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Abstract. A subset S of vertices in a graph G is called injective dominating set if for every

vertex v not in S there exists a vertex u ∈ S such that |G(u, v)| ≥ 1, where |G(u, v)| is the
number of common neighbors between the vertices u and v. The injective domination number

γin(G) ofG is the minimum cardinality of such dominating sets. In this article, we introduce the

injective domination polynomial of a graph G of order p as Din(G, x) =
p∑

j=γin(G)

din(G, j)xj ,

where din(G, j) is the number of the injective dominating sets of G of size j. We obtain some

properties of Din(G, x) and compute this polynomial for some speci�c graphs.

1 Introduction

All graphs considered here are �nite, undirected without loops and multiple edges. For a graph

G, let V (G) and E(G) denote the set of all vertices and edges of G, respectively. The open

neighborhood and the closed neighborhood of a vertex v ∈ V (G) are de�ned by N(v) = {u ∈
V (G) : uv ∈ E} and N [v] = N(v) ∪ {v}, respectively. The cardinality of N(v) is called the

degree of the vertex v and denoted by deg(v) in G. The maximum and the minimum degrees

in G are denoted respectively by D(G) and δ(G). That is D(G) = maxv∈V |N(u)|, δ(G) =
minv∈V |N(u)|. The distance between two vertices u and v in G is the number of edges in a

shortest path connecting them, this is also known as the geodesic distance. The eccentricity of a

vertex v is the greatest geodesic distance between v and any other vertex and denoted by e(v).
For more terminology and notations about graph, we refer the reader to [11, 12].

A subset D of V (G) is called dominating set if for every vertex v ∈ V −D, there exists a vertex

u ∈ D such that v is adjacent to u. The minimum cardinality of a dominating set in G is called

the domination number of G and is denoted by γ(G). For more details about domination of

graphs, we refer to [13].

The common neighborhood graph (congraph) of G, denoted by con(G), is the graph with the

vertex set V (G), in which two vertices are adjacent if and only if they have at least one common

neighbor in the graph G [6].

Proposition 1.1 ([6]).

(i) con(Kp) = Kp.

(ii) con(Kp) = Kp.

(iii) con(Kr,m) = Kr ∪Km.

(iv) con(Wp) = Kp.

(v) con(Pp) ∼= P⌈ p
2
⌉ ∪ P⌊ p

2
⌋.

(vi) con(Cp) ∼=


Cp, if p is odd and p ≥ 3;

P2 ∪ P2, if p = 4;

C p
2
∪ C p

2
, if p is even.
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The common neighborhood (CN-neighborhood) of a vertex v ∈ V (G) denoted by Ncn(v)
is de�ned by Ncn(v) = {u ∈ V (G) : uv ∈ E(G) and |G(u, v)| ≥ 1}, where |G(u, v)| is the
number of common neighborhood between the vertices u and v, [10]. The concept of injective
domination in graph has introduced in [8]. For a graph G, a subset S of V (G) is called injective
dominating set if for every vertex v ∈ V − S there exists a vertex u ∈ S such that |G(u, v)| ≥ 1.

The minimum cardinality of such dominating set denoted by γin(G) and is called the injective

domination number ofG. The injective neighborhoodNin(v) of a vertex v ∈ V (G) is de�ned by
Nin(v) = {u ∈ V (G) : |G(u, v)| ≥ 1}. The cardinality of Nin(v) is called the injective degree

of the vertex v and denoted by degin(v) in G, and Nin[v] = Nin(v) ∪ {v}. A vertex v in G is

called injective isolated (Inj-isolated) vertex if and only if v is isolated or a center vertex of a star
component of G. For more details about the injective domination of graphs, we refer to [1, 7].

Proposition 1.2 ([8]). For any graph G, γin(G) = γ(con(G)).

Proposition 1.3 ([8]). Let G be a graph with p vertices. Then γin(G) = p if and only if G is a

forest with D(G) ≤ 1.

