On Global Bipartite Domination Polynomials

Latheeshkumar A. R. and Anil Kumar. V.

Communicated by Ayman Badawi

MSC 2010 Classifications: 05C31, 05C69

Keywords and phrases: Domination polynomial, global bipartite domination, global bipartite domination polynomial.

Abstract In this paper we introduce the concept of the global bipartite domination polynomial of a connected bipartite graph and study some of its general properties. We establish some relationships between domination polynomial and global bipartite domination polynomial of certain classes of graphs.

1 Introduction

In this paper we consider simple, connected and bipartite graphs. All notations and definitions not given here can be found in [2, 4]. A graph is an ordered pair \(G = (V(G), E(G)) \), where \(V(G) \) is a finite nonempty set and \(E(G) \) is a collection of 2-point subsets of \(V \). The sets \(V(G) \) and \(E(G) \) are the vertex set and edge set of \(G \) respectively. The degree of a vertex \(v \) in \(G \) is the number of edges incident at \(v \). The set of all neighbors of \(v \) is the open neighborhood of \(v \), denoted by \(N(v) \). Let \(P_n, C_n \) and \(K_{m,n} \) denote path, cycle and complete bipartite graph respectively. A set \(A \subseteq V(G) \) of vertices in a graph \(G = (V, E) \) is called a dominating set, if every vertex \(v \in V \) is either an element of \(A \) or adjacent to an element of \(A \). The domination number \(\gamma(G) \) of a graph \(G \) is the minimum cardinality of a dominating set in \(G \). The domination polynomial of a graph \(G \) of order \(n \) is the polynomial \(D(G, x) = \sum_{i=\gamma(G)}^n d(G, i) x^i \), where \(d(G, i) \) is the number of dominating sets of \(G \) of size \(i \) [1].

2 Main Results

In this section we introduce a new concept, namely, Global Bipartite Dominating Set of a simple bipartite graph \(G \). Then we define the Global Bipartite Domination Polynomial of \(G \).

Definition 2.1. Let \(G \) be a connected bipartite graph with bipartition \((X, Y)\), with \(|X| = m \) and \(|Y| = n \). The relative complement of \(G \) in \(K_{m,n} \) denoted by \(\bar{G} \) is the graph obtained by deleting all edges of \(G \) from \(K_{m,n} \) (i.e., \(K_{m,n} \setminus G \)). A global bipartite dominating set (GBDS) of \(G \) is a set \(S \) of vertices of \(G \) such that it dominates \(G \) and its relative complement \(\bar{G} \). The global bipartite domination number, \(\gamma_{gb}(G) \) is the minimum cardinality of a global bipartite dominating set of \(G \).

Definition 2.2. Let \(D_{gb}(G, i) \) be the family of global bipartite dominating sets of a simple connected bipartite graph \(G \) with cardinality \(i \) and let \(d_{gb}(G, i) = |D_{gb}(G, i)| \). Then the global bipartite domination polynomial \(D_{gb}(G, x) \) of \(G \) is defined as \(D_{gb}(G, x) = \sum_{i=\gamma_{gb}(G)}^n d_{gb}(G, i) x^i \).

Theorem 2.3. If \(G \) and \(\bar{G} \) are connected, then \(D_{gb}(G, x) = D_{gb}(\bar{G}, x) \).

Proof. The proof follows immediately from the definitions of GBDS and \(D_{gb}(G, x) \). \(\square \)

Theorem 2.4. For any positive integers \(m \) and \(n \),

(i) \(D_{gb}(K_{m,n}, x) = x^{m+n} \).

(ii) If \(K_{m,n} \setminus e \) is connected, then \(D_{gb}(K_{m,n} \setminus e, x) = x^{m+n-1}(x+2) \).

Proof. (i) Obviously \(\gamma_{gb}(K_{m,n}) = m+n \). Therefore \(D_{gb}(K_{m,n}, x) = x^{m+n} \).
(ii) We have \(\gamma_{gb}(K_{m,n} \smallsetminus e) = m + n - 1 \). Since \(d_{gb}(K_{m,n} \smallsetminus e, m + n - 1) = 2 \) and \(d_{gb}(K_{m,n} \smallsetminus e, m + n) = 1 \), the proof follows. \(\square \)

A bi-star graph \(B_{(m,n)} \) is a tree obtained from the graph \(K_2 \) with two vertices \(u \) and \(v \) by attaching \(m \) pendant edges in \(u \) and \(n \) pendant edges in \(v \).

