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Abstract In this paper we introduce the concept of the global bipartite domination poly-

nomial of a connected bipartite graph and study some of its general properties. We establish

some relationships between domination polynomial and global bipartite domination polynomial

of certain classes of graphs.

1 Introduction

In this paper we consider simple, connected and bipartite graphs. All notations and de�nitions

not given here can be found in [2, 4]. A graph is an ordered pair G = (V (G), E(G)), where
V (G) is a �nite nonempty set and E(G) is a collection of 2- point subsets of V. The sets V (G)
and E(G) are the vertex set and edge set of G respectively. The degree of a vertex v in G is

the number of edges incident at v. The set of all neighbors of v is the open neighborhood of

v, denoted by N(v). Let Pn, Cn and Km,n denote path, cycle and complete bipartite graph

respectively. A set A ⊆ V (G) of vertices in a graph G = (V,E) is called a dominating set, if

every vertex v ∈ V is either an element of A or adjacent to an element of A. The domination

number γ(G) of a graph G is the minimum cardinality of a dominating set in G. The domination

polynomial of a graphG of order n is the polynomialD(G, x) = S
n
i=γ(G)d(G, i)xi,where d(G, i)

is the number of dominating sets of G of size i [1].

2 Main Results

In this section we introduce a new concept, namely, Global Bipartite Dominating Set of a

simple bipartite graph G. Then we de�ne the Global Bipartite Domination Polynomial of G.

De�nition 2.1. Let G be a connected bipartite graph with bipartition (X,Y ), with |X| = m and

|Y | = n. The relative complement of G in Km,n denoted by Ĝ is the graph obtained by deleting

all edges of G from Km,n (i.e.,Km,n r G). A global bipartite dominating set (GBDS) of G

is a set S of vertices of G such that it dominates G and its relative complement Ĝ. The global
bipartite domination number, γgb(G) is the minimum cardinality of a global bipartite dominating

set of G.

De�nition 2.2. Let Dgb(G, i) be the family of global bipartite dominating sets of a simple con-

nected bipartite graph G with cardinality i and let dgb(G, i) = |Dgb(G, i)|. Then the global

bipartite domination polynomial Dgb(G, x) of G is de�ned as Dgb(G, x) = S
n
i=γgb(G)dgb(G, i)xi

Theorem 2.3. If G and Ĝ are connected, then Dgb(G, x) = Dgb(Ĝ, x).

Proof. The proof follows immediately from the de�nitions of G.B.D.S and Dgb(G, x).

Theorem 2.4. For any positive integers m and n,

(i) Dgb(Km,n, x) = xm+n.

(ii) If Km,n r e is connected, then Dgb(Km,n r e, x) = xm+n−1(x+ 2).

Proof. (i) Obviously γgb(Km,n) = m+ n. Therefore Dgb(Km,n, x) = xm+n.
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(ii) We have γgb(Km,nre) = m+n−1. Since dgb((Km,nre,m+n−1) = 2 and dgb((Km,nr
e,m+ n) = 1, the proof follows.

A bi-star graph B(m,n) is a tree obtained from the graph K2 with two vertices u and v by

attaching m pendant edges in u and n pendant edges in v.

Theorem 2.5. The global bipartite domination polynomial of bi-star graph is

Dgb(B(m,n)) = x2 [xm + xn + [(1+ x)m − 1] [(1+ x)n − 1]]

Proof. Let U and V be the set of all pendant vertices in u and v respectively. Suppose S is a

G.B.D.S of B(m,n). Since the vertices u and v are isolated in B̂(m,n), {u, v} ⊆ S. For |S| − 2 ̸=
m or n, S ∩ U ̸= ϕ and S ∩ V ̸= ϕ. If |S| − 2 = m, then U ∪ {u, v} and if |S| − 2 = n, then
V ∪ {u, v} are G.B.D.S of B(m,n). This completes the proof.

The next theorem follows immediately from the de�nition of global bipartite domination

polynomial.

Theorem 2.6. For any spanning subgraph G of Km,n,

( i) dgb(G,m+ n) = 1.

(ii) dgb(G, i) = 0 if and only if i < γgb(G) or i > m+ n

(iii) Dgb(G, x) has no constant term.

(iv) Dgb(G, x) is a strictly increasing function in [0,∞).

( v) If H is an induced subgraph of G, then deg(Dgb(G, x)) ≥ deg(Dgb(H,x))

(vi) Zero is a root of Dgb(G, x) with multiplicity γgb(G).

