On Global Bipartite Domination Polynomials

Latheeshkumar A. R. and Anil Kumar. V.
Communicated by Ayman Badawi

MSC 2010 Classifications: 05C31, 05C69
Keywords and phrases: Domination polynomial, global bipartite domination, global bipartite domination polynomial.

Abstract

In this paper we introduce the concept of the global bipartite domination polynomial of a connected bipartite graph and study some of its general properties. We establish some relationships between domination polynomial and global bipartite domination polynomial of certain classes of graphs.

1 Introduction

In this paper we consider simple, connected and bipartite graphs. All notations and definitions not given here can be found in $[2,4]$. A graph is an ordered pair $G=(V(G), E(G))$, where $V(G)$ is a finite nonempty set and $E(G)$ is a collection of 2- point subsets of V. The sets $V(G)$ and $E(G)$ are the vertex set and edge set of G respectively. The degree of a vertex v in G is the number of edges incident at v. The set of all neighbors of v is the open neighborhood of v, denoted by $N(v)$. Let P_{n}, C_{n} and $K_{m, n}$ denote path, cycle and complete bipartite graph respectively. A set $A \subseteq V(G)$ of vertices in a graph $G=(V, E)$ is called a dominating set, if every vertex $v \in V$ is either an element of A or adjacent to an element of A. The domination number $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set in G. The domination polynomial of a graph G of order n is the polynomial $\mathcal{D}(G, x)=\sum_{i=\gamma(G)}^{n} d(G, i) x^{i}$, where $d(G, i)$ is the number of dominating sets of G of size i [1].

2 Main Results

In this section we introduce a new concept, namely, Global Bipartite Dominating Set of a simple bipartite graph G. Then we define the Global Bipartite Domination Polynomial of G.

Definition 2.1. Let G be a connected bipartite graph with bipartition (X, Y), with $|X|=m$ and $|Y|=n$. The relative complement of G in $K_{m, n}$ denoted by \widehat{G} is the graph obtained by deleting all edges of G from $K_{m, n}$ (i.e., $K_{m, n} \backslash G$). A global bipartite dominating set (GBDS) of G is a set S of vertices of G such that it dominates G and its relative complement \widehat{G}. The global bipartite domination number, $\gamma_{g b}(G)$ is the minimum cardinality of a global bipartite dominating set of G.

Definition 2.2. Let $\mathcal{D}_{g b}(G, i)$ be the family of global bipartite dominating sets of a simple connected bipartite graph G with cardinality i and let $d_{g b}(G, i)=\left|\mathcal{D}_{g b}(G, i)\right|$. Then the global bipartite domination polynomial $\mathcal{D}_{g b}(G, x)$ of G is defined as $\mathcal{D}_{g b}(G, x)=\sum_{i=\gamma_{g b}(G)}^{n} d_{g b}(G, i) x^{i}$
Theorem 2.3. If G and \widehat{G} are connected, then $\mathcal{D}_{g b}(G, x)=\mathcal{D}_{g b}(\widehat{G}, x)$.
Proof. The proof follows immediately from the definitions of G.B.D.S and $\mathcal{D}_{g b}(G, x)$.
Theorem 2.4. For any positive integers m and n,
(i) $\mathcal{D}_{g b}\left(K_{m, n}, x\right)=x^{m+n}$.
(ii) If $K_{m, n} \backslash e$ is connected, then $\mathcal{D}_{g b}\left(K_{m, n} \backslash e, x\right)=x^{m+n-1}(x+2)$.

Proof. (i) Obviously $\gamma_{g b}\left(K_{m, n}\right)=m+n$. Therefore $\mathcal{D}_{g b}\left(K_{m, n}, x\right)=x^{m+n}$.
(ii) We have $\gamma_{g b}\left(K_{m, n} \backslash e\right)=m+n-1$. Since $d_{g b}\left(\left(K_{m, n} \backslash e, m+n-1\right)=2\right.$ and $d_{g b}\left(\left(K_{m, n} \backslash\right.\right.$ $e, m+n)=1$, the proof follows.

A bi-star graph $B_{(m, n)}$ is a tree obtained from the graph K_{2} with two vertices u and v by attaching m pendant edges in u and n pendant edges in v.

