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Abstract A commutative ring R is additively regular if for each pair of elements f, g ∈ R
with f regular (meaning not a zero divisor), there is an element r ∈ R such that g+rf is regular.

Also R is a Marot ring if each regular ideal can be generated by a set of regular elements. Each

additively regular ring is Marot, but a Marot ring need not be additively regular. A property that

sits properly between these two is the notion of weakly additively regular: for f, g ∈ R with

f regular, there is a pair of elements s, t ∈ R such that gs + ft is regular and sR + fR = R.
Each of these properties can be de�ned with regard to the set of prime ideals that contain only

zero divisors. Thus we introduce the following notions for a given nonempty family of primes

P = {Pα}. First, P is an additively regular family if for each pair of elements f, g ∈ R with

f ∈ R\
∪
Pα, there is an element r ∈ R such that g + fr ∈ R\

∪
Pα. Similarly, P is a weakly

additively regular family if for f, g ∈ R with f ∈ R\
∪

Pα, there is a pair of elements s, t ∈ R
such that gs+ ft ∈ R\

∪
Pα and sR+ fR = R. Finally, P is a Marot family if each ideal I that

is not contained in
∪
Pα can be generated by the set I ∩ S where S = R\

∪
Pα.

1 Introduction

Throughout the paper, each ring is commutative with a nonzero identity. For a ring R, Z(R)
denotes the set of zero divisors of R, T (R) = {r/s | r, s ∈ R, s /∈ Z(R)} denotes the total

quotient ring of R and Reg(R) = R\Z(R) denotes the set of regular elements of R. Also an

ideal is regular if it contains at least one regular element.

The notion of an additively regular ring was introduced by Gilmer and Huckaba in [4] (also

see [3, Lemma B]). Speci�cally, a ring R is said to be additively regular if for each element

t ∈ T (R), there is an element d ∈ R such that t+ d is regular (so a unit in T (R)). Equivalently,
if b, c ∈ R with b regular, then there is an element h ∈ R such that c + bh is a regular element

of R. A related concept is that of a Marot ring: R is a Marot ring if each regular ideal can be

generated by a set of regular elements. It is easy to show that R is Marot if and only if for each

pair of elements b, c ∈ R with b regular, the ideal bR + cR can be generated by a (�nite) set

of regular elements. With this it is easy to see that an additively regular ring is a Marot ring.

Examples are known of Marot rings that are not additively regular, we will see others below.

A ring R has the regular �nite union property if for each regular ideal I and each �nite set

of regular ideals {J1, J2, . . . , Jn}, I is contained in
∪
Ji if and only if the regular elements of

I are contained in
∪
Ji. In [13], Portelli and Spangher noted that each additively regular ring

satis�es (the then unnamed) regular �nite union property. Later, Matsuda gave an example of

a Marot ring that does not have the regular �nite union property [12, Theorem 10]. (Note that

in [12], R is said to have property (FU), we have used �regular �nite union property" in order

to have a more complete description.) He also showed that a ring with the regular �nite union

property need not be additively regular [12, Propositions 11 & 12]. Below we show that this ring

is weakly additively regular (see Example 5.1). The ring R in [10, Example 2.4] shows that with

regard to the �nite union property, it is not enough to restrict the �nite sets {J1, J2, . . . , Jn} to

(regular) prime ideals (also see [1, Example 3.6]).

The original intent of this article was to introduce the notion of a weakly additively regular

ring as a ring R with the property that for each pair of elements f, g ∈ R with f regular and g ∈
Z(R), there is a pair of elements s, t ∈ R such that gs+ft is regular and sR+fR = R. However,
in constructing examples, it became apparent that all of these notions can be generalized with
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regard to nonempty sets of primes and the complement of the union of these primes. Before

introducing the de�nitions, we recall that a ring R is said to have few zero divisors if Z(R) can
be realized as the union of a �nite set of prime ideals (equivalently, T (R) has only �nitely many

maximal ideals). It is known that a ring with few zero divisors is additively regular (see [3,

Lemma B]). Every total quotient ring is additively regular, so a ring that is additively regular

need not have few zero divisors. Also for each ring R, the polynomial ring R[X] is additively
regular (see [13, Proposition 3] and [6, Theorem 7.5]).