Theorem 2.7. Let G be a graph with bipartition (X,Y ). If G has a γ-set S = V1 ∪ V2, where

V1 ⊆ X and V2 ⊆ Y then S is a γgb-set of G if and only if
∩
x∈V1

N(x) ⊆ V2 and
∩
y∈V2

N(y) ⊆ V1.

Proof. Let
∩
x∈V1

N(x) ⊆ V2 and
∩
y∈V2

N(y) ⊆ V1. Since S is a γ- set of G, it suf�ces to show

that S dominates the relative compliment of G. Let u ∈ X. If u ∈
∩
y∈V2

N(y), then u ∈ V1. If

u /∈
∩
y∈V2

N(y) then u is adjacent to atleast one vertex of V2 in Ĝ. Similarly, we can prove that if

v ∈ Y then v ∈ V2 or v is adjacent to atleast one vertex of V1 in Ĝ. Conversely, let S dominates

Ĝ. Let x be an arbitrary vertex in X. If x ∈
∩
y∈V2

N(y), then in Ĝ, x is not adjacent to any vertex

of V2. Since S dominates Ĝ, we can deduce that x ∈ V1. If x /∈
∩
y∈V2

N(y), then x is adjacent to

at least one element of V2 in Ĝ. Hence the proof.

Corollary 2.8. For n ≥ 10, γgb(Pn) = γ(Pn) = ⌈n
3
⌉.

Proof. Let V (Pn) = {1, 2, 3, . . . , n}. Then X = {x : x is even, x ≤ n}, Y = {y : y is odd, y ≤
n} is the bipartition of Pn. Let S1 = {i : i ≡ 1(mod 3), i ≤ n} and S2 = {i : i + 1 ≡
0(mod 3), i ≤ n}. Then either S1 or S2 is a γ-set of Pn. Also for i = 1, 2,

∩
x∈Si∩X

N(x) = ϕ and∩
y∈Si∩Y

N(y) = ϕ. Thus the proof follows from Theorem 2.7.

Corollary 2.9. For an even integer n ≥ 10, γgb(Cn) = γ(Cn) = ⌈n
3
⌉.

Proof. The proof is exactly similar to corollary 2.8.
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Corollary 2.10. If G is an n− 1-regular connected bipartite graph, then

Dgb(G, x) = [x (x+ 2)]
n − 2nxn.

Proof. Since G is n− 1 regular, each component of Ĝ is P2. Therefore a G.B.D.S of G contains

at least one vertex from each component of Ĝ. So γgb(G) = n and for 1 ≤ i ≤ n, dgb(G,n +

i) =

(
n

i

)
2n−i. It follows from Theorem 2.7 that dgb(G,n) = 2n − 2n. This completes the

proof.

Next, we shall study the relation between domination polynomials and global bipartite dom-

ination polynomials of paths. For, we need the following:

Theorem 2.11. [1] For every n ≥ 4,
D(Pn, x) = x[D(Pn−1, x) + D(Pn−2, x) + D(Pn−3, x), with initial values D(P1, x) =
x, D(P2, x) = x2 + 2x, D(P3, x) = x3 + 3x2 + x.

Lemma 2.12. For a path Pn with bipartition (X,Y ), let S = V1 ∪V2 where V1 ⊆ X and V2 ⊆ Y
be a dominating set. If |Vi| > 2, ∀i then S is a G.B.D.S. of Pn.

Proof. In Pn if |Vi| > 2, then
∩
v∈Vi

N(v) = ϕ. Then by Theorem 2.7, S is a G.B.D.S of Pn.

Theorem 2.13. Let G be a connected bipartite graph with partite setsX and Y. Let S = V1 ∪ V2

be a GBDS of G, where V1 ⊆ X and V2 ⊆ Y . Then if V1 = ϕ, then V2 = Y and if V2 = ϕ, then
V1 = X.

Proof. Let S = V1∪V2, where V1 ⊆ X and V2 ⊆ Y . If V1 = ϕ, then S ⊆ Y . SinceG is bipartite,

the vertices in Y are not adjacent and so S ⊇ Y. Therefore S = V2 = Y. Similarly, we can prove

that if V2 = ϕ then V1 = X.

