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Abstract In this paper we introduce the concept of the global bipartite domination poly-
nomial of a connected bipartite graph and study some of its general properties. We establish
some relationships between domination polynomial and global bipartite domination polynomial
of certain classes of graphs.

1 Introduction

In this paper we consider simple, connected and bipartite graphs. All notations and definitions
not given here can be found in [2, 4]. A graph is an ordered pair G = (V(G), E(G)), where
V(@) is a finite nonempty set and E(G) is a collection of 2- point subsets of V. The sets V(G)
and E(G) are the vertex set and edge set of G respectively. The degree of a vertex v in G is
the number of edges incident at v. The set of all neighbors of v is the open neighborhood of
v, denoted by N(v). Let P,, C,, and K,,, denote path, cycle and complete bipartite graph
respectively. A set A C V(QG) of vertices in a graph G = (V, E) is called a dominating set, if
every vertex v € V is either an element of A or adjacent to an element of A. The domination
number v(G) of a graph G is the minimum cardinality of a dominating set in G. The domination
polynomial of a graph G of order 7 is the polynomial D(G, z) = I d(G, i)z, where d(G, )
is the number of dominating sets of G of size ¢ [1].

2 Main Results

In this section we introduce a new concept, namely, Global Bipartite Dominating Set of a
simple bipartite graph G. Then we define the Global Bipartite Domination Polynomial of G.

Definition 2.1. Let G be a connected bipartite graph with bipartition (X,Y), with | X| = m and

|Y'| = n. The relative complement of G in K,, ,, denoted by G is the graph obtained by deleting
all edges of G from K,, ,, (i.e., K, ~ G). A global bipartite dominating set (GBDS) of G

is a set S of vertices of GG such that it dominates G and its relative complement G. The global
bipartite domination number, 7,4, (G) is the minimum cardinality of a global bipartite dominating
set of G.

Definition 2.2. Let D, (G, i) be the family of global bipartite dominating sets of a simple con-
nected bipartite graph G with cardinality ¢ and let dg,(G,i) = |Dg(G,4)|. Then the global
bipartite domination polynomial D, (G, ) of G is defined as Dy, (G, z) = E?:ygb(c)dgb(av i)z’
Theorem 2.3. If G and G are connected, then Dy, (G, z) = Dyy(G, z).

Proof. The proof follows immediately from the definitions of G.B.D.S and Dy, (G, z). o

Theorem 2.4, For any positive integers m and n,
(i) Dygp(Kpmpn,x) =™
(ii) If Konn \ e is connected, then Dyy(K . n ~ €,7) = 2™ "1 (2 4+ 2).

Proof. (i) Obviously vg4(Km,n) = m + n. Therefore Dy, (K, x) = ™17
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(ii) We have v, (K, €) = m~+n—1.Since dgy (K, ~e,m+n—1) =2 and dgp (K, n
e,m +n) = 1, the proof follows.
]

A bi-star graph By, ) is a tree obtained from the graph K, with two vertices u and v by
attaching m pendant edges in v and n pendant edges in v.

Theorem 2.5, The global bipartite domination polynomial of bi-star graph is
Db (Biam,y) = 2 [ + 2™ + [(1+2)™ = 1] [(1 + 2)" — 1]]

Proof. Let U and V be the set of all pendant vertices in » and v respectively. Suppose S is a
G.B.D.S of B, ,)- Since the vertices u and v are isolated in ﬁ(m,n), {u,v} C S.For |S| —

morn, SNU # ¢gand SNV # ¢. If |S| — 2 = m, then U U {u,v} and if |S| — 2 = n, then
V' U{u,v} are G.B.D.S of By, ). This completes the proof. O

The next theorem follows immediately from the definition of global bipartite domination
polynomial.

Theorem 2.6. For any spanning subgraph G of K, ,
(i) dgo(G,m+n) = 1.
(ii) dg(G,i) = 0ifand only if i < v5(G) ori >m+n
(iii) Dgy(G, ) has no constant term.
(iv) Dgy(G, x) is a strictly increasing function in [0, c0).
(v) If H is an induced subgraph of G, then deg(Dg,(G,x)) > deg(Dgy(H, x))
(vi) Zero is a root of Dy, (G, x) with multiplicity v4,(G).

