
Palestine Journal of Mathematics

Vol. 7(1)(2018) , 251�256 © Palestine Polytechnic University-PPU 2018

On Gaussian Pell Polynomials and Their Some Properties

Serpil HALICI and Sinan OZ

Communicated by Ayman Badawi

MSC 2010 Classi�cations: Primary: 11B37; Secondary: 11B39, 11B83.

Keywords and phrases: Recurrence Relations, Fibonacci and Pell Numbers, Generating Function.

Abstract In this study, we de�ne �rstly Gaussian Pell polynomials. Then, we give the gen-

erating functions and Binet formulas for this type polynomials. We also obtain some important

identities involving the Gaussian Pell polynomials.

1 Introduction

The investigation of Gaussian numbers is a research topic of great interest. The set of these

numbers is denoted by Z[i]. One of the �rst studies on this subject belongs to Gauss. Gaussian

numbers were investigated by Gauss in 1832. Then, in 1963, Horadam [8, 9] introduced the

concept of Gaussian Fibonacci numbers, that is, complex Fibonacci numbers. And then J. H.

Jordan [10] considered the two different sequences of Gaussian Fibonacci numbers and extented

some relationships which are known about the common Fibonacci sequences. He gave many

identities related with them. For example, n ≥ 2, some of these identities are

GFn = Fn + iFn−1; GF−n = iGFn,

GFn+1GFn−1 −GF 2

n = (−1)n(2− i),

GF 2

n+1 −GF 2

n−1 = F2n−1(1+ 2i),

GF 2

n +GF 2

n+1 = F2n(1+ 2i); Sn
k=0GFk = GFn+2 − 1.

In fact the above identities are known as the relationship between the usual Fibonacci sequence

and the Gaussian Fibonacci, Lucas sequences in the literature. Also, Horadam studied also the

complex Fibonacci polynomials. Fibonacci-like recursion relations are a special case of differ-

ence equations that can be solved by the combinatorics function technique method. Polynomials

that can be de�ned by Fibonacci-like recursion relations are called Fibonacci Polynomials and

they were studied in 1883 by Catalan and Jacobsthal. More mathematicians were involved in the

study of Fibonacci polynomials such as Y. Yuan, W. Zhang [20], among others. G. Berzsenyi

presented a natural manner of extension of the Fibonacci numbers into the complex plane [4]. In

addition to this, Berzsenyi obtained some interesting identities for the classical Fibonacci num-

bers. And, he gave a closed form for Gaussian Fibonacci numbers by the Fibonacci Q matrix.

In 1981, Harman gave the extension of Fibonacci numbers into the complex plane [6]. And, the

author generalized the methods are given by Horadam and Berzsenyi. We notice that the gen-

eralized Gaussian Fibonacci and Lucas numbers are de�ned as similar to generalized Fibonacci

and Lucas numbers. In [1], we investigated Gaussian Pell and Pell-Lucas numbers.

In this study, we de�ne and study the Gaussian Pell polynomials. We give generating func-

tions and Binet formulas of them. Also, we obtain some important identities involving the terms

of these polynomials.
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2 Gaussian Pell Polynomials and Their Some Properties

In this section, we introduce Gaussian Pell polynomials GPn(x) and present their some basic

properties. Now we de�ne Gaussian Pell polynomials GPn(x) as

GPn+1(x) = 2xGPn(x) +GPn−1(x); GP0(x) = i, GP1(x) = 1.

That is, the Gaussian Pell polynomials sequence {GPn(x)} can be written as

{GPn(x)} = {i, 1, 2x+ i, 4x2 + 1+ 2xi, 8x3 + 4x+ 4x2i+ i, · · ·}.

It is note that we have an important relation between Gaussian Pell polynomials and usual Pell

polynomials as follows.

GPn+1(x) = Pn(x) + iPn−1(x).