Proposition 1.4 ([8]). Let G be a nontrivial connected graph. Then γin(G) = 1 if and only if

there exists a vertex v ∈ V (G) such that N(v) = Ncn(v) and e(v) ≤ 2.

Let D(G, j) be the family of dominating sets of a graph G of size j and let d(G, j) =
|D(G, j)|. The domination polynomialD(G, x) ofG is de�ned byD(G, x) =

∑p
j=γ(G) d(G, j)xj ,

[5]. The dominating sets and the domination polynomial of graphs have been studied extensively,

for example in [5, 3, 4, 2]. Recently, the neighborhood polynomial of graphs has studied in [9].

There are many graph polynomial have introduced and studied extensively like Characteris-

tic polynomial, Chromatic polynomial, Matching polynomial, Tutte polynomial...etc. The graph

polynomial is one of the ways for algebraic graph representation. By the analysis of graph poly-

nomial and studied its properties we can get some information about the graph, that motivated us

to introduce a new type of graph polynomial is called injective domination polynomial of graphs.

In this paper, we introduce the injective domination polynomial of graphs. Some properties of

Din(G, x) are obtained and exact formulas for some speci�c graphs are computed.

2 Injective domination polynomial of graphs

In this section, we de�ne the injective domination polynomial of a graph G and study some of

its properties.

De�nition 2.1. Let G be a graph on p vertices. The injective domination polynomial of G is

denoted by Din(G, x) and de�ned as

Din(G, x) =
p∑

j=γin(G)

din(G, j)xj ,

where γin(G) is the injective domination number of G, and din(G, j) is the number of injective

dominating sets of G of size j.

For instance, the cycle C4 has one Inj-dominating set of size four and four Inj-dominating

sets of size three and two, then the injective domination polynomial of C4 is Din(C4, x) =
x4 + 4x3 + 4x2. From Proposition 1.2 and De�nition 2.1, it is easy to check the following

proposition.

Proposition 2.2. For any graph G, Din(G, x) = D(con(G), x).

Theorem 2.3. Let G be a graph on p ≥ 2 vertices. Then Din(G, x) =
(
1+ x

)p − 1 if and only

if for every vertex v ∈ V (G), Ncn(v) = N(v) and e(v) ≤ 2.

Proof. Suppose Din(G, x) =
(
1 + x

)p − 1. Then Din(G, x) =
∑p

j=1
(nj)x

j , which means that

any vertex v in G has a full Inj-degree. Hence by Proposition 1.4, Ncn(v) = N(v) and e(v) ≤ 2,

∀v ∈ V (G). The converse is clear.
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Corollary 2.4. For any complete graph Kp with p ≥ 3, Din(Kp, x) =
(
1+ x

)p − 1.

Lemma 2.5 ([5]). If a graph G consists of m components G1, . . . , Gm, then

D(G, x) = D(G1, x) . . . D(Gm, x)

.

By the same argument, Lemma 2.5 is also true for the injective domination polynomial of

any graph G with m components.

Lemma 2.6. If a graph G consists of m components G1, . . . , Gm, then

Din(G, x) = Din(G1, x) . . . Din(Gm, x)

.

Proof. The proof is straightforward from Proposition 2.2 and Lemma 2.5.

Lemma 2.7 ([5]). Let Kp be the empty graph with p vertices. Then D(Kp, x) = xp.

Theorem 2.8. Let G be a graph on p vertices. Then Din(G, x) = xp if and only if G is a forest

with D(G) ≤ 1.

Proof. Suppose Din(G, x) = xp. Then by Proposition 2.2 and Lemma 2.7, con(G) ∼= Kp. But

Kp
∼= con(nK1 ∪ mK2) for some n,m ∈ Z+ ∪ {0}, where p = n + 2m. Hence, G is a forest

with D(G) ≤ 1. The converse is clear.