Theorem 2.5. The global bipartite domination polynomial of bi-star graph is

$$
\mathcal{D}_{g b}\left(B_{(m, n)}\right)=x^{2}\left[x^{m}+x^{n}+\left[(1+x)^{m}-1\right]\left[(1+x)^{n}-1\right]\right]
$$

Proof. Let U and V be the set of all pendant vertices in u and v respectively. Suppose S is a G.B.D.S of $B_{(m, n)}$. Since the vertices u and v are isolated in $\widehat{B}_{(m, n)},\{u, v\} \subseteq S$. For $|S|-2 \neq$ m or $n, S \cap U \neq \phi$ and $S \cap V \neq \phi$. If $|S|-2=m$, then $U \cup\{u, v\}$ and if $|S|-2=n$, then $V \cup\{u, v\}$ are G.B.D.S of $B_{(m, n)}$. This completes the proof.

The next theorem follows immediately from the definition of global bipartite domination polynomial.

Theorem 2.6. For any spanning subgraph G of $K_{m, n}$,
(i) $d_{g b}(G, m+n)=1$.
(ii) $d_{g b}(G, i)=0$ if and only if $i<\gamma_{g b}(G)$ or $i>m+n$
(iii) $\mathcal{D}_{g b}(G, x)$ has no constant term.
(iv) $\mathcal{D}_{g b}(G, x)$ is a strictly increasing function in $[0, \infty)$.
(v) If H is an induced subgraph of G, then $\operatorname{deg}\left(\mathcal{D}_{g b}(G, x)\right) \geq \operatorname{deg}\left(\mathcal{D}_{g b}(H, x)\right)$
(vi) Zero is a root of $\mathcal{D}_{g b}(G, x)$ with multiplicity $\gamma_{g b}(G)$.

Theorem 2.7. Let G be a graph with bipartition (X, Y). If G has a γ-set $S=V_{1} \cup V_{2}$, where $V_{1} \subseteq X$ and $V_{2} \subseteq Y$ then S is $a \gamma_{g b}$-set of G if and only if $\bigcap_{x \in V_{1}} N(x) \subseteq V_{2}$ and $\bigcap_{y \in V_{2}} N(y) \subseteq V_{1}$.

Proof. Let $\bigcap_{x \in V_{1}} N(x) \subseteq V_{2}$ and $\bigcap_{y \in V_{2}} N(y) \subseteq V_{1}$. Since S is a γ - set of G, it suffices to show that S dominates the relative compliment of G. Let $u \in X$. If $u \in \bigcap_{y \in V_{2}} N(y)$, then $u \in V_{1}$. If $u \notin \bigcap_{y \in V_{2}} N(y)$ then u is adjacent to atleast one vertex of V_{2} in \widehat{G}. Similarly, we can prove that if $v \in Y$ then $v \in V_{2}$ or v is adjacent to atleast one vertex of V_{1} in \widehat{G}. Conversely, let S dominates \widehat{G}. Let x be an arbitrary vertex in X. If $x \in \bigcap_{y \in V_{2}} N(y)$, then in \widehat{G}, x is not adjacent to any vertex of V_{2}. Since S dominates \widehat{G}, we can deduce that $x \in V_{1}$. If $x \notin \bigcap_{y \in V_{2}} N(y)$, then x is adjacent to at least one element of V_{2} in \widehat{G}. Hence the proof.

Corollary 2.8. For $n \geq 10, \gamma_{g b}\left(P_{n}\right)=\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.
Proof. Let $V\left(P_{n}\right)=\{1,2,3, \ldots, n\}$. Then $X=\{x: x$ is even, $x \leq n\}, Y=\{y: y$ is odd, $y \leq$ $n\}$ is the bipartition of P_{n}. Let $S_{1}=\{i: i \equiv 1(\bmod 3), i \leq n\}$ and $S_{2}=\{i: i+1 \equiv$ $0(\bmod 3), i \leq n\}$. Then either S_{1} or S_{2} is a γ-set of P_{n}. Also for $i=1,2, \bigcap_{x \in S_{i} \cap X} N(x)=\phi$ and

$$
\bigcap_{y \in S_{i} \cap Y} N(y)=\phi . \text { Thus the proof follows from Theorem 2.7. }
$$

Corollary 2.9. For an even integer $n \geq 10, \gamma_{g b}\left(C_{n}\right)=\gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.
Proof. The proof is exactly similar to corollary 2.8 .