And, if we write x = 1 in the equationGPn+1(x) = Pn(x)+iPn−1(x), then we obtainGPn(1) =
GPn. When we pay attention to this the generalized Gaussian Fibonacci sequence can be written

as

GUn+1 = pGUn + qGUn−1; GU0 = a, GU1 = b. (2.1)

Let us note that writing p = q = 1, a = i, b = 1 in the equation (1) we have the Gaussian

Fibonacci sequence, that is

{GFn} = {i, 1, 1+ i, 2+ i, 3+ 2i, · · ·}.

Similarly, the values of equation (1) at p = 2, q = 1, a = i, b = 1, are just the values of Gaussian

Pell sequence, that is

{GPn} = {i, 1, 2+ i, 5+ 2i, 12+ 5i, · · ·}.

Likewise, writing p = 2, q = 1, a = 2−2i, b = 2+2i in the equation (1), we have the Gaussian
Pell-Lucas sequence, that is

{GQn} = {2− 2i, 2+ 2i, 6+ 2i, 14+ 6i, 34+ 14i, · · ·}.

Let α(x) and β(x) denote the roots of the characteristic equation of the recurrence relation

GPn+1(x) = 2xGPn(x) +GPn−1(x). Then these roots are

α(x) = x+
√
1+ x2, β(x) = x−

√
1+ x2.

It is clear that the sum and product of these roots are α(x) + β(x) = 2x and α(x)β(x) = −1.

Binet's formulas are well known in the theory of Fibonacci numbers. These formulas can also

carried out for the Gaussian Pell polynomials. We obtain the following Binet's formula for Gaus-

sian Pell polynomials in the following theorem.

Theorem 2.1. For n ≥ 0, we have

GPn(x) =
αn(x)− βn(x)

α(x)− β(x)
+ i

α(x)βn(x)− β(x)αn(x)

α(x)− β(x)
.

Proof. From the theory of difference equations we know that the general term of the Gaussian

Pell polynomials may be expressed in the form

GPn(x) = cαn(x) + dβn(x),

for some coef�cients c and d. Using the values n = 0 and n = 1 for c and d we obtain

c =
1− iβ(x)

α(x)− β(x)
, d =

−1+ iα(x)

α(x)− β(x)
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Considering the values c, d and making needed calculations, we get the following equation.

GPn(x) =
αn(x)− βn(x)

α(x)− β(x)
+ i

α(x)βn(x)− β(x)αn(x)

α(x)− β(x)

which is desired.

The generating function g(x, t) of the sequence {GPn(x)} is de�ned by

g(x, t) = S
∞
0 GPn(x)t

n

which is a formal power series. For detailed knowledge on generating functions we refer to the

books [13, 19].

Theorem 2.2. The generating function for the Gaussian Pell polynomials is

g(x, t) = S
∞
0 GPn(x)t

n =
t+ (1− 2xt)i

1− 2xt− t2
.

Proof. Let g(x, t) be the generating function of the sequence {GPn(x)}. Then, one can write

g(x, t) = S
∞
0 GPn(x)t

n = GP0(x) +GP1(x)t+GP2(x)t
2 + · · ·

Using the recursive relation of this sequence we have

g(x, t)(1− 2xt− t2) = GP0(x) + (GP1(x)− 2xGP0(x))t

If we make our computations, then the result as follows.

g(x, t) =
t+ (1− 2xt)i

1− 2xt− t2
.

Thus, the proof is completed.

And now we de�ne some special matrices which we need to prove our theorems.

Q(x) =

(
2x 1

1 0

)

and

P (x) =

(
2x+ i 1

1 i

)
Theorem 2.3. For n ≥ 1, we have

Qn(x)P (x) =

(
GPn+2(x) GPn+1(x)

GPn+1(x) GPn(x)

)

where GPn(x) is the nth Gaussian Pell Polynomial.

Proof. We can prove the theorem by the induction method on n. For n = 1, we have(
2x 1

1 0

)(
2x+ i 1

1 i

)
=

(
4x2 + 1+ 2xi 2xi

2xi 1

)
=

(
GP3(x) GP2(x)

GP2(x) GP1(x)

)
.