Theorem 2.7. Let G be a graph with bipartition (X,Y). If G has a~y-set S =V U Vg, where

V1CXandVQCYthensta’ygbsetafGlfandonlylfﬂ CVQandﬂ y) C V1.
zeV) yeV,

Proof. Let ﬂ ) C V, and ﬂ ) C V1. Since S is a - set of G, it suffices to show
zeV) yeV;
that S dominates the relative compliment of G. Let u € X. If u € ﬂ N(y), then u € Vy. If
yeVa
u ¢ ﬂ y) then w is adjacent to atleast one vertex of V5 in G. Similarly, we can prove that if
yeV2
v € Y then v € V, or v is adjacent to atleast one Vertex of V1 in G. Conversely, let S dominates
G. Let z be an arbitrary vertex in X. If x € ﬂ ), then in G x is not adjacent to any vertex
%
of V5. Since S dominates G we can deduce that z € V. If © ¢ ﬂ ), then z is adjacent to
yeV,
at least one element of V5 in G. Hence the proof. O

Corollary 2.8. For n > 10, v, (P,) = v(P,) = [5].

Proof. LetV(P,) = {1,2,3,...,n}. Then X = {z : ziseven,z < n},Y = {y : yisodd,y <

n} is the bipartition of P,. Let S; = {i : i« = 1(mod 3),i < n}and S, = {i : i +1 =

0(mod 3),i < n}. Then either S; or S, is a y-set of P,,. Also for: = 1,2, ﬂ N(z) = ¢ and
zeS;NX

ﬂ N(y) = ¢. Thus the proof follows from Theorem 2.7. i
yesS;,NY

Corollary 2.9. For an even integer n. > 10, 74, (Cy,) = 7(Cr) = [5].

Proof. The proof is exactly similar to corollary 2.8. O
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Corollary 2.10. [f G is an n — 1-regular connected bipartite graph, then
Dy(G,z) = [z (z +2)]" — 2na™.

Proof. Since G is n — 1 regular, each component of G is P». Therefore a G.B.D.S of G contains
at least one vertex from each component of G. So v, (G) = nand for 1 < i < n, dg(G,n +

7

i) = ( n ) 2n~%, Tt follows from Theorem 2.7 that dg,(G,n) = 2™ — 2n. This completes the
proof. O

Next, we shall study the relation between domination polynomials and global bipartite dom-
ination polynomials of paths. For, we need the following:

Theorem 2.11. [/ ] For every n > 4,
D(Pp,z) = z[D(Pn-1,2) + D(Pn-2,z) + D(Pn_3,z), with initial values D(P1,z) =
z, D(Py,z) = 2° + 2z, D(Ps,2) = 23 + 32 + .

Lemma 2.12. For a path P,, with bipartition (X,Y), let S = ViUV, where Vi C X and V>, CY
be a dominating set. If |V;| > 2,Vi then S is a G.B.D.S. of P,.

Proof. In P, if |V;| > 2, then ﬂ N(v) = ¢. Then by Theorem 2.7, SisaGB.D.Sof P,. O
veV;

Theorem 2.13. Let G be a connected bipartite graph with partite sets X and Y. Let S = Vi UV,
be a GBDS of G, where Vi C X and Vo, C Y. Then if Vi = ¢, then Vo, =Y and if V, = ¢, then
=X

Proof. LetS =ViUV,,where Vi C X and V, CY.If V] = ¢, then S C Y. Since G is bipartite,
the vertices in Y are not adjacent and so .S O Y. Therefore S = V, = Y. Similarly, we can prove
that if V, = ¢ then V] = X. O

So for n > 12, to find d(P,, i) — dg,(P,, 1) it suffices to consider the dominating sets S =
ViuV,of P, with 1 < |Vj] < 2orl < |V3| < 2. To prove theorems 2.14 to 2.17, we take
X ={1,3,5,....,2n—1}and Y = {2,4,6,...,2n} be the bipartition of P, and S = V; U V3,
where 173 C X and V, C Y be a dominating set. Using the following theorems we can find the
number of dominating sets which are not global bipartite dominating sets.