Corollary 2.10. If G is an $n-1$-regular connected bipartite graph, then

$$
\mathcal{D}_{g b}(G, x)=[x(x+2)]^{n}-2 n x^{n}
$$

Proof. Since G is $n-1$ regular, each component of \widehat{G} is P_{2}. Therefore a G.B.D.S of G contains at least one vertex from each component of \widehat{G}. So $\gamma_{g b}(G)=n$ and for $1 \leq i \leq n, d_{g b}(G, n+$ $i)=\binom{n}{i} 2^{n-i}$. It follows from Theorem 2.7 that $d_{g b}(G, n)=2^{n}-2 n$. This completes the proof.

Next, we shall study the relation between domination polynomials and global bipartite domination polynomials of paths. For, we need the following:

Theorem 2.11. [1] For every $n \geq 4$,
$\mathcal{D}\left(P_{n}, x\right)=x\left[\mathcal{D}\left(P_{n-1}, x\right)+\mathcal{D}\left(P_{n-2}, x\right)+\mathcal{D}\left(P_{n-3}, x\right)\right.$, with initial values $\mathcal{D}\left(P_{1}, x\right)=$ $x, \mathcal{D}\left(P_{2}, x\right)=x^{2}+2 x, \mathcal{D}\left(P_{3}, x\right)=x^{3}+3 x^{2}+x$.

Lemma 2.12. For a path P_{n} with bipartition (X, Y), let $S=V_{1} \cup V_{2}$ where $V_{1} \subseteq X$ and $V_{2} \subseteq Y$ be a dominating set. If $\left|V_{i}\right|>2, \forall i$ then S is a G.B.D.S. of P_{n}.

Proof. In P_{n} if $\left|V_{i}\right|>2$, then $\bigcap_{v \in V_{i}} N(v)=\phi$. Then by Theorem 2.7, S is a G.B.D.S of P_{n}.
Theorem 2.13. Let G be a connected bipartite graph with partite sets X and Y. Let $S=V_{1} \cup V_{2}$ be a GBDS of G, where $V_{1} \subseteq X$ and $V_{2} \subseteq Y$. Then if $V_{1}=\phi$, then $V_{2}=Y$ and if $V_{2}=\phi$, then $V_{1}=X$.

Proof. Let $S=V_{1} \cup V_{2}$, where $V_{1} \subseteq X$ and $V_{2} \subseteq Y$. If $V_{1}=\phi$, then $S \subseteq Y$. Since G is bipartite, the vertices in Y are not adjacent and so $S \supseteq Y$. Therefore $S=V_{2}=Y$. Similarly, we can prove that if $V_{2}=\phi$ then $V_{1}=X$.

So for $n \geq 12$, to find $d\left(P_{n}, i\right)-d_{g b}\left(P_{n}, i\right)$ it suffices to consider the dominating sets $S=$ $V_{1} \cup V_{2}$ of P_{n} with $1 \leq\left|V_{1}\right| \leq 2$ or $1 \leq\left|V_{2}\right| \leq 2$. To prove theorems 2.14 to 2.17 , we take $X=\{1,3,5, \ldots, 2 n-1\}$ and $Y=\{2,4,6, \ldots, 2 n\}$ be the bipartition of $P_{2 n}$ and $S=V_{1} \cup V_{2}$, where $V_{1} \subseteq X$ and $V_{2} \subseteq Y$ be a dominating set. Using the following theorems we can find the number of dominating sets which are not global bipartite dominating sets.

Theorem 2.14. For $\left|V_{1}\right|=1$, we have
(i) $d\left(P_{2 n}, n\right)-d_{g b}\left(P_{2 n}, n\right)=2 n-2$.
(ii) $d\left(P_{2 n}, n-1\right)-d_{g b}\left(P_{2 n}, n-1\right)=n-2$.

Proof. Since a vertex in X is adjacent to atmost two vertices in $Y, n-2 \leq\left|V_{2}\right| \leq n$. If $\left|V_{2}\right|=n$, then $S=V_{1} \cup V_{2}$ is a G.B.D.S and the proof is complete. So $\left|V_{2}\right|=n-2$ or $n-1$. We consider the following cases:
Case 1: $V_{1}=\{1\}$.
Here $V_{2}=\{4,6,8, \ldots, 2 n\}$. Since $N(1)=\{2\} \nsubseteq V_{2}, S$ is not a G.B.D.S.
Case 2: $V_{1}=\{3\}$.
Here also $\left|V_{2}\right|=n-1$ and $V_{2}=\{2,6,8, \ldots, 2 n\}$. Since $N(3)=\{2,4\} \nsubseteq V_{2}, S$ is not a G.B.D.S.