So for n ≥ 12, to �nd d(Pn, i) − dgb(Pn, i) it suf�ces to consider the dominating sets S =
V1 ∪ V2 of Pn with 1 ≤ |V1| ≤ 2 or 1 ≤ |V2| ≤ 2. To prove theorems 2.14 to 2.17, we take

X = {1, 3, 5, . . . , 2n− 1} and Y = {2, 4, 6, . . . , 2n} be the bipartition of P2n and S = V1 ∪ V2,
where V1 ⊆ X and V2 ⊆ Y be a dominating set. Using the following theorems we can �nd the

number of dominating sets which are not global bipartite dominating sets.

Theorem 2.14. For |V1| = 1, we have

( i) d(P2n, n)− dgb(P2n, n) = 2n− 2.

(ii) d(P2n, n− 1)− dgb(P2n, n− 1) = n− 2.

Proof. Since a vertex inX is adjacent to atmost two vertices in Y, n−2 ≤ |V2| ≤ n. If |V2| = n,
then S = V1 ∪ V2 is a G.B.D.S and the proof is complete. So |V2| = n− 2 or n− 1.We consider

the following cases:

Case 1: V1 = {1}.
Here V2 = {4, 6, 8, . . . , 2n}. Since N(1) = {2} * V2, S is not a G.B.D.S.

Case 2: V1 = {3}.
Here also |V2| = n − 1 and V2 = {2, 6, 8, . . . , 2n}. Since N(3) = {2, 4} * V2, S is not a

G.B.D.S.

Case 3: V1 = {i}, i ̸= 1, 3.
Then for each i, V1∪Y r{i−1, i+1}, V1∪Y r{i−1} and V1∪Y r{i+1} are dominating

sets of P2n. Since N(i) = {i− 1, i+ 1} * V2, these are not G.B.D.S of P2n.

In cases 1 and 2 we have two dominating sets of order n. In case 3 we have 2(n−2) dominating

sets of order n and n− 2 dominating sets of order n− 1. Therefore the result follows.

Theorem 2.15. For |V2| = 1, we have
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( i) d(P2n, n)− dgb(P2n, n) = 2n− 2.

(ii) d(P2n, n− 1)− dgb(P2n, n− 1) = n− 2.

Proof. The proof is exactly similar to Theorem 2.14.

Theorem 2.16. For |V1| = 2, we have

( i) d(P2n, n− 1)− dgb(P2n, n− 1) = n− 3.

( ii) d(P2n, n)− dgb(P2n, n) = 2n− 4.

(iii) d(P2n, n+ 1)− dgb(P2n, n+ 1) = n− 1.

Proof. Since |V1| = 2, we have n − 3 ≤ |V2| ≤ n. If |V2| = n, then S = V1 ∪ V2 is a G.B.D.S.

So it suf�ces to consider the cases |V2| = n− 3, n− 2 and n− 1.

Case 1: V1 = {1, 3}.

Subcase 1: |V2| = n− 2.
Then V2 = {6, 8, . . . , 2n}. SinceN(1)∪N(3) = {2} * V2, S is not a G.B.D.S of P2n.

Subcase 2: |V2| = n− 1.
Then V2 = {4, 6, 8, . . . , 2n}. Since N(1)∪N(3) = {2} * V2, the dominating set S is

not a G.B.D.S.

Case 2: V1 = {3, 5}.
As in case 1 we get two dominating sets which are not G.B.D.S of P2n.

Case 3: V1 = {i, i+ 2}, i ̸= 1, 3.

Subcase 1: |V2| = n− 3.
Then V2 = Y r {i− 1, i+ 1, i+ 3}.

Subcase 2: |V2| = n− 2.
In this case we have the possibilities, V2 = Y r{i−1, i+1} and V2 = Y r{i+1, i+3}.

Subcase 3: |V2| = n− 1.
Then V2 = Y r {i+ 1}.

In subcase 1,2 and 3, S = V1∪V2 is a dominating set but sinceN(i)∩N(i+1) = {i+1} *
V2, S is not a G.B.D.S of P2n.

In cases 1 and 2 we have two dominating sets of order n and n + 1. In case 3 we have n − 3

dominating sets of order n− 1, 2(n− 3) dominating sets of order n and n− 3 dominating sets

of order n+ 1. Hence the result follows.

Theorem 2.17. For |V2| = 2, we have

( i) d(P2n, n− 1)− dgb(P2n, n− 1) = n− 3.

( ii) d(P2n, n)− dgb(P2n, n) = 2n− 4.