In the following theorem we obtain the injective domination polynomial of the join graph

G1 + G2 of two graphs G1 and G2.

Theorem 2.9. Let G1 and G2 be any two graphs of orders p1 and p2, respectively.

(i) If G1 or G2 is an isolated-free graph, then

Din(G1 + G2, x) =
(
1+ x

)p1+p2 − 1.

(ii) If G1 and G2 have isolated vertices, then

Din(G1+G2, x) =



2∏
k=1

((
1 + x

)pk − 1

)
+

2∑
k=1

((
1 + x

)pk −
(
1 + x

)rk), if G1 ̸= Kp1 and G2 ̸= Kp2 ;

2∏
k=1

((
1 + x

)pk − 1

)
+

(
1 + x

)p1 − (
1 + x

)r1 , if G1 ̸= Kp1 and G2 = Kp2 ;

2∏
k=1

((
1 + x

)pk − 1

)
+

(
1 + x

)p2 − (
1 + x

)r2 , if G1 = Kp1 and G2 ̸= Kp2 ;

2∏
k=1

((
1 + x

)pk − 1

)
, if G1 = Kp1 and G2 = Kp2 ,

where r1 and r2 are the number of isolated vertices of G1 and G2, respectively.

Proof.

(i) SupposeG1 orG2 is an isolated-free graph. Then for any vertex v ∈ V (G1+G2),Ncn(v) =

N(v) and e(v) ≤ 2. Hence by Theorem 2.3, Din(G1 + G2, x) =
(
1+ x

)p1+p2 − 1.

(ii) Suppose G1 ̸= Kp1 . Then any non-isolated vertex of G1 forms an injective dominating set

of G1 + G2. Thus any subset of vertices of G1 contains at least one non-isolated vertex

forms an injective dominating set of G1 + G2. Hence, we have

(
p1
j

)
−

(
r1
j

)
injective

dominating sets of G1 + G2 of size 1 ≤ j ≤ p1 (we can do the same for G2). On the other

hand, suppose D1 ⊆ V (G1) and D2 ⊆ V (G2) be any subsets of vertices of G1 and G2,

respectively, such that |D1| + |D2| = j. Clearly that, D1 ∪D2 is an Inj-dominating set of

G1 + G2 of size j. Hence the result.
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As a corollary of Theorem 2.9, we have the following formula for the injective domination

polynomial of the complete bipartite graph Kr,m, the wheel graph Wp and the star Sp.

Corollary 2.10.

(i) Din(Kr,m, x) =

((
1+ x

)r − 1

)((
1+ x

)m − 1

)
.

(ii) If p ≥ 4, Din(Wp, x) =
(
1+ x

)p − 1.

(iii) Din(Sp, x) = x
(
1+ x

)p−1 − x.

Corollary 2.11. Let G = G1+ G2+ · · ·+ Gn for any graphs Gk, k = 1, 2, . . . , n, where n ≥ 3.

Then

Din(G, x) =
(
1+ x

)∑n
k=1

pk − 1.

Proof. Since G = G1 + G2 + · · ·+ Gn, where n ≥ 3, then for any vertex v ∈ V (G), Ncn(v) =

N(v) and e(v) ≤ 2. Hence by Theorem 2.3, Din(G, x) =
(
1+ x

)∑n
k=1

pk − 1.

The following proposition is an easy consequence from the de�nition of the injective domi-

nation polynomial of graphs.

Proposition 2.12. Let G be a graph on p vertices. Then

(i) If G is a connected graph and G ̸= Sp, then din(G, p) = 1 and din(G, p− 1) = p.

(ii) din(G, j) = 0 if and only if j < γin(G) or j > p.

(iii) Din(G, x) has no constant term.

(iv) Din(G, x) is a strictly increasing function in [0,∞).

(v) The only polynomial of degree two can Din(G, x) be equal is x2 if and only if G ∼= K2 or

G ∼= K2.