Case 3: $V_{1}=\{i\}, i \neq 1,3$.
Then for each $i, V_{1} \cup Y \backslash\{i-1, i+1\}, V_{1} \cup Y \backslash\{i-1\}$ and $V_{1} \cup Y \backslash\{i+1\}$ are dominating sets of $P_{2 n}$. Since $N(i)=\{i-1, i+1\} \nsubseteq V_{2}$, these are not G.B.D.S of $P_{2 n}$.

In cases 1 and 2 we have two dominating sets of order n. In case 3 we have $2(n-2)$ dominating sets of order n and $n-2$ dominating sets of order $n-1$. Therefore the result follows.

Theorem 2.15. For $\left|V_{2}\right|=1$, we have
(i) $d\left(P_{2 n}, n\right)-d_{g b}\left(P_{2 n}, n\right)=2 n-2$.
(ii) $d\left(P_{2 n}, n-1\right)-d_{g b}\left(P_{2 n}, n-1\right)=n-2$.

Proof. The proof is exactly similar to Theorem 2.14.
Theorem 2.16. For $\left|V_{1}\right|=2$, we have
(i) $d\left(P_{2 n}, n-1\right)-d_{g b}\left(P_{2 n}, n-1\right)=n-3$.
(ii) $d\left(P_{2 n}, n\right)-d_{g b}\left(P_{2 n}, n\right)=2 n-4$.
(iii) $d\left(P_{2 n}, n+1\right)-d_{g b}\left(P_{2 n}, n+1\right)=n-1$.

Proof. Since $\left|V_{1}\right|=2$, we have $n-3 \leq\left|V_{2}\right| \leq n$. If $\left|V_{2}\right|=n$, then $S=V_{1} \cup V_{2}$ is a G.B.D.S. So it suffices to consider the cases $\left|V_{2}\right|=n-3, n-2$ and $n-1$.

Case 1: $V_{1}=\{1,3\}$.
Subcase 1: $\left|V_{2}\right|=n-2$.
Then $V_{2}=\{6,8, \ldots, 2 n\}$. Since $N(1) \cup N(3)=\{2\} \nsubseteq V_{2}, S$ is not a G.B.D.S of $P_{2 n}$.
Subcase 2: $\left|V_{2}\right|=n-1$.
Then $V_{2}=\{4,6,8, \ldots, 2 n\}$. Since $N(1) \cup N(3)=\{2\} \nsubseteq V_{2}$, the dominating set S is not a G.B.D.S.

Case 2: $V_{1}=\{3,5\}$.
As in case 1 we get two dominating sets which are not G.B.D.S of $P_{2 n}$.
Case 3: $V_{1}=\{i, i+2\}, i \neq 1,3$.
Subcase 1: $\left|V_{2}\right|=n-3$.
Then $V_{2}=Y \backslash\{i-1, i+1, i+3\}$.
Subcase 2: $\left|V_{2}\right|=n-2$.
In this case we have the possibilities, $V_{2}=Y \backslash\{i-1, i+1\}$ and $V_{2}=Y \backslash\{i+1, i+3\}$.
Subcase 3: $\left|V_{2}\right|=n-1$.
Then $V_{2}=Y \backslash\{i+1\}$.
In subcase 1,2 and 3, $S=V_{1} \cup V_{2}$ is a dominating set but since $N(i) \cap N(i+1)=\{i+1\} \nsubseteq$ V_{2}, S is not a G.B.D.S of $P_{2 n}$.
In cases 1 and 2 we have two dominating sets of order n and $n+1$. In case 3 we have $n-3$ dominating sets of order $n-1,2(n-3)$ dominating sets of order n and $n-3$ dominating sets of order $n+1$. Hence the result follows.

Theorem 2.17. For $\left|V_{2}\right|=2$, we have
(i) $d\left(P_{2 n}, n-1\right)-d_{g b}\left(P_{2 n}, n-1\right)=n-3$.
(ii) $d\left(P_{2 n}, n\right)-d_{g b}\left(P_{2 n}, n\right)=2 n-4$.
(iii) $d\left(P_{2 n}, n+1\right)-d_{g b}\left(P_{2 n}, n+1\right)=n-1$.