Theorem 2.14. For |V| = 1, we have
( l) d(Pzn, TL) - dgb(PZn; n) =2n-—2.
(ii) d(Prp,n— 1) —dgy(Poy,n— 1) =n —2.
Proof. Since a vertex in X is adjacent to atmost two vertices in Y, n—2 < V5| < n. If |[V5| = n,

then S = V3 UV; is a G.B.D.S and the proof is complete. So |V3| =n — 2 or n — 1. We consider
the following cases:

Case1: V; = {1}.
Here V> = {4,6,8,...,2n}. Since N(1) = {2} ¢ V5, Sisnota G.B.D.S.

Case 2: V| = {3}.
Here also V2| = n — 1 and V, = {2,6,8,...,2n}. Since N(3) = {2,4} € V5, S isnot a
G.B.D.S.

Case 3: V7 = {i},i #1,3.
Then for each i, VIUY' \ {i—1,i4+ 1}, V1UY ~\{i—1} and VUY \ {i+ 1} are dominating
sets of Py,. Since N (i) = {i — 1,i + 1} ¢ V5, these are not G.B.D.S of P,,.

In cases 1 and 2 we have two dominating sets of order n. In case 3 we have 2(n —2) dominating
sets of order n and n — 2 dominating sets of order n — 1. Therefore the result follows. O

Theorem 2.15. For |V,| = 1, we have
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( l) d(Pzn, TL) - dgb(PZn; n) =2n—2.
(ii) d(Pop,n — 1) —dg(Pop,n—1) =n —2.
Proof. The proof is exactly similar to Theorem 2.14. O

Theorem 2.16. For |Vi| = 2, we have

(i) d(Pop,n—1) —dgy(Poy,n—1) =n—3.

(i) d(Pop,n) — dgp(Pop,n) =2n — 4.

(iii) d(Pop,n+ 1) — dgy(Pop,n+1) =n— 1.
Proof. Since |Vi| =2, wehave n — 3 < |Va| < n. If |[V5] = n,then S =V, UV, is a G.B.D.S.
So it suffices to consider the cases |V3| =n —3,n —2and n — 1.

Case1: V; = {1,3}.

Subcase 1: |V3| =n — 2.
Then V5 = {6,38,...,2n}. Since N(1)UN(3) = {2} € V5, Sisnota G.B.D.S of P,.

Subcase 2: |V3| =n — 1.
Then V, = {4,6,8,...,2n}. Since N(1) UN(3) = {2} ¢ V4, the dominating set S is
nota G.B.D.S.

Case 2: V; = {3,5}.
As in case 1 we get two dominating sets which are not G.B.D.S of P,,,.

Case3: V) = {i,i+2},i # 1,3.

Subcase 1: |V3| =n — 3.
Then Vo =Y ~ {i —1,i+ 1,7+ 3}.
Subcase 2: |V5| =n — 2.
In this case we have the possibilities, Vo = Y\ {i—1,i+1} and V5 = Y~ {i+1,i+3}.

Subcase 3: |V3| =n — 1.
Then V, =Y ~\ {i + 1}.

In subcase 1,2 and 3, S = V; UV, is a dominating set but since N (i) NN (i+1) = {i+1} ¢
V5, Sisnota G.B.D.S of P,.

In cases 1 and 2 we have two dominating sets of order n and n + 1. In case 3 we have n — 3
dominating sets of order n — 1,2(n — 3) dominating sets of order n and n — 3 dominating sets
of order n 4 1. Hence the result follows. O

Theorem 2.17. For |V3| = 2, we have

(i) d(Pop,n—1) —dgp(Prp,n—1)=n—3.

(i) d(Pop,n) — dgp(Popn,n) =2n — 4.

(iii) d(Pop,n+ 1) —dgy(Pop,n+1) =n—1.
Proof. The proof is exactly similar to Theorem 2.16. O
Theorem 2.18. Forn > 6,

D(Pan, ) — Dgp(Pan, ) = (4n — 10)2" " 4 (8n — 12)z™ + (2n — 2)z" .