Theorem 2.5. The global bipartite domination polynomial of bi-star graph is

\[
D_{gb}(B_{(m,n)}) = x^2 \left[x^m + x^n + [(1 + x)^m - 1] \right] \left[(1 + x)^n - 1 \right]
\]

Proof. Let \(U \) and \(V \) be the set of all pendant vertices in \(u \) and \(v \) respectively. Suppose \(S \) is a G.B.D.S of \(B_{(m,n)} \). Since the vertices \(u \) and \(v \) are isolated in \(B_{(m,n)} \), \(\{ u, v \} \subseteq S \). For \(|S| - 2 \neq m \) or \(n \), \(S \cap U \neq \emptyset \) and \(S \cap V \neq \emptyset \). If \(|S| - 2 = m \), then \(U \cup \{ u, v \} \) and if \(|S| - 2 = n \), then \(V \cup \{ u, v \} \) are G.B.D.S of \(B_{(m,n)} \). This completes the proof. \(\square \)

The next theorem follows immediately from the definition of global bipartite domination polynomial.

Theorem 2.6. For any spanning subgraph \(G \) of \(K_{m,n} \),

(i) \(d_{gb}(G, m + n) = 1 \).

(ii) \(d_{gb}(G, i) = 0 \) if and only if \(i < \gamma_{gb}(G) \) or \(i > m + n \).

(iii) \(D_{gb}(G, x) \) has no constant term.

(iv) \(D_{gb}(G, x) \) is a strictly increasing function in \([0, \infty) \).

(v) If \(H \) is an induced subgraph of \(G \), then \(\deg(D_{gb}(G, x)) \geq \deg(D_{gb}(H, x)) \).

(vi) Zero is a root of \(D_{gb}(G, x) \) with multiplicity \(\gamma_{gb}(G) \).

Theorem 2.7. Let \(G \) be a graph with bipartition \((X, Y) \). If \(G \) has a \(\gamma \)-set \(S = V_1 \cup V_2 \), where \(V_1 \subseteq X \) and \(V_2 \subseteq Y \), then \(S \) is a \(\gamma_{gb} \)-set of \(G \) if and only if \(\bigcap_{x \in V_1} N(x) \subseteq V_2 \) and \(\bigcap_{y \in V_2} N(y) \subseteq V_1 \).

Proof. Let \(\bigcap_{x \in V_1} N(x) \subseteq V_2 \) and \(\bigcap_{y \in V_2} N(y) \subseteq V_1 \). Since \(S \) is a \(\gamma \)-set of \(G \), it suffices to show that \(S \) dominates the relative compliment of \(G \). Let \(u \in X \). If \(u \in \bigcap_{y \in V_2} N(y) \), then \(u \in V_1 \). If \(u \notin \bigcap_{y \in V_2} N(y) \) then \(u \) is adjacent to at least one vertex of \(V_2 \) in \(\hat{G} \). Similarly, we can prove that if \(v \in Y \) then \(v \in V_2 \) or \(v \) is adjacent to at least one vertex of \(V_1 \) in \(\hat{G} \). Conversely, let \(S \) dominates \(\hat{G} \). Let \(x \) be an arbitrary vertex in \(X \). If \(x \in \bigcap_{y \in V_2} N(y) \), then in \(\hat{G} \), \(x \) is not adjacent to any vertex of \(V_2 \). Since \(S \) dominates \(\hat{G} \), we can deduce that \(x \in V_1 \). If \(x \notin \bigcap_{y \in V_2} N(y) \), then \(x \) is adjacent to at least one element of \(V_2 \) in \(\hat{G} \). Hence the proof. \(\square \)

Corollary 2.8. For \(n \geq 10 \), \(\gamma_{gb}(P_n) = \gamma(P_n) = \left\lceil \frac{n}{2} \right\rceil \).