Proof. The proof is exactly similar to Theorem 2.16.
Theorem 2.18. For $n \geq 6$,

$$
\mathcal{D}\left(P_{2 n}, x\right)-\mathcal{D}_{g b}\left(P_{2 n}, x\right)=(4 n-10) x^{n-1}+(8 n-12) x^{n}+(2 n-2) x^{n+1}
$$

Proof. It follows from Theorems 2.14, 2.15, 2.16 and 2.17.
Next, we find the relationship between domination polynomials and global bipartite domination polynomials of $P_{2 n+1}$. To prove theorems 2.19 to 2.22 , we take $X=\{1,3,5, \ldots, 2 n+1\}$ and $Y=\{2,4,6, \ldots, 2 n\}$ be the bipartition of $P_{2 n+1}$ and $S=V_{1} \cup V_{2}$, where $V_{1} \subseteq X$ and $V_{2} \subseteq Y$ be a dominating set of $P_{2 n+1}$.

Theorem 2.19. For $\left|V_{1}\right|=1$, we have
(i) $d\left(P_{2 n+1}, n-1\right)-d_{g b}\left(P_{2 n+1}, n-1\right)=n-3$.
(ii) $d\left(P_{2 n+1}, n\right)-d_{g b}\left(P_{2 n+1}, n\right)=2 n-2$.

Proof. Case 1: $V_{1}=\{1\}$. Let $V_{2}=Y \backslash\{2\}$. Since $N(1)=\{2\}, S=V_{1} \cup V_{2}$ is not a G.B.D.S.
The case $V_{1}=\{2 n+1\}$ is similar.
Case 2: $V_{1}=\{3\}$. Let $V_{2}=Y \backslash\{4\}$. Since $N(3)=\{2,4\}, S=V_{1} \cup V_{2}$ is not a G.B.D.S.
The case $V_{1}=\{2 n-1\}$ is similar.
Case 3: $V_{1}=\{i\}, i \notin\{1,3,2 n-1,2 n+1\}$. In this case we have the possibilities, $V_{2}=Y \backslash\{i-$ $1, i+1\}$ or $V_{2}=Y \backslash\{i-1\}$ and $V_{2}=Y \backslash\{i+1\}$. Since $N(i)=\{i-1, i+1\}, S=V_{1} \cup V_{2}$ is not a G.B.D.S.
In cases 1 and 2 we have four dominating sets of order n and in case 3 there are $n-3$ dominating sets of order $n-1$ and $2(n-3)$ dominating sets of order n. This completes the proof.

Theorem 2.20. For $\left|V_{2}\right|=1$, we have
(i) $d\left(P_{2 n+1}, n\right)-d_{g b}\left(P_{2 n+1}, n\right)=n$.
(ii) $d\left(P_{2 n+1}, n+1\right)-d_{g b}\left(P_{2 n+1}, n+1\right)=2 n$.

Proof. Let $V_{2}=\{i\}, i \in Y \Rightarrow N(i)=\{i-1, i+1\}$. Then V_{1} can be $X \backslash\{i-1\}$ or $X \backslash\{i+1\}$ or $X \backslash\{i-1, i+1\}$. Since i can be selected in n ways, we have $2 n$ dominating sets of order $n+1$ and n dominating sets of order n. Since $N(i)=\{i-1, i+1\}, S=V_{1} \cup V_{2}$ is not a G.B.D.S. of $P_{2 n+1}$. Hence the result follows.

Theorem 2.21. For $\left|V_{1}\right|=2$, we have
(i) $d\left(P_{2 n+1}, n-1\right)-d_{g b}\left(P_{2 n+1}, n-1\right)=n-4$.
(ii) $d\left(P_{2 n+1}, n\right)-d_{g b}\left(P_{2 n+1}, n\right)=2 n-4$.
(iii) $d\left(P_{2 n+1}, n+1\right)-d_{g b}\left(P_{2 n+1}, n+1\right)=n$.