Proof. Tt follows from Theorems 2.14, 2.15, 2.16 and 2.17. O

Next, we find the relationship between domination polynomials and global bipartite domina-
tion polynomials of Py, 1. To prove theorems 2.19 to 2.22, we take X = {1,3,5,...,2n+ 1}
and Y = {2,4,6,...,2n} be the bipartition of P, .1 and S = V; U V,, where V; C X and
V), C'Y be a dominating set of Py, 1.

Theorem 2.19. For |V1| = 1, we have
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( l) d(P2n+17n - 1) - dgb(P2n+17n - 1) =n-3.
( ii) d(Pan,n) — dgb(P2n+1,n) =2n—2.

Proof. Casel: Vi = {1}.LetV, =Y ~{2}. Since N(1) = {2},S = VUV, isnota G.B.D.S.
The case Vi = {2n + 1} is similar.

Case2: V) = {3}.Let Vo =Y ~\ {4}. Since N(3) = {2,4},S = V; U Vs isnot a G.B.D.S.
The case V| = {2n — 1} is similar.

Case3: V) = {i}, i ¢ {1,3,2n—1,2n+1}. In this case we have the possibilities, 1, = Y\ {i—
Lit1l}orVa=Y~{i—1}and Vo =Y ~{i+1}.Since N(i) = {i—1,i+1},S =V UV,
isnota G.B.D.S.

In cases 1 and 2 we have four dominating sets of order n and in case 3 there are n — 3

dominating sets of order n — 1 and 2(n — 3) dominating sets of order n. This completes the
proof. O

Theorem 2.20. For |V,| = 1, we have

(1) d(Pas1,n) — dgp(Pony1,n) = n.

(ii) d(Prs1,n+ 1) — dgp(Pops1,n + 1) = 2n.
Proof. LetVa ={i},i€Y = N(i) ={i—1,i+1}. Then V; canbe X ~ {i — 1} or X \ {i+ 1}
or X ~ {i — 1,7+ 1}. Since i can be selected in n ways , we have 2n dominating sets of order

n—+1 and n dominating sets of ordern. Since N (i) = {i—1,i+1}, S = VUV, isnotaG.B.D.S.
of P»,.1. Hence the result follows. O

Theorem 2.21. For |V}| = 2, we have

(i) d(Popy1,n—1) —dgp(Prpy1,n — 1) =n—4.
(ii) d(Popy1,n) — dgp(Paps1,n) =2n — 4.

(iii) d(Pops1,n+ 1) —dgp(Popy1,n+ 1) = n.

Proof. Casel: V; = {1,3}. Then V5 canbe Y ~ {2} or Y ~\ {2,3}. Since N(1) N N(3) =
{2}, S=V1 UV, isnota G.B.D.S.
The case Vi = {2n — 1,2n + 1} is similar.

Case2: V) = {3,5}. Then Vacanbe Y \ {4} or Y \ {4,5}. Since N(3) "N N(5) = {4}, S =
ViUV, isnota G.B.D.S.
The case V1 = {2n — 3,2n — 1} is similar.

Case3: Vi = {i,i +2},i ¢ {1,3,2n—3,2n — 1}. Then Vo canbe Y ~ {i — 1,i+ 1,i+ 3} or
Y~{i—1,i+1}orY~{i+1,i4+3}.Since Ni)NN(i+2)={i+1}, S=V1UVa,is
nota G.B.D.S.

In cases 1 and 2 we have four dominating sets of order n and n + 1. In case 3 there are n — 4
dominating sets of order n — 1 and n+ 1 and 2(n — 4) dominating sets of order n. Thus the result

follows. O

Theorem 2.22. For |V5| = 2, we have

(i) d(Pony1,n) — dgp(Pony1,n) =n — 1.

(ii) d(P2n+1,n+ 1) - dgb(P2n+17n+ 1) =2n — 2.