(vi) Let H be any induced subgraph of G. Then

deg
(
Din(G, x)

)
≥ deg

(
Din(H,x)

)
.

(vii) Zero is a root of Din(G, x), with multiplicity γin(G).

Theorem 2.13. Let G be a graph of order p with t vertices of Inj-degree one and r Inj-isolated

vertices. If Din(G, x) =
∑p

j=γin(G) din(G, j)xj is its domination polynomial, then the following

hold:

(i) r = p− din(G, p− 1).

(ii) If G has s path P3-components, then din(G, p− 2) = (p
2
)− t+ s− r(p− 1) + (r

2
).

(iii) If G has no Inj-isolated vertices and Din(G,−2) ̸= 0, then t = (p
2
)− din(G, p− 2).

(iv) din(G, 1) = |{v ∈ V (G) : |degin(v) = p− 1}|.

Proof.

(i) Suppose B ⊆ V (G) be the set of all Inj-isolated vertices of G. Then by assumption,

|B| = r. It is clear that, for any vertex v ∈ V (G) − B, the set V (G) − {v} is an Inj-

dominating set of G of size p− 1. Hence, din(G, p− 1) = |V (G)−B| = p− r.
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(ii) SupposeD ⊆ V (G) be a set ofG of size p−2 which is not Inj-dominating set. To compute

how many D sets in G, we have two cases:

Case 1. D = V (G) − {u, v}, where u or v is an Inj-isolated vertex in G. So, for every

Inj-isolated vertex u in G, there are p − 1 vertices such that V (G) − {u, v} is not an Inj-

dominating set of G. Therefore, the total number of (p− 2)-subsets of vertices of G of the

form V (G)− {u, v} which is not Inj-dominating set, where u or v is an Inj-isolated vertex
is r(p− 1)− (r

2
), since if u and v are Inj-isolated vertices, then we count V (G)−{u, v} for

both u and v.
Case 2. D = V (G) − {u, v}, where u and v are Inj-adjacent (u and v have at least a

common neighbor) and degin(u) = 1. Since we have s P3-components, then the number

of such Inj-edges {u, v} is t− s. Hence the result.

(iii) Since Din(G,−2) ̸= 0, then by Lemma 2.6, G has no P3-components. Hence by Part (ii),
t = (p

2
)− din(G, p− 2).

(iv) For any vertex v ∈ V (G), the set {v} is an Inj-dominating set of G if and only if N(v) =
Ncn(v) and e(v) ≤ 2 (Proposition 1.4), which means that degin(v) = p− 1.

Lemma 2.14 ([5]). Let G be a graph of order p. Then for every 0 ≤ j < p
2
, we have d(G, j) ≤

d(G, j + 1).

Proposition 2.15. Let G be a graph of order p. Then for every 0 ≤ j < p
2
, we have din(G, j) ≤

din(G, j + 1).

Proof. The proof follows from Proposition 2.2 and Lemma 2.14.

3 Injective domination polynomial of some speci�c graphs

In this section, we compute the injective domination polynomial of the path Pp, cycle Cp, �re�y

graph and the corona product Kn ◦Km.

3.1 Injective domination polynomial of paths and cycles

Lemma 3.1 ([4]). For any p ≥ 4,

D(Pp, x) = x
[
D(Pp−1, x) +D(Pp−2, x) +D(Pp−3, x)

]
,

with the initial values D(P1, x) = x, D(P2, x) = x2 + 2x and D(P3, x) = x3 + 3x2 + x.

Theorem 3.2. For any p ≥ 2, the injective domination polynomial of the path Pp is given by

Din(Pp, x) =

{ [
D(P p

2
, x)

]2
, if p is even;

D(P p+1

2

, x)D(P p−1

2

, x), if p is odd,

with the initial values D(P1, x) = x, D(P2, x) = x2 + 2x and D(P3, x) = x3 + 3x2 + x.