Proof. Case 1: $V_{1}=\{1,3\}$. Then V_{2} can be $Y \backslash\{2\}$ or $Y \backslash\{2,3\}$. Since $N(1) \cap N(3)=$ $\{2\}, S=V_{1} \cup V_{2}$, is not a G.B.D.S.
The case $V_{1}=\{2 n-1,2 n+1\}$ is similar.
Case 2: $V_{1}=\{3,5\}$. Then V_{2} can be $Y \backslash\{4\}$ or $Y \backslash\{4,5\}$. Since $N(3) \cap N(5)=\{4\}, S=$ $V_{1} \cup V_{2}$, is not a G.B.D.S.
The case $V_{1}=\{2 n-3,2 n-1\}$ is similar.
Case 3: $V_{1}=\{i, i+2\}, i \notin\{1,3,2 n-3,2 n-1\}$. Then V_{2} can be $Y \backslash\{i-1, i+1, i+3\}$ or $Y \backslash\{i-1, i+1\}$ or $Y \backslash\{i+1, i+3\}$. Since $N(i) \cap N(i+2)=\{i+1\}, S=V_{1} \cup V_{2}$, is not a G.B.D.S.
In cases 1 and 2 we have four dominating sets of order n and $n+1$. In case 3 there are $n-4$ dominating sets of order $n-1$ and $n+1$ and $2(n-4)$ dominating sets of order n. Thus the result follows.

Theorem 2.22. For $\left|V_{2}\right|=2$, we have
(i) $d\left(P_{2 n+1}, n\right)-d_{g b}\left(P_{2 n+1}, n\right)=n-1$.
(ii) $d\left(P_{2 n+1}, n+1\right)-d_{g b}\left(P_{2 n+1}, n+1\right)=2 n-2$.
(iii) $d\left(P_{2 n+1}, n+2\right)-d_{g b}\left(P_{2 n+1}, n+2\right)=n-1$.

Proof. Let $V_{2}=\{i, i+2\}, i \in Y \Rightarrow N(i) \cap N(i+2)=\{i+1\}$. Then V_{1} can be $X \backslash\{i-1, i+$ $1, i+3\}$ or $X \backslash\{i-1, i+1\}$ or $X \backslash\{i+1, i+3\}$. Since V_{2} can be chosen in $n-1$ ways, we have $n-1$ dominating sets of order n and $2(n-1)$ dominating sets of order $n+1$ and $n-1$ dominating sets of order $n+2$. Since $N(i) \cap N(i+2)=\{i+1\}, S=V_{1} \cup V_{2}$ is not a G.B.D.S. of $P_{2 n+1}$. This proves the result.

Theorem 2.23. For $n \geq 6$,

$$
\mathcal{D}\left(P_{2 n+1}, x\right)-\mathcal{D}_{g b}\left(P_{2 n+1}, x\right)=(2 n-7) x^{n-1}+(6 n-7) x^{n}+(5 n-2) x^{n+1}+(n-1) x^{n+2}
$$

Proof. It follows from Theorems 2.19, 2.20, 2.21 and 2.22.
Theorem 2.24. [1] For every $n \geq 4$,
$\mathcal{D}\left(C_{n}, x\right)=x\left[\mathcal{D}\left(C_{n-1}, x\right)+\mathcal{D}\left(C_{n-2}, x\right)+\mathcal{D}\left(C_{n-3}, x\right)\right.$, with initial values $\mathcal{D}\left(C_{1}, x\right)=$ $x, \mathcal{D}\left(C_{2}, x\right)=x^{2}+2 x, \mathcal{D}\left(C_{3}, x\right)=x^{3}+3 x^{2}+3 x$.

Next, we find $\mathcal{D}\left(C_{2 n}, x\right)-\mathcal{D}_{g b}\left(C_{2 n}, x\right)$.
To prove theorems 2.25 to 2.29 , we take $X=\{1,3,5, \ldots, 2 n-1\}$ and $Y=\{2,4,6, \ldots, 2 n\}$ be the bipartition of $C_{2 n}$ and $S=V_{1} \cup V_{2}$ where $V_{1} \subseteq X$ and $V_{2} \subseteq Y$ be a dominating set of $C_{2 n}$.

Theorem 2.25. For $\left|V_{1}\right|=1$, we have
(i) $d\left(C_{2 n}, n-1\right)-d_{g b}\left(C_{2 n+1}, n-1\right)=n$.
(ii) $d\left(C_{2 n}, n\right)-d_{g b}\left(C_{2 n}, n\right)=2 n$.