(iii) d(P2n, n+ 1)− dgb(P2n, n+ 1) = n− 1.

Proof. The proof is exactly similar to Theorem 2.16.

Theorem 2.18. For n ≥ 6,

D(P2n, x)−Dgb(P2n, x) = (4n− 10)xn−1 + (8n− 12)xn + (2n− 2)xn+1.

Proof. It follows from Theorems 2.14, 2.15, 2.16 and 2.17.

Next, we �nd the relationship between domination polynomials and global bipartite domina-

tion polynomials of P2n+1. To prove theorems 2.19 to 2.22, we take X = {1, 3, 5, . . . , 2n + 1}
and Y = {2, 4, 6, . . . , 2n} be the bipartition of P2n+1 and S = V1 ∪ V2, where V1 ⊆ X and

V2 ⊆ Y be a dominating set of P2n+1.

Theorem 2.19. For |V1| = 1, we have
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( i) d(P2n+1, n− 1)− dgb(P2n+1, n− 1) = n− 3.

( ii) d(P2n+1, n)− dgb(P2n+1, n) = 2n− 2.

Proof. Case 1: V1 = {1}. Let V2 = Y r {2}. Since N(1) = {2}, S = V1 ∪V2 is not a G.B.D.S.

The case V1 = {2n+ 1} is similar.

Case 2: V1 = {3}. Let V2 = Y r {4}. Since N(3) = {2, 4}, S = V1 ∪ V2 is not a G.B.D.S.

The case V1 = {2n− 1} is similar.

Case 3: V1 = {i}, i /∈ {1, 3, 2n−1, 2n+1}. In this case we have the possibilities, V2 = Y r{i−
1, i+1} or V2 = Y r{i−1} and V2 = Y r{i+1}. SinceN(i) = {i−1, i+1}, S = V1∪V2

is not a G.B.D.S.

In cases 1 and 2 we have four dominating sets of order n and in case 3 there are n − 3

dominating sets of order n − 1 and 2(n − 3) dominating sets of order n. This completes the

proof.

Theorem 2.20. For |V2| = 1, we have

( i) d(P2n+1, n)− dgb(P2n+1, n) = n.

(ii) d(P2n+1, n+ 1)− dgb(P2n+1, n+ 1) = 2n.

Proof. Let V2 = {i}, i ∈ Y ⇒ N(i) = {i−1, i+1}. Then V1 can beXr{i−1} orXr{i+1}
or X r {i − 1, i+ 1}. Since i can be selected in n ways , we have 2n dominating sets of order

n+1 and n dominating sets of ordern. SinceN(i) = {i−1, i+1}, S = V1∪V2 is not a G.B.D.S.

of P2n+1. Hence the result follows.

Theorem 2.21. For |V1| = 2, we have

( i) d(P2n+1, n− 1)− dgb(P2n+1, n− 1) = n− 4.

( ii) d(P2n+1, n)− dgb(P2n+1, n) = 2n− 4.

(iii) d(P2n+1, n+ 1)− dgb(P2n+1, n+ 1) = n.

Proof. Case 1: V1 = {1, 3}. Then V2 can be Y r {2} or Y r {2, 3}. Since N(1) ∩ N(3) =
{2}, S = V1 ∪ V2, is not a G.B.D.S.
The case V1 = {2n− 1, 2n+ 1} is similar.

Case 2: V1 = {3, 5}. Then V2 can be Y r {4} or Y r {4, 5}. Since N(3) ∩N(5) = {4}, S =
V1 ∪ V2, is not a G.B.D.S.
The case V1 = {2n− 3, 2n− 1} is similar.

Case 3: V1 = {i, i+ 2}, i /∈ {1, 3, 2n− 3, 2n− 1}. Then V2 can be Y r {i− 1, i+ 1, i+ 3} or
Y r {i− 1, i+ 1} or Y r {i+ 1, i+ 3}. Since N(i)∩N(i+ 2) = {i+ 1}, S = V1 ∪ V2, is
not a G.B.D.S.

In cases 1 and 2 we have four dominating sets of order n and n+ 1. In case 3 there are n− 4

dominating sets of order n−1 and n+1 and 2(n−4) dominating sets of order n. Thus the result
follows.

Theorem 2.22. For |V2| = 2, we have

( i) d(P2n+1, n)− dgb(P2n+1, n) = n− 1.

( ii) d(P2n+1, n+ 1)− dgb(P2n+1, n+ 1) = 2n− 2.