Now, assume that the theorem holds for n = k, that is(
2x 1

1 0

)k(
2x+ i 1

1 i

)
=

(
4x2 + 1+ 2xi 2xi

2xi 1

)
=

(
GPk+2(x) GPk+1(x)

GPk+1(x) GPk(x)

)
.



254 Serpil HALICI and Sinan OZ

Then, for n = k + 1, we have(
2x 1

1 0

)k+1(
2x+ i 1

1 i

)
=

(
2x 1

1 0

)(
GPk+2(x) GPk+1(x)

GPk+1(x) GPk(x)

)
,

=

(
GPk+3(x) GPk+2(x)

GPk+2(x) GPk+1(x)

)
.

Thus, we obtain the desired result.

It is well known that the Cassini identity is one of the oldest identities involving the Fibonacci

numbers [7, 12, 16]. In the following theorem, we give the Cassini formula for the Gaussian Pell

polynomials.

Theorem 2.4. For n ≥ 1, we have

GPn+1(x)GPn−1(x)−GP 2

n(x) = (−1)n2(1− ix).

Proof. This theorem can be proved by matrix method. It is clear that determinants of matrices

Qn−1(x) and P (x)

det(Qn−1(x)) = det

(
2x 1

1 0

)
= (−1)n−1,

det(P (x)) = det

(
2x+ i 1

1 i

)
= −2(1− ix).

And from the previous theorem

Qn−1(x)P (x) =

(
GPn+1(x) GPn(x)

GPn(x) GPn−1(x)

)

can be written. Thus, from these facts

GPn+1(x)GPn−1(x)−GP 2

n(x) = det(Qn−1(x)P (x)) = (−1)n−1(−2)(1−ix) = (−1)n2(1−ix).

can be written.

Theorem 2.5. For the Gaussian Pell Polynomials, n ≥ 1, we have the following sum formula.

n∑
k=1

GPk(x) =
1

2x
[GPn+1(x) +GPn(x)− (1+ i)]

Proof. From the recursive relation,

GPn(x) =
1

2x
[GPn+1(x)−GPn−1(x)],

and

GP1(x) =
1

2x
[GP2(x)−GP0(x)],

GP2(x) =
1

2x
[GP3(x)−GP1(x)],

GP3(x) =
1

2x
[GP4(x)−GP2(x)],

...
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GPn−1(x) =
1

2x
[GPn(x)−GPn−2(x)],

GPn(x) =
1

2x
[GPn+1(x)−GPn−1(x)]

can be written. Hence, we get

n∑
k=1

GPk(x) =
1

2x
[GPn+1(x) +GPn(x)− (GP1(x) +GP0(x))]

=
1

2x
[GPn+1(x) +GPn(x)− (1+ i)].

This completes the proof.

Moreover, by the aid of the last theorem we can give the following corollary.

Corollary 2.6. For n ≥ 1, we have

i)
n∑

k=0

GP2k(x) =
1

2x
[GP2n+1(x)− (1− 2i)],

and

ii)
n∑

k=0

GP2k−1(x) =
1

2x
[GP2n(x)− i].

Proof. This corollary is easily obtained by proceeding as in the proof of Theorem 5. So, we can

omit the detail.

Theorem 2.7. (Catalan Formulas) Let n, k be a nonzero positive integers. Then

GPn+k(x)GPn−k(x)−GP 2

n(x) = (−1)n(1− ix)[1+
(−1)k+1[αk(x) + βk(x)]2

4
]

Proof. This theorem can be easily proved by using the Binet formula.

Finally, we can give the following identity without proof.

Theorem 2.8. (d'Ocagne's Identity) For all m,n ∈ Z, we have

GPm+1(x)GPn(x)−GPm(x)GPn+1(x) = (−1)n+12(1− ix)Pm−n(x).

Conclusions. This study proposes introduce of the Gaussian Pell polynomials. In this study,

we give the generating functions and the Binet formulas of Gaussian Pell polynomials. We also

obtain some important identities involving the Gaussian Pell polynomials. In future we shall

further develop some results concerning the terms of these polynomials.
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