Proof. The proof is straightforward from Proposition 1.1 and Lemmas 2.5, 3.1.

Lemma 3.3 ([3]). For any p ≥ 4,

D(Cp, x) = x
[
D(Cp−1, x) +D(Cp−2, x) +D(Cp−3, x)

]
,

with the initial values D(C1, x) = x, D(C2, x) = x2 + 2x and D(C3, x) = x3 + 3x2 + 3x.

Theorem 3.4. For any p ≥ 3, the injective domination polynomial of the cycle Cp is given by

Din(Cp, x) =


D(Cp, x), if p is odd;[
D(P2, x)

]2
, if p = 4;[

D(C p
2
, x)

]2
, if p is even and p ≥ 6,

with the initial values D(C1, x) = x, D(C2, x) = x2 + 2x and D(C3, x) = x3 + 3x2 + 3x.

Proof. The proof is straightforward from Proposition 1.1 and Lemmas 2.5, 3.3.
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3.2 Injective domination polynomial of the �re�y graph

A �re�y graph Fs,t,p−2s−2t−1 (s ≥ 0, t ≥ 0 and p − 2s − 2t − 1 ≥ 0) is a graph of order p that

consists of s triangles, t pendent paths of length 2 and p− 2s− 2t− 1 pendent edges, sharing a

common vertex.

Let Fp be the set of all �re�y graphs Fs,t,p−2s−2t−1. Note that Fp contains the stars Sp

(∼= F0,0,p−1), stretched stars (∼= F0,t,p−2t−1), friendship graphs (∼= F p−1

2
,0,0) and butter�y graphs

(∼= Fs,0,p−2s−1), [14]. In the following, we will discuss the injective domination polynomial of

the �re�y graph in cases t = 0, t ̸= 0.
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Figure 1. Fire�y graph Fs,t,p−2s−2t−1

Lemma 3.5. For the �re�y graph Fs,t,p−2s−2t−1,

γin(Fs,t,p−2s−2t−1) =

{
1, if t = 0 and s > 0;

2, otherwise.

Proof. In general, any set contains the center and another adjacent vertex will Inj-dominate all

the other vertices in Fs,t,p−2s−2t−1, then γin(Fs,t,p−2s−2t−1) ≤ 2. Now, if t = 0 and s > 0,

then Fs,0,p−2s−2t−1 contains a vertex v satis�es N(v) = Ncn(v) and e(v) ≤ 2, so by Proposi-

tion 1.4, γin(Fs,0,p−2s−2t−1) = 1. Otherwise, Fs,t,p−2s−2t−1 does not contain a vertex satis�es

Proposition 1.4. Hence, γin(Fs,t,p−2s−2t−1) = 2.

Theorem 3.6. For the �re�y graph Fs,0,p−2s−1, where t = 0, s > 0 and p > 2s+ 1,

din(Fs,0,p−2s−1, j) =


2s, if j = 1;
2s+1∑
i=1

(
p− i

j − 1

)
, if j ≥ 2.

Hence, Din(Fs,0,p−2s−1, x) = 2sx+
p∑

j=2

[ 2s+1∑
i=1

(
p− i

j − 1

)]
xj .

Proof. In this case by Lemma 3.5, γin(Fs,0,p−2s−1) = 1 (since Fs,0,p−2s−1 contains a vertex

satis�es Proposition 1.4). Actually, Fs,0,p−2s−1 contains 2s vertices satisfy Proposition 1.4 which
they are all the vertices of the triangles except the center vertex. On the other hand, any Inj-

dominating set of size j ≥ 2 must contain at least one vertex from the triangles, thus we have∑2s+1

i=1
(p−i
j−1

) possibilities.