(iii) d(P2n+1, n+ 2)− dgb(P2n+1, n+ 2) = n− 1.

Proof. Let V2 = {i, i+2}, i ∈ Y ⇒ N(i)∩N(i+2) = {i+1}. Then V1 can beXr {i− 1, i+
1, i + 3} or X r {i − 1, i + 1} or X r {i + 1, i + 3}. Since V2 can be chosen in n − 1 ways ,

we have n− 1 dominating sets of order n and 2(n− 1) dominating sets of ordern+ 1 and n− 1

dominating sets of order n+ 2. Since N(i)∩N(i+ 2) = {i+ 1}, S = V1 ∪V2 is not a G.B.D.S.

of P2n+1. This proves the result.
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Theorem 2.23. For n ≥ 6,

D(P2n+1, x)−Dgb(P2n+1, x) = (2n− 7)xn−1 + (6n− 7)xn + (5n− 2)xn+1 + (n− 1)xn+2.

Proof. It follows from Theorems 2.19, 2.20, 2.21 and 2.22.

Theorem 2.24. [1] For every n ≥ 4,
D(Cn, x) = x[D(Cn−1, x) + D(Cn−2, x) + D(Cn−3, x), with initial values D(C1, x) =
x, D(C2, x) = x2 + 2x, D(C3, x) = x3 + 3x2 + 3x.

Next, we �nd D(C2n, x)−Dgb(C2n, x).
To prove theorems 2.25 to 2.29, we take X = {1, 3, 5, . . . , 2n − 1} and Y = {2, 4, 6, . . . , 2n}
be the bipartition of C2n and S = V1∪V2 where V1 ⊆ X and V2 ⊆ Y be a dominating set of C2n.

Theorem 2.25. For |V1| = 1, we have

( i) d(C2n, n− 1)− dgb(C2n+1, n− 1) = n.

(ii) d(C2n, n)− dgb(C2n, n) = 2n.

Proof. Let V1 = {i}, i ∈ X. Then N(i) = {i − 1, i + 1} (if i = 1, then we take i − 1 = 2n.)
Then V2 can be Y r {i − 1, i + 1} or X r {i − 1} or X r {i + 1}. Since i can be chosen in

n ways , we have n dominating sets of order n − 1 and 2n dominating sets of ordern. Since
N(i) = {i− 1, i+ 1}, S = V1 ∪ V2 is not a G.B.D.S. of C2n. Hence the result follows.

Theorem 2.26. For |V2| = 1, we have

( i) d(C2n, n− 1)− dgb(C2n+1, n− 1) = n.

(ii) d(C2n, n)− dgb(C2n, n) = 2n.

Proof. The proof is exactly similar to Theorem 2.25.

Theorem 2.27. For |V1| = 2, we have

( i) d(C2n, n− 1)− dgb(C2n, n− 1) = n− 1.

( ii) d(C2n, n)− dgb(C2n, n) = 2(n− 1).

(iii) d(C2n, n+ 1)− dgb(C2n, n+ 1) = n− 1.

Proof. Let V1 = {i, i+2}, i ∈ X. ThenN(i)∩N(i+2) = {i+1}( if i = 2n−1, then we take i+
2 = 1 and i+3 = 2.) Then V2 can be Y r{i−1, i+1, i+3} or Y r{i−1, i+1} or Y r{i+1, i+3}
or Y r {i+ 1}. Since V1 can be chosen in n− 1 ways , we have (n− 1) dominating sets of order

n − 1 ,2(n − 1) dominating sets of ordern and n − 1 dominating sets of order n + 1. Since
N(i)∩N(i+ 2) = {i+ 1}, S = V1 ∪ V2 is not a G.B.D.S. of C2n. Hence the result follows.

Theorem 2.28. For |V2| = 2, we have

( i) d(C2n, n− 1)− dgb(C2n, n− 1) = n− 1.

( ii) d(C2n, n)− dgb(C2n, n) = 2(n− 1).

(iii) d(C2n, n+ 1)− dgb(C2n, n+ 1) = n− 1.

Proof. The proof is exactly similar to Theorem 2.27.

Theorem 2.29. For n ≥ 6,

D(C2n, x)−Dgb(C2n, x) = (4n− 2)xn−1 + (8n− 4)xn + (2n− 2)xn+1.

Proof. It follows from Theorems 2.25, 2.26, 2.27 and 2.28.
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