Proof. Let \(V(P_n) = \{1, 2, 3, \ldots, n\} \). Then \(X = \{ x : x \text{ is even, } x \leq n \} \) and \(Y = \{ y : y \text{ is odd, } y \leq n \} \) are the bipartition of \(P_n \). Let \(S_1 = \{ i : i \equiv 1 \pmod{3}, i \leq n \} \) and \(S_2 = \{ i : i + 1 \equiv 0 \pmod{3}, i \leq n \} \). Then either \(S_1 \) or \(S_2 \) is a \(\gamma \)-set of \(P_n \). Also for \(i = 1, 2, \bigcap_{x \in S_i \cap X} N(x) = \emptyset \) and \(\bigcap_{y \in S_i \cap Y} N(y) = \emptyset \). Thus the proof follows from Theorem 2.7. \(\square \)

Corollary 2.9. For an even integer \(n \geq 10 \), \(\gamma_{gb}(C_n) = \gamma(C_n) = \left\lceil \frac{n}{2} \right\rceil \).

Proof. The proof is exactly similar to corollary 2.8. \(\square \)
Corollary 2.10. If \(G \) is an \(n - 1 \)-regular connected bipartite graph, then
\[
D_{gb}(G, x) = [x(x + 2)]^n - 2nx^n.
\]

Proof. Since \(G \) is \(n - 1 \)-regular, each component of \(G \) is \(P_2 \). Therefore a G.B.D.S of \(G \) contains at least one vertex from each component of \(G \). So \(\gamma_{gb}(G) = n \) and for \(1 \leq i \leq n \), \(d_{gb}(G, n + i) = \binom{n}{i}2^{n-i} \). It follows from Theorem 2.7 that \(d_{gb}(G, n) = 2^n - 2n \). This completes the proof.

Next, we shall study the relation between domination polynomials and global domination polynomials of paths. For, we need the following:

Theorem 2.11. [1] For every \(n \geq 4 \),
\[
D(P_n, x) = x[D(P_{n-1}, x) + D(P_{n-2}, x) + D(P_{n-3}, x)],
\]
with initial values \(D(P_1, x) = x \), \(D(P_2, x) = x^2 + 2x \), \(D(P_3, x) = x^3 + 3x^2 + x \).

Lemma 2.12. For a path \(P_n \) with bipartition \((X, Y) \), let \(S = V_1 \cup V_2 \) where \(V_1 \subseteq X \) and \(V_2 \subseteq Y \) be a dominating set. If \(|V_i| > 2 \), \(\forall i \) then \(S \) is a G.B.D.S of \(P_n \).

Proof. In \(P_n \) if \(|V_i| > 2 \), then \(\bigcap_{v \in V_i} N(v) = \phi \). Then by Theorem 2.7, \(S \) is a G.B.D.S of \(P_n \).

Theorem 2.13. Let \(G \) be a connected bipartite graph with partite sets \(X \) and \(Y \). Let \(S = V_1 \cup V_2 \) be a GBDS of \(G \), where \(V_1 \subseteq X \) and \(V_2 \subseteq Y \). Then if \(V_1 = \phi \), then \(V_2 = Y \) and if \(V_2 = \phi \), then \(V_1 = X \).

Proof. Let \(S = V_1 \cup V_2 \), where \(V_1 \subseteq X \) and \(V_2 \subseteq Y \). If \(V_1 = \phi \), then \(S \subseteq Y \). Since \(G \) is bipartite, the vertices in \(Y \) are not adjacent and so \(S \subseteq Y \). Therefore \(S = V_2 = Y \). Similarly, we can prove that if \(V_2 = \phi \) then \(V_1 = X \).

So for \(n \geq 12 \), to find \(d(P_n, i) - d_{gb}(P_n, i) \) it suffices to consider the dominating sets \(S = V_1 \cup V_2 \) of \(P_n \) with \(1 \leq |V_1| \leq 2 \) or \(1 \leq |V_2| \leq 2 \). To prove theorems 2.14 to 2.17, we take \(X = \{1, 3, 5, \ldots, 2n - 1\} \) and \(Y = \{2, 4, 6, \ldots, 2n\} \) be the bipartition of \(P_{2n} \) and \(S = V_1 \cup V_2 \), where \(V_1 \subseteq X \) and \(V_2 \subseteq Y \) be a dominating set. Using the following theorems we can find the number of dominating sets which are not global bipartite dominating sets.