Proposition 3.7. For the friendship graph F p−1

2
,0,0,

Din(F p−1

2
,0,0, x) =

(
1+ x

) p−1

2 − 1.
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Proof. It is easy to see thatNcn(v) = N(v) and e(v) ≤ 2, ∀v ∈ V (F p−1

2
,0,0). Hence by Theorem

2.3, the result is obtained.

Now, in case t ̸= 0, we divide the Inj-dominating sets of Fs,t,p−2s−2t−1 with respect to the

center vertex to Inj-dominating sets contain and do not contain the center vertex.

Lemma 3.8. The number of Inj-dominating sets which contain the center vertex and of size j,
where 2 ≤ j ≤ p in a �re�y graph Fs,t,p−2s−2t−1 is

din(Fs,t,p−2s−2t−1, j) =


p− t− 1, if j = 2;
p−t−1∑
i=1

(
p− 1− i

j − 2

)
, if j ≥ 3.

Proof. From the proof of Lemma 3.5, any set contains the center and another adjacent vertex in

Fs,t,p−2s−2t−1 is an Inj-dominating set of size two, thus we have p− t− 1 Inj-dominating set of

size two. Otherwise, any Inj-dominating set of size j ≥ 3 containing the center vertex must con-

tain at least on edge joining the center vertex with any other vertex, so we have
∑p−t−1

i=1
(p−1−i

j−2
)

possibilities.

Lemma 3.9. The number of Inj-dominating sets which do not contain the center vertex and of

size j, where t+ 1 ≤ j ≤ p− 1 in a �re�y graph Fs,t,p−2s−2t−1 is

din(Fs,t,p−2s−2t−1, j) =


p− t− 1, if j = t+ 1;
p−t−2∑
i=1

(
p− i− (t+ 1)

j − (t+ 1)

)
, if t+ 2 ≤ j ≤ p− 1.

Proof. It is clear that, any Inj-dominating set of Fs,t,p−2s−2t−1 does not contain the center vertex

must contain all the end vertices of the t pendant P3 paths in Fs,t,p−2s−2t−1 and at least one

vertex from the other vertices. Therefore, there are p − t − 1 Inj-dominating sets of size t + 1

and
∑p−t−2

i=1
(p−i−(t+1)

j−(t+1)
) possibilities of Inj-dominating sets of size t+ 2 ≤ j ≤ p− 1.

Theorem 3.10. For the �re�y graph Fs,t,p−2s−2t−1, where t ̸= 0,

Din(Fs,t,p−2s−2t−1, x) =(p− t− 1)
(
x2 + xt+1

)
+

p∑
j=3

[ p−t−1∑
i=1

(
p− 1− i

j − 2

)]
xj

+
p−1∑

j=t+2

[ p−t−2∑
i=1

(
p− i− (t+ 1)

j − (t+ 1)

)]
xj .

Proof. The proof is straightforward by the de�nition of the injective domination polynomial of

graphs and Lemmas 3.8, 3.9.

3.3 Injective domination polynomial of Kn ◦ Km

We start by the following proposition:

Proposition 3.11. Let G ∼= Kn ◦Km. Then γin(G) = 2.

Proof. It is easy to see that any two adjacent vertices in G Inj-dominate all the other vertices, so

γin(G) ≤ 2. But G has no a vertex of full Inj-degree (a vertex v satis�es Ncn(v) = N(v) and
e(v) ≤ 2, Proposition 1.4). Hence, γin(G) = 2.

According to Proposition 3.11, din(Kn ◦Km, j) = 0 for j < 2 or j > n(m+ 1). Thus, we
will compute din(Kn ◦Km, j) for 2 ≤ j ≤ n(m+ 1). To make more simplicity, in the following

two lemmas we compute din(Kn ◦Km, j) for the independent Inj-dominating sets and the non

independent Inj-dominating sets, respectively.
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Lemma 3.12. For any independent Inj-dominating set of size j (n ≤ j ≤ mn),

din(Kn ◦Km, j) =
∑

b1+b2+···+bm=n

(
n

b1, b2, . . . , bm

) m∏
i=1

(
m

i

)bi

,

where j = b1 + 2b2 + · · ·+mbm and 0 ≤ b1, b2, . . . , bm ≤ n.