Let R be a ring and let P = {Pα} be a nonempty set of prime ideals of R. Also let S =
R\

∪
Pα. We introduce the following special types of families.

(i) P is a FZD family if there is a �nite set of primes {Q1, Q2, . . . , Qn} such that
∪
Pα =

∪
Qi.

(ii) P is an additively regular family if for each pair of elements f, g ∈ R with g ∈
∪
Pα and

f ∈ S, there is an element t ∈ R such that g + ft ∈ S.

(iii) P is a weakly additively regular family if for each pair of elements f, g ∈ R with g ∈
∪
Pα

and f ∈ S, there is a pair of elements s, t ∈ R such that gs+ ft ∈ S and sR+ fR = R.

(iv) P is a �nite union family if for each �nite set of ideals {J1, J2, . . . , Jn} where no Ji is
contained in

∪
Pα, an ideal I *

∪
Pα is contained in

∪
Ji if and only if I ∩ S ⊆

∪
Ji.

(v) P is a Marot family if each ideal I *
∪
Pα can be generated by the set I ∩ S.

For 1 ≤ n < 5, statement (n) implies statement (n+ 1). Also except for weakly additively

regular and �nite union, there are examples to show that in general (n+ 1) does not imply (n).
Also note that if both p, q ∈ S = R\

∪
Pα, then certainly q · 1+ p · 0 ∈ S.

When
∪

Pα = Z(R), these de�nitions match with the corresponding ring properties. For

example, R is additively regular if and only if {Pα} is an additively regular family. Note that

�FZD" corresponds to the notion of a ring with few zero divisors.

A regular Bezout ring is a ring for which each �nitely generated regular ideal is principal

[there are several other terms for this in the literature, including: quasi-Bezout, almost Bezout

and Bezout (see for example [11], [2] and [7], respectively]. The corresponding de�nition for

a �Bezout family" is that {Pα} is a Bezout family if each �nitely generated ideal that is not

contained in
∪
Pα is principal. Below we show that a Bezout family is a �nite union family.

As noted above, the polynomial ring R[X] is always additively regular, so there are additively

regular families that are not Bezout families. The rings R and S in Example 5.2 below are

regular Bezout rings that are not additively regular. We do not know of an example of a regular

Bezout ring that is not weakly additively regular (nor one of a Bezout family that is not a weakly

additively regular family).

If R is an additively regular ring with only �nitely many regular maximal ideals, then each

invertible ideal is principal [10, Theorem 3.5]. In Theorem 3.1, we extend the conclusion to cer-

tain types of weakly additively regular families. Speci�cally, if P = {Pα} is a weakly additively
regular family and there are only �nitely many maximal ideals that have nonempty intersection

with S = R\
∪
Pα, then each invertible ideal I such that I ∩S ̸= ∅ is principal. As a corollary, if

R is a weakly additively regular ring with only �nitely many regular maximal ideals, then each

invertible ideal is principal (Corollary 3.2).

Obviously, ifR is a Bezout domain, then each nonempty set P ( Spec(R) is a Bezout family.

Also, if R is a PID, then each nonempty set P = {Pα} ( Max(R) is weakly additively regular

(see Theorem 3.9). In addition, if P is �nite, then the family is also additively regular (Theorem

3.9). For the integers, if P contains all but �nitely many maximal ideals, then P is not an

additively regular family. However, there do exist in�nite sets of primes of Z that are additively

regular families, but in some cases simply adding one prime to the set makes the larger set lose

the additively regular property (see Examples 5.5 and 5.6 below).

2 Special Families

We start with the connection between the special families and the original de�nitions for rings

with nonzero zero divisors.

Theorem 2.1. Let R be a ring and let P = {Pα ∈ Spec(R) | Pα ⊆ Z(R)}.
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(i) R has few zero divisors if and only if P is a FZD family.