Theorem 2.14. For \(|V_1| = 1 \), we have

(i) \(d(P_{2n}, n) - d_{gb}(P_{2n}, n) = 2n - 2 \).

(ii) \(d(P_{2n}, n - 1) - d_{gb}(P_{2n}, n - 1) = n - 2 \).

Proof. Since a vertex in \(X \) is adjacent to at most two vertices in \(Y \), \(n - 2 \leq |V_2| \leq n \). If \(|V_2| = n \), then \(S = V_1 \cup V_2 \) is a G.B.D.S and the proof is complete. So \(|V_2| = n - 2 \) or \(n - 1 \). We consider the following cases:

Case 1: \(V_1 = \{1\} \).
Here \(V_2 = \{4, 6, 8, \ldots, 2n\} \). Since \(N(1) = \{2\} \nsubseteq V_2, S \) is not a G.B.D.S.

Case 2: \(V_1 = \{3\} \).
Here also \(|V_2| = n - 1 \) and \(V_2 = \{2, 6, 8, \ldots, 2n\} \). Since \(N(3) = \{2, 4\} \nsubseteq V_2, S \) is not a G.B.D.S.

Case 3: \(V_1 = \{i\}, i \neq 1, 3 \).
Then for each \(i, V_1 \cup Y \setminus \{i - 1, i + 1\} \), \(V_1 \cup Y \setminus \{i - 1\} \) and \(V_1 \cup Y \setminus \{i + 1\} \) are dominating sets of \(P_{2n} \). Since \(N(i) = \{i - 1, i + 1\} \nsubseteq V_2, S \) are not G.B.D.S of \(P_{2n} \).

In cases 1 and 2 we have two dominating sets of order \(n \). In case 3 we have \(2(n - 2) \) dominating sets of order \(n \) and \(n - 2 \) dominating sets of order \(n - 1 \). Therefore the result follows.

Theorem 2.15. For \(|V_2| = 1 \), we have
(i) \(d(P_{2n}, n) - d_{gb}(P_{2n}, n) = 2n - 2\).

(ii) \(d(P_{2n}, n - 1) - d_{gb}(P_{2n}, n - 1) = n - 2\).

Proof. The proof is exactly similar to Theorem 2.14.

Theorem 2.16. For \(|V_1| = 2\), we have

(i) \(d(P_{2n}, n - 1) - d_{gb}(P_{2n}, n - 1) = n - 3\).

(ii) \(d(P_{2n}, n) - d_{gb}(P_{2n}, n) = 2n - 4\).

(iii) \(d(P_{2n}, n + 1) - d_{gb}(P_{2n}, n + 1) = n - 1\).

Proof. Since \(|V_1| = 2\), we have \(n - 3 \leq |V_2| \leq n\). If \(|V_2| = n\), then \(S = V_1 \cup V_2\) is a G.B.D.S. So it suffices to consider the cases \(|V_2| = n - 3, n - 2\) and \(n - 1\).

Case 1: \(V_1 = \{1, 3\}\).

Subcase 1: \(|V_2| = n - 2\).

Then \(V_2 = \{6, 8, \ldots, 2n\}\). Since \(N(1) \cup N(3) = \{2\} \not\subseteq V_2\), \(S\) is not a G.B.D.S of \(P_{2n}\).

Subcase 2: \(|V_2| = n - 1\).

Then \(V_2 = \{4, 6, 8, \ldots, 2n\}\). Since \(N(1) \cup N(3) = \{2\} \not\subseteq V_2\), the dominating set \(S\) is not a G.B.D.S.

Case 2: \(V_1 = \{3, 5\}\).

As in case 1 we get two dominating sets which are not G.B.D.S of \(P_{2n}\).

Case 3: \(V_1 = \{i, i + 2\}, i \neq 1, 3\).

Subcase 1: \(|V_2| = n - 3\).

Then \(V_2 = Y \setminus \{i - 1, i + 1, i + 3\}\).

Subcase 2: \(|V_2| = n - 2\).

In this case we have the possibilities, \(V_2 = Y \setminus \{i - 1, i + 1\}\) and \(V_2 = Y \setminus \{i + 1, i + 3\}\).

Subcase 3: \(|V_2| = n - 1\).