Proof. It is not dif�cult to see that any independent Inj-dominating set ofKn ◦Km must contain

at least one vertex from each copy of Km. Thus the number of all independent Inj-dominating

sets of Kn ◦Km is given by the multinomial[ m∑
i=1

(
m

i

)]n
=

∑
b1+b2+···+bm=n

(
n

b1, b2, . . . , bm

) m∏
i=1

(
m

i

)bi

,

where 0 ≤ b1, b2, . . . , bm ≤ n. So, to determine din(Kn ◦Km, j) for each n ≤ j ≤ mn, we need
to know how many vertex should be chosen from each copy of Km by determine the numbers

b1, b2, . . . , bm such that
∑m

i=1
bi = n and j =

∑m
i=1

ibi. Hence,

din(Kn ◦Km, j) =
∑

b1+b2+···+bm=n

(
n

b1, b2, . . . , bm

) m∏
i=1

(
m

i

)bi

,

where j = b1 + 2b2 + · · ·+mbm.

Lemma 3.13. For any non independent Inj-dominating set of size j,

din(Kn ◦Km, j) = n
m∑
i=1

(
mn− i

j − 2

)
+

n∑
i=2

(
n

i

)(
mn

j − i

)
,

where 2 ≤ j ≤ n(m+ 1).

Proof. Suppose S is a non independent Inj-dominating set of Kn ◦ Km of size j (2 ≤ j ≤
n(m + 1)). We divide the Inj-dominating sets of Kn ◦ Km here into two parts, Inj-dominating

sets contain exactly one vertex of Kn which they have n
∑m

i=1
(mn−i

j−2
) possibilities and Inj-

dominating sets contain more than one vertex ofKn which they have
∑n

i=2
(ni)(

mn
j−i) possibilities.

Hence,

din(Kn ◦Km, j) = n

m∑
i=1

(
mn− i

j − 2

)
+

n∑
i=2

(
n

i

)(
mn

j − i

)
.

Theorem 3.14. For any n,m ≥ 1,

Din(Kn ◦Km, x) =

n(m+1)∑
j=2

[
n

m∑
i=1

(
mn− i

j − 2

)
+

n∑
i=2

(
n

i

)(
mn

j − i

)]
xj

+
nm∑

∑m
i=1

ibi=n

[ ∑
∑m

i=1
bi=n

(
n

b1, b2, . . . , bm

) m∏
i=1

(
m

i

)bi]
x
∑m

i=1
ibi ,

where 0 ≤ b1, b2, . . . , bm ≤ n.

Proof. The proof is straightforward by the de�nition of the injective domination polynomial of

graphs and Lemmas 3.12, 3.13.

Example 3.15.

(i) Din(Sp, x) =Din(K1 ◦Kp−1, x) =
p∑

j=2

[ p−1∑
i=1

(
p− 1− i

j − 2

)]
xj

=(p− 1)x2 +

(
p− 1

2

)
x3 +

(
p− 1

3

)
x4 + · · ·+ xp = x

(
1+ x

)p−1 − x.
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(ii) Din(Kn ◦K1, x) =
2n∑
j=2

[
n

(
n− 1

j − 2

)
+

n∑
i=2

(
n

i

)(
n

j − i

)]
xj + xn.

(iii) Din(K2 ◦Km, x) =

2(m+1)∑
j=2

[(
2m

j − 2

)
+ 2

m∑
i=1

(
2m− i

j − 2

)]
xj

+
2m∑

∑m
i=1

ibi=2

[ ∑
∑m

i=1
bi=2

(
2

b1, b2, . . . , bm

) m∏
i=1

(
m

i

)bi]
x
∑m

i=1
ibi
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