(”l) d(P271,+17 n+ 2) - dgb<P2n+1a n—+ 2) =n-1
Proof. LetV, ={i,i+2},i€Y = N(i)NN(i+2)={i+1}. Then V; canbe X ~\ {i — 1,i+
Lii+3tor X ~{i—1,i+ 1} or X ~ {i + 1,7 + 3}. Since V, can be chosen in n — 1 ways,
we have n — 1 dominating sets of order n and 2(n — 1) dominating sets of ordern + 1 and n — 1

dominating sets of order n+ 2. Since N(i) N N(i+2) = {i+1}, S=V;UVyisnota GB.D.S.
of Py,+1. This proves the result. O
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Theorem 2.23. For n > 6,
D(Poni1,%) — Dgp(Pons1, ) = (2n — 7)a" 1 + (6n — T)a"™ + (5n — 2)a™ ™ 4 (n — 1)2" 2.
Proof. Tt follows from Theorems 2.19, 2.20, 2.21 and 2.22. O

Theorem 2.24. []] For every n > 4,
D(Cp,z) = z[D(Ch_1,2) + D(Cp—2,2) + D(Cy—3,x), with initial values D(Ci,x) =
z, D(Cy,z) = 2% + 2z, D(C3,7) = 2° + 322 + 3z.

Next, we find D(Czn, x) — ng(sz .’L‘)
To prove theorems 2.25to 2.29, we take X = {1,3,5,...,2n— 1} and Y = {2,4,6,...,2n}
be the bipartition of Cy,, and S = V3 UV, where V) C X and V, C Y be a dominating set of C,,.

Theorem 2.25. For |Vi| = 1, we have
( l) d(02n7n - 1) - dgb(CZnJrla n— 1) =n.
(ii) d(Capn,n) — dgp(Coyp,n) = 2n.

Proof. Let Vi = {i}, i € X. Then N(i) = {i — 1,i + 1} (if i = 1, then we take i — 1 = 2n.)
Then Vacanbe Y~ {i — 1,0 + 1} or X ~ {i — 1} or X ~ {i + 1}. Since i can be chosen in
n ways , we have n dominating sets of order n — 1 and 2n dominating sets of ordern. Since
N@G@E) ={i—1,i+ 1}, S=Vi UV isnota G.B.D.S. of C,,,. Hence the result follows. i

Theorem 2.26. For |V»| = 1, we have
( l) d(szn — 1) — dgb(CZnJrla n — 1) =n.
(ii) d(CQn, n) — dgb(Czn, n) = 2n.
Proof. The proof is exactly similar to Theorem 2.25. O

Theorem 2.27. For |V1| = 2, we have

(i) d(Cop,n—1) —dgp(Crp,n—1) =n—1.
(i) d(Can,n) — dygp(Can,n) = 2(n — 1).

(iii) d(Con,n+ 1) — dgy(Conyn +1) =n — 1.

Proof. LetVy = {i,i+2}, i € X. Then N(i)NN(i+2) = {i+1}(ifi = 2n—1, then we take i+
2=1andi+3=2.)ThenVocanbe Y ~{i—1,i+1,i4+3}or Y~{i—1,i+1} or Y~ {i+1,i+3}
or Y ~ {i+ 1}. Since V; can be chosen in n — 1 ways , we have (n — 1) dominating sets of order
n — 1 ,2(n — 1) dominating sets of ordern and n — 1 dominating sets of order n + 1. Since
NGE)NNGE+2)={i+1}, S=ViUVyisnota G.B.D.S. of Cy,,. Hence the result follows. O

Theorem 2.28. For |V5| = 2, we have
(i) d(Crp,n—1) —dgp(Cop,n—1) =n— 1.
(ii) d(Cop,n) — dgp(Copn,n) =2(n —1).
(iii) d(Carp,n+1) —dgp(Con,n+1) =n— 1.
Proof. The proof is exactly similar to Theorem 2.27. O
Theorem 2.29. For n > 6,
D(Cap, ) — Dgp(Cany ) = (4n — 2)2" 1 4 (8n — 4)a™ 4 (2n — 2)2™ L.

Proof. Tt follows from Theorems 2.25, 2.26, 2.27 and 2.28. O
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