1, 3, 5, \dots, 2n+1\}$ and $Y = \{2, 4, 6, \dots, 2n\}$ be the bipartition of P_{2n+1} and $S = V_1 \cup V_2$, where $V_1 \subseteq X$ and $V_2 \subseteq Y$ be a dominating set of P_{2n+1} .

Theorem 2.19. For $|V_1| = 1$, we have

- (i) $d(P_{2n+1}, n-1) d_{ab}(P_{2n+1}, n-1) = n-3$.
- (ii) $d(P_{2n+1}, n) d_{ab}(P_{2n+1}, n) = 2n 2.$
- *Proof.* Case 1: $V_1 = \{1\}$. Let $V_2 = Y \setminus \{2\}$. Since $N(1) = \{2\}$, $S = V_1 \cup V_2$ is not a G.B.D.S. The case $V_1 = \{2n + 1\}$ is similar.
- **Case 2:** $V_1 = \{3\}$. Let $V_2 = Y \setminus \{4\}$. Since $N(3) = \{2, 4\}$, $S = V_1 \cup V_2$ is not a G.B.D.S. The case $V_1 = \{2n 1\}$ is similar.
- **Case 3:** $V_1 = \{i\}, i \notin \{1, 3, 2n-1, 2n+1\}$. In this case we have the possibilities, $V_2 = Y \setminus \{i-1, i+1\}$ or $V_2 = Y \setminus \{i-1\}$ and $V_2 = Y \setminus \{i+1\}$. Since $N(i) = \{i-1, i+1\}, S = V_1 \cup V_2$ is not a G.B.D.S.

In cases 1 and 2 we have four dominating sets of order n and in case 3 there are n-3 dominating sets of order n-1 and 2(n-3) dominating sets of order n. This completes the proof.

Theorem 2.20. For $|V_2| = 1$, we have

- (i) $d(P_{2n+1}, n) d_{ab}(P_{2n+1}, n) = n$.
- (ii) $d(P_{2n+1}, n+1) d_{ab}(P_{2n+1}, n+1) = 2n$.

Proof. Let $V_2 = \{i\}, i \in Y \Rightarrow N(i) = \{i-1, i+1\}$. Then V_1 can be $X \setminus \{i-1\}$ or $X \setminus \{i+1\}$ or $X \setminus \{i-1, i+1\}$. Since i can be selected in n ways, we have 2n dominating sets of order n+1 and n dominating sets of ordern. Since $N(i) = \{i-1, i+1\}, \ S = V_1 \cup V_2$ is not a G.B.D.S. of P_{2n+1} . Hence the result follows.

Theorem 2.21. *For* $|V_1| = 2$, *we have*

- (i) $d(P_{2n+1}, n-1) d_{gb}(P_{2n+1}, n-1) = n-4$.
- (ii) $d(P_{2n+1}, n) d_{gb}(P_{2n+1}, n) = 2n 4.$
- (iii) $d(P_{2n+1}, n+1) d_{qb}(P_{2n+1}, n+1) = n$.
- *Proof.* Case 1: $V_1 = \{1,3\}$. Then V_2 can be $Y \setminus \{2\}$ or $Y \setminus \{2,3\}$. Since $N(1) \cap N(3) = \{2\}$, $S = V_1 \cup V_2$, is not a G.B.D.S. The case $V_1 = \{2n 1, 2n + 1\}$ is similar.
- **Case 2:** $V_1 = \{3, 5\}$. Then V_2 can be $Y \setminus \{4\}$ or $Y \setminus \{4, 5\}$. Since $N(3) \cap N(5) = \{4\}$, $S = V_1 \cup V_2$, is not a G.B.D.S. The case $V_1 = \{2n 3, 2n 1\}$ is similar.
- **Case 3:** $V_1 = \{i, i+2\}, i \notin \{1, 3, 2n-3, 2n-1\}$. Then V_2 can be $Y \setminus \{i-1, i+1, i+3\}$ or $Y \setminus \{i-1, i+1\}$ or $Y \setminus \{i+1, i+3\}$. Since $N(i) \cap N(i+2) = \{i+1\}$, $S = V_1 \cup V_2$, is not a G.B.D.S.

In cases 1 and 2 we have four dominating sets of order n and n+1. In case 3 there are n-4 dominating sets of order n-1 and n+1 and 2(n-4) dominating sets of order n. Thus the result follows.

Theorem 2.22. *For* $|V_2| = 2$, *we have*

- (i) $d(P_{2n+1}, n) d_{ab}(P_{2n+1}, n) = n 1$.
- (ii) $d(P_{2n+1}, n+1) d_{qb}(P_{2n+1}, n+1) = 2n-2$.
- (iii) $d(P_{2n+1}, n+2) d_{ab}(P_{2n+1}, n+2) = n-1.$

Proof. Let $V_2=\{i,i+2\},\ i\in Y\Rightarrow N(i)\cap N(i+2)=\{i+1\}.$ Then V_1 can be $X\smallsetminus\{i-1,i+1,i+3\}$ or $X\smallsetminus\{i-1,i+1\}$ or $X\smallsetminus\{i+1,i+3\}.$ Since V_2 can be chosen in n-1 ways , we have n-1 dominating sets of order n and 2(n-1) dominating sets of order n+1 and n-1 dominating sets of order n+2. Since $N(i)\cap N(i+2)=\{i+1\},\ S=V_1\cup V_2$ is not a G.B.D.S. of $P_{2n+1}.$ This proves the result.