Then \(V_2 = Y \setminus \{i + 1\}\).

In subcase 1, 2 and 3, \(S = V_1 \cup V_2\) is a dominating set but since \(N(i) \cap N(i + 1) = \{i + 1\} \not\subseteq V_2\), \(S\) is not a G.B.D.S of \(P_{2n}\).

In cases 1 and 2 we have two dominating sets of order \(n\) and \(n + 1\). In case 3 we have \(n - 3\) dominating sets of order \(n - 1, 2(n - 3)\) dominating sets of order \(n\) and \(n - 3\) dominating sets of order \(n + 1\). Hence the result follows.

Theorem 2.17. For \(|V_2| = 2\), we have

(i) \(d(P_{2n}, n - 1) - d_{gb}(P_{2n}, n - 1) = n - 3\).

(ii) \(d(P_{2n}, n) - d_{gb}(P_{2n}, n) = 2n - 4\).

(iii) \(d(P_{2n}, n + 1) - d_{gb}(P_{2n}, n + 1) = n - 1\).

Proof. The proof is exactly similar to Theorem 2.16.

Theorem 2.18. For \(n \geq 6\),

\[
\mathcal{D}(P_{2n}, x) - \mathcal{D}_{gb}(P_{2n}, x) = (4n - 10)x^{n-1} + (8n - 12)x^n + (2n - 2)x^{n+1}.
\]

Proof. It follows from Theorems 2.14, 2.15, 2.16 and 2.17.

Next, we find the relationship between domination polynomials and global bipartite domination polynomials of \(P_{2n+1}\). To prove theorems 2.19 to 2.22, we take \(X = \{1, 3, 5, \ldots, 2n + 1\}\) and \(Y = \{2, 4, 6, \ldots, 2n\}\) be the bipartition of \(P_{2n+1}\) and \(S = V_1 \cup V_2\), where \(V_1 \subseteq X\) and \(V_2 \subseteq Y\) be a dominating set of \(P_{2n+1}\).

Theorem 2.19. For \(|V_1| = 1\), we have
(i) \(d(P_{2n+1}, n-1) - d_{gb}(P_{2n+1}, n-1) = n - 3\).

(ii) \(d(P_{2n+1}, n) - d_{gb}(P_{2n+1}, n) = 2n - 2\).

Proof. Case 1: \(V_1 = \{1\}\). Let \(V_2 = Y \setminus \{2\}\). Since \(N(1) = \{2\}\), \(S = V_1 \cup V_2\) is not a G.B.D.S.

Case 2: \(V_1 = \{3\}\). Let \(V_2 = Y \setminus \{4\}\). Since \(N(3) = \{2, 4\}\), \(S = V_1 \cup V_2\) is not a G.B.D.S.

Case 3: \(V_1 = \{i\}, i \not\in \{1, 3, 2n-1, 2n+1\}\). In this case we have the possibilities, \(V_2 = Y \setminus \{i-1, i+1\}\) or \(V_2 = Y \setminus \{i-1\}\) and \(V_2 = Y \setminus \{i+1\}\). Since \(N(i) = \{i-1, i+1\}\), \(S = V_1 \cup V_2\) is not a G.B.D.S.

In cases 1 and 2 we have four dominating sets of order \(n\) and in case 3 there are \(n-3\) dominating sets of order \(n-1\) and \(2(n-3)\) dominating sets of order \(n\). This completes the proof. \(\square\)

Theorem 2.20. For \(|V_2| = 1\), we have

(i) \(d(P_{2n+1}, n) - d_{gb}(P_{2n+1}, n) = n\).

(ii) \(d(P_{2n+1}, n + 1) - d_{gb}(P_{2n+1}, n + 1) = 2n\).

Proof. Let \(V_2 = \{i\}, i \in Y \Rightarrow N(i) = \{i-1, i+1\}\). Then \(V_1\) can be \(X \setminus \{i-1\}\) or \(X \setminus \{i+1\}\) or \(X \setminus \{i-1, i+1\}\). Since \(i\) can be selected in \(n\) ways, we have \(2n\) dominating sets of order \(n+1\) and \(n\) dominating sets of order \(n\). Since \(N(i) = \{i-1, i+1\}\), \(S = V_1 \cup V_2\) is not a G.B.D.S. of \(P_{2n+1}\). Hence the result follows. \(\square\)

Theorem 2.21. For \(|V_1| = 2\), we have

(i) \(d(P_{2n+1}, n-1) - d_{gb}(P_{2n+1}, n-1) = n - 4\).