Proof. Let $V_{1}=\{i\}, i \in X$. Then $N(i)=\{i-1, i+1\}$ (if $i=1$, then we take $i-1=2 n$.) Then V_{2} can be $Y \backslash\{i-1, i+1\}$ or $X \backslash\{i-1\}$ or $X \backslash\{i+1\}$. Since i can be chosen in n ways, we have n dominating sets of order $n-1$ and $2 n$ dominating sets of order n. Since $N(i)=\{i-1, i+1\}, S=V_{1} \cup V_{2}$ is not a G.B.D.S. of $C_{2 n}$. Hence the result follows.

Theorem 2.26. For $\left|V_{2}\right|=1$, we have
(i) $d\left(C_{2 n}, n-1\right)-d_{g b}\left(C_{2 n+1}, n-1\right)=n$.
(ii) $d\left(C_{2 n}, n\right)-d_{g b}\left(C_{2 n}, n\right)=2 n$.

Proof. The proof is exactly similar to Theorem 2.25.
Theorem 2.27. For $\left|V_{1}\right|=2$, we have
(i) $d\left(C_{2 n}, n-1\right)-d_{g b}\left(C_{2 n}, n-1\right)=n-1$.
(ii) $d\left(C_{2 n}, n\right)-d_{g b}\left(C_{2 n}, n\right)=2(n-1)$.
(iii) $d\left(C_{2 n}, n+1\right)-d_{g b}\left(C_{2 n}, n+1\right)=n-1$.

Proof. Let $V_{1}=\{i, i+2\}, i \in X$. Then $N(i) \cap N(i+2)=\{i+1\}$ (if $i=2 n-1$, then we take $i+$ $2=1$ and $i+3=2$.) Then V_{2} can be $Y \backslash\{i-1, i+1, i+3\}$ or $Y \backslash\{i-1, i+1\}$ or $Y \backslash\{i+1, i+3\}$ or $Y \backslash\{i+1\}$. Since V_{1} can be chosen in $n-1$ ways, we have $(n-1)$ dominating sets of order $n-1,2(n-1)$ dominating sets of order n and $n-1$ dominating sets of order $n+1$. Since $N(i) \cap N(i+2)=\{i+1\}, S=V_{1} \cup V_{2}$ is not a G.B.D.S. of $C_{2 n}$. Hence the result follows.

Theorem 2.28. For $\left|V_{2}\right|=2$, we have
(i) $d\left(C_{2 n}, n-1\right)-d_{g b}\left(C_{2 n}, n-1\right)=n-1$.
(ii) $d\left(C_{2 n}, n\right)-d_{g b}\left(C_{2 n}, n\right)=2(n-1)$.
(iii) $d\left(C_{2 n}, n+1\right)-d_{g b}\left(C_{2 n}, n+1\right)=n-1$.

Proof. The proof is exactly similar to Theorem 2.27.
Theorem 2.29. For $n \geq 6$,

$$
\mathcal{D}\left(C_{2 n}, x\right)-\mathcal{D}_{g b}\left(C_{2 n}, x\right)=(4 n-2) x^{n-1}+(8 n-4) x^{n}+(2 n-2) x^{n+1}
$$

Proof. It follows from Theorems 2.25, 2.26, 2.27 and 2.28.

References

[1] S. Alikhani, Dominating sets and domination polynomials of graphs, Ph.D thesis, Diss.Universiti Putra Malaysia (2009).
[2] R. Balakrishnan and K. Ranganathan, A Textbook of Graph theory, Springer(2012).
[3] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total Domination in Graphs, Networks 10, 211-219, 1980.
[4] F. Harary, Graph theory, Addison-Wesley, Reading, MA (1972).
[5] T.W. Haynes, S.T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York (1998).
[6] T.W. Haynes, S.T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York (1998).
[7] Michael A. Henning and Anders Yeo, Total Domination in Graphs, Springer, New York (2013).
[8] V.R. Kuli and B.Janakiram, The total global domination number of a graph. Indian Journal of Pure and Applied Mathematics 27,537-542(1996).
[9] E. Sampathkumar, The global domination number of a graph, J. Math. Phys.Sci 23, 377-385, (1989).

Author information

Latheeshkumar A. R., Department of Mathematics,St. Mary's College, Sulthan bathery, Wayanad, Kerala, 673 592, India.
E-mail: latheesby@gmail.com
Anil Kumar. V., Department of Mathematics,University of Calicut, Malappuram, Kerala, 673 635, India. E-mail: anil@uoc.ac.in

Received: July 22, 2016.
Accepted: February 27, 2017.