Theorem 2.23. For $n \geq 6$,

$$\mathcal{D}(P_{2n+1},x) - \mathcal{D}_{ab}(P_{2n+1},x) = (2n-7)x^{n-1} + (6n-7)x^n + (5n-2)x^{n+1} + (n-1)x^{n+2}.$$

П

Proof. It follows from Theorems 2.19, 2.20, 2.21 and 2.22.

Theorem 2.24. [1] For every n > 4,

 $\mathcal{D}(C_n, x) = x[\mathcal{D}(C_{n-1}, x) + \mathcal{D}(C_{n-2}, x) + \mathcal{D}(C_{n-3}, x), \text{ with initial values } \mathcal{D}(C_1, x) = x, \ \mathcal{D}(C_2, x) = x^2 + 2x, \ \mathcal{D}(C_3, x) = x^3 + 3x^2 + 3x.$

Next, we find $\mathcal{D}(C_{2n}, x) - \mathcal{D}_{gb}(C_{2n}, x)$.

To prove theorems 2.25 to 2.29, we take $X = \{1, 3, 5, \dots, 2n - 1\}$ and $Y = \{2, 4, 6, \dots, 2n\}$ be the bipartition of C_{2n} and $S = V_1 \cup V_2$ where $V_1 \subseteq X$ and $V_2 \subseteq Y$ be a dominating set of C_{2n} .

Theorem 2.25. *For* $|V_1| = 1$, *we have*

- (i) $d(C_{2n}, n-1) d_{gb}(C_{2n+1}, n-1) = n$.
- (ii) $d(C_{2n}, n) d_{ab}(C_{2n}, n) = 2n$.

Proof. Let $V_1=\{i\},\ i\in X$. Then $N(i)=\{i-1,i+1\}$ (if i=1, then we take i-1=2n.) Then V_2 can be $Y\smallsetminus\{i-1,i+1\}$ or $X\smallsetminus\{i-1\}$ or $X\smallsetminus\{i+1\}$. Since i can be chosen in n ways , we have n dominating sets of order n-1 and 2n dominating sets of order n. Since $N(i)=\{i-1,i+1\},\ S=V_1\cup V_2$ is not a G.B.D.S. of C_{2n} . Hence the result follows.

Theorem 2.26. For $|V_2| = 1$, we have

- (i) $d(C_{2n}, n-1) d_{ab}(C_{2n+1}, n-1) = n$.
- (ii) $d(C_{2n}, n) d_{qb}(C_{2n}, n) = 2n$.

Proof. The proof is exactly similar to Theorem 2.25.

Theorem 2.27. For $|V_1| = 2$, we have

- (i) $d(C_{2n}, n-1) d_{ab}(C_{2n}, n-1) = n-1$.
- (ii) $d(C_{2n}, n) d_{qb}(C_{2n}, n) = 2(n-1).$
- (iii) $d(C_{2n}, n+1) d_{ab}(C_{2n}, n+1) = n-1.$

Proof. Let $V_1 = \{i, i+2\}$, $i \in X$. Then $N(i) \cap N(i+2) = \{i+1\}$ (if i = 2n-1, then we take i+2=1 and i+3=2.) Then V_2 can be $Y \setminus \{i-1, i+1, i+3\}$ or $Y \setminus \{i-1, i+1\}$ or $Y \setminus \{i+1, i+3\}$ or $Y \setminus \{i+1\}$. Since V_1 can be chosen in n-1 ways, we have (n-1) dominating sets of order n-1, 2(n-1) dominating sets of order n-1. Since $V_1 \cap N(i+2) = \{i+1\}$, $S = V_1 \cup V_2$ is not a G.B.D.S. of C_{2n} . Hence the result follows. □

Theorem 2.28. For $|V_2| = 2$, we have

- (i) $d(C_{2n}, n-1) d_{ab}(C_{2n}, n-1) = n-1$.
- (ii) $d(C_{2n}, n) d_{gb}(C_{2n}, n) = 2(n-1).$
- (iii) $d(C_{2n}, n+1) d_{ab}(C_{2n}, n+1) = n-1.$

Proof. The proof is exactly similar to Theorem 2.27.

Theorem 2.29. For $n \geq 6$,

$$\mathcal{D}(C_{2n},x) - \mathcal{D}_{qb}(C_{2n},x) = (4n-2)x^{n-1} + (8n-4)x^n + (2n-2)x^{n+1}.$$

Proof. It follows from Theorems 2.25, 2.26, 2.27 and 2.28.

References

- [1] S. Alikhani, Dominating sets and domination polynomials of graphs, Ph.D thesis, Diss.Universiti Putra Malaysia (2009).
- [2] R. Balakrishnan and K. Ranganathan, A Textbook of Graph theory, Springer (2012).
- [3] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total Domination in Graphs, *Networks* 10, 211–219, 1980.
- [4] F. Harary, Graph theory, Addison-Wesley, Reading, MA (1972).
- [5] T.W. Haynes, S.T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York (1998).
- [6] T.W. Haynes, S.T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York (1998).
- [7] Michael A. Henning and Anders Yeo, Total Domination in Graphs, Springer, New York (2013).
- [8] V.R. Kuli and B.Janakiram, The total global domination number of a graph. *Indian Journal of Pure and Applied Mathematics* **27**,537–542(1996).
- [9] E. Sampathkumar, The global domination number of a graph, J. Math. Phys. Sci 23, 377-385, (1989).

Author information

Latheeshkumar A. R., Department of Mathematics, St. Mary's College, Sulthan bathery, Wayanad, Kerala, 673 592, India.

E-mail: latheesby@gmail.com

Anil Kumar. V., Department of Mathematics, University of Calicut, Malappuram, Kerala, 673 635, India.

E-mail: anil@uoc.ac.in

Received: July 22, 2016.

Accepted: February 27, 2017.