(ii) \(d(P_{2n+1}, n) - d_{gb}(P_{2n+1}, n) = 2n - 4\).

(iii) \(d(P_{2n+1}, n + 1) - d_{gb}(P_{2n+1}, n + 1) = n\).

Proof. Case 1: \(V_1 = \{1, 3\}\). Then \(V_2\) can be \(Y \setminus \{2\}\) or \(Y \setminus \{2, 3\}\). Since \(N(1) \cap N(3) = \{2\}\), \(S = V_1 \cup V_2\) is not a G.B.D.S.

Case 2: \(V_1 = \{3, 5\}\). Then \(V_2\) can be \(Y \setminus \{4\}\) or \(Y \setminus \{4, 5\}\). Since \(N(3) \cap N(5) = \{4\}\), \(S = V_1 \cup V_2\) is not a G.B.D.S.

Case 3: \(V_1 = \{i, i+2\}, i \not\in \{1, 3, 2n-3, 2n-1\}\). Then \(V_2\) can be \(Y \setminus \{i-1, i+1, i+3\}\) or \(Y \setminus \{i-1, i+1\}\) or \(Y \setminus \{i+1, i+3\}\). Since \(N(i) \cap N(i+2) = \{i+1\}\), \(S = V_1 \cup V_2\) is not a G.B.D.S.

In cases 1 and 2 we have four dominating sets of order \(n\) and \(n+1\). In case 3 there are \(n-4\) dominating sets of order \(n-1\) and \(n+1\) and \(2(n-4)\) dominating sets of order \(n\). Thus the result follows. \(\square\)

Theorem 2.22. For \(|V_2| = 2\), we have

(i) \(d(P_{2n+1}, n) - d_{gb}(P_{2n+1}, n) = n - 1\).

(ii) \(d(P_{2n+1}, n + 1) - d_{gb}(P_{2n+1}, n + 1) = 2n - 2\).

(iii) \(d(P_{2n+1}, n + 2) - d_{gb}(P_{2n+1}, n + 2) = n - 1\).

Proof. Let \(V_2 = \{i, i+2\}, i \in Y \Rightarrow N(i) \cap N(i+2) = \{i+1\}\). Then \(V_1\) can be \(X \setminus \{i-1, i+1, i+3\}\) or \(X \setminus \{i-1, i+1\}\) or \(X \setminus \{i+1, i+3\}\). Since \(V_2\) can be chosen in \(n-1\) ways, we have \(n-1\) dominating sets of order \(n\) and \(2(n-1)\) dominating sets of order \(n+1\) and \(n-1\) dominating sets of order \(n+2\). Since \(N(i) \cap N(i+2) = \{i+1\}\), \(S = V_1 \cup V_2\) is not a G.B.D.S. of \(P_{2n+1}\). This proves the result. \(\square\)
Theorem 2.23. For \(n \geq 6 \),
\[
\mathcal{D}(P_{2n+1}, x) - \mathcal{D}_{gb}(P_{2n+1}, x) = (2n-7)x^{n-1} + (6n-7)x^n + (5n-2)x^{n+1} + (n-1)x^{n+2}.
\]
Proof. It follows from Theorems 2.19, 2.20, 2.21 and 2.22. \(\square \)

Theorem 2.24. [1] For every \(n \geq 4 \),
\[
\mathcal{D}(C_n, x) = x[D(C_{n-1}, x) + D(C_{n-2}, x) + D(C_{n-3}, x)], \text{ with initial values } D(C_1, x) = x, D(C_2, x) = x^2 + 2x, D(C_3, x) = x^3 + 3x^2 + 3x.
\]
Next, we find \(\mathcal{D}(C_{2n}, x) - \mathcal{D}_{gb}(C_{2n}, x) \).
To prove theorems 2.25 to 2.29, we take \(X = \{1, 3, 5, \ldots, 2n - 1\} \) and \(Y = \{2, 4, 6, \ldots, 2n\} \) be the bipartition of \(C_{2n} \) and \(S = V_1 \cup V_2 \) where \(V_1 \subseteq X \) and \(V_2 \subseteq Y \) be a dominating set of \(C_{2n} \).

Theorem 2.25. For \(|V_1| = 1 \), we have
(i) \(d(C_{2n}, n) - d_{gb}(C_{2n+1}, n-1) = n \).
(ii) \(d(C_{2n}, n) - d_{gb}(C_{2n}, n) = 2n \).

Proof. Let \(V_1 = \{i\}, i \in X \). Then \(N(i) = \{i - 1, i + 1\} \) (if \(i = 1 \), then we take \(i - 1 = 2n \)).
Then \(V_2 \) can be \(Y \setminus \{i - 1, i + 1\} \) or \(X \setminus \{i - 1\} \) or \(X \setminus \{i + 1\} \).
Since \(i \) can be chosen in \(n \) ways, we have \(n \) dominating sets of order \(n - 1 \) and \(2n \) dominating sets of order \(n \).
Since \(N(i) = \{i - 1, i + 1\} \), \(S = V_1 \cup V_2 \) is not a G.B.D.S. of \(C_{2n} \). Hence the result follows. \(\square \)

Theorem 2.26. For \(|V_2| = 1 \), we have
(i) \(d(C_{2n}, n - 1) - d_{gb}(C_{2n+1}, n - 1) = n \).
(ii) \(d(C_{2n}, n) - d_{gb}(C_{2n}, n) = 2n \).

Proof. The proof is exactly similar to Theorem 2.25. \(\square \)

Theorem 2.27. For \(|V_1| = 2 \), we have
(i) \(d(C_{2n}, n - 1) - d_{gb}(C_{2n}, n - 1) = n - 1 \).
(ii) \(d(C_{2n}, n) - d_{gb}(C_{2n}, n) = 2(n - 1) \).
(iii) \(d(C_{2n}, n + 1) - d_{gb}(C_{2n}, n + 1) = n - 1 \).

Proof. Let \(V_1 = \{i, i+2\}, i \in X \). Then \(N(i) \cap N(i+2) = \{i+1\} \) (if \(i = 2n-1 \), then we take \(i+2 = 2 \) and \(i+3 = 2 \)).
Then \(V_2 \) can be \(Y \setminus \{i-1, i+1, i+3\} \) or \(Y \setminus \{i+1\} \) or \(Y \setminus \{i+3\} \) or \(Y \setminus \{i+1\} \).
Since \(V_1 \) can be chosen in \(n - 1 \) ways, we have \((n - 1) \) dominating sets of order \(n - 1 \) \(2(n - 1) \) dominating sets of order \(n - 1 \) and \(2(n - 1) \) dominating sets of order \(n - 1 \). Since \(N(i) \cap N(i+2) = \{i+1\} \), \(S = V_1 \cup V_2 \) is not a G.B.D.S. of \(C_{2n} \). Hence the result follows. \(\square \)

Theorem 2.28. For \(|V_2| = 2 \), we have
(i) \(d(C_{2n}, n - 1) - d_{gb}(C_{2n}, n - 1) = n - 1 \).
(ii) \(d(C_{2n}, n) - d_{gb}(C_{2n}, n) = 2(n - 1) \).
(iii) \(d(C_{2n}, n + 1) - d_{gb}(C_{2n}, n + 1) = n - 1 \).

Proof. The proof is exactly similar to Theorem 2.27. \(\square \)

Theorem 2.29. For \(n \geq 6 \),
\[
\mathcal{D}(C_{2n}, x) - \mathcal{D}_{gb}(C_{2n}, x) = (4n-2)x^{n-1} + (8n-4)x^n + (2n-2)x^{n+1}.
\]
Proof. It follows from Theorems 2.25, 2.26, 2.27 and 2.28. \(\square \)
References

Author information

Latheshkumar A. R., Department of Mathematics, St. Mary’s College, Sulthan bathery, Wayanad, Kerala, 673 592, India.
E-mail: latheshby@gmail.com

Anil Kumar V., Department of Mathematics, University of Calicut, Malappuram, Kerala, 673 635, India.
E-mail: anil@uoc.ac.in

Received: July 22, 2016.

Accepted: February 27, 2017.