(ii) R is additively regular if and only if P is an additively regular family.

(iii) R is weakly additively regular if and only if P is a weakly additively regular family.

(iv) R has the regular �nite union property if and only if P is a �nite union family.

(v) R is a Marot ring if and only P is a Marot family.

(vi) R is a regular Bezout ring if and only if P is a Bezout family.

Proof. The corresponding set S = R\
∪
Pα is the set of regular elements of R. With this

observation, each equivalence is clear. Also note that the same equivalences hold for a set Q =
{Qβ} in place of P provided

∪
Qβ = Z(R). For example, if R is a reduced ring, then Z(R)

is the union of the minimal primes of R but there may be primes in Z(R) that are not minimal.

Also, for any ring R, Z(R) is the union of the primes that are maximal with respect to missing

R\Z(R).

It is clear that an additively regular family is a weakly additively regular family. Also one

can trivially show that a �nite union family is a Marot family. Simply start with an ideal I such

that I is not contained in
∪
Pα and let J be the ideal generated by I ∩S. Then clearly J ⊆ I and

∅ ≠ J ∩ S = I ∩ S ⊆ I . Hence if P is a �nite union family we have I = J . Next we show that a

FZD family is also an additively regular family, and both weakly additively regular families and

Bezout families are �nite union families.

Theorem 2.2. Let R be a ring and let P = {Pα} be a nonempty set of prime ideals of R.

(i) If P is an FZD family, then it is an additively regular family.

(ii) If P is an additively regular family, then it is a weakly additively regular family.

(iii) If P is a weakly additively regular family, then it is a �nite union family.

(iv) If P is a Bezout family, then it is a �nite union family.

(v) If P is a �nite union family, then it is a Marot family.

Proof. Throughout the proof we let S = R\
∪
Pα. As noted above, it is clear that an additively

regular family is weakly additively regular. Also a �nite union family is a Marot family.

AssumeP is an FZD family with corresponding �nite set {Q1, Q2, . . . , Qn} such that
∪
Pα =∪

Qi. We may further assume there are no containment relations among the Qis. Next let

f, g ∈ R be such that g ∈
∪
Pα and f ∈ S. Then g is in at least one Qi. If g ∈

∩
Qi, then g + f

is in no Qi and thus g + f ∈ S. If at least one Qi does not contain g, then by renumbering if

necessary, we may assume there is a positive integerm < n such that g ∈ Qj for 1 ≤ j ≤ m and

g /∈ Qk for m + 1 ≤ k ≤ n. As there are no containment relations among the Qis, there is an

element t ∈
∩n

k=m+1Qk\
∪m

j=1Qj . The element g + ft is in no Qi and thus it is in S. It follows
that P is an additively regular family.

Next we show that a weakly additively regular family is a �nite union family.

Suppose P is a weakly additively regular family. Let J1, . . . , Jn be a �nite family of ideals

with Jk ∩ S ̸= ∅ for each k (equivalently ∩Jk has nonempty intersection with S). Also, let I
be an ideal that is contained in neither

∪
Pα nor

∪
Jk. Next, let g ∈ I\

∪
Jk and choose an

element f ∈ I ∩ J1 ∩ J2 ∩ · · · ∩ Jn that is in S. By weakly additively regular, there are elements

s, t, y, z ∈ R such that gs+ ft ∈ S and sy + fz = 1. Then g = gsy + gfz. Since f ∈
∩
Jk and

g /∈
∪
Jk, gsy /∈

∪
Jk. Hence gs /∈

∪
Jk but ft ∈

∩
Jk, and so gs + ft ∈ I ∩ S but in no Jk.

Thus P is a �nite union family.

Finally we show that a Bezout family is also a �nite union family. We continue with the ideals

I , J1, . . . , Jn in the previous paragraph but replace the assumption about I not being contained

in
∪

Jk with the assumption that ∅ ̸= I ∩ S ⊆
∪
Jk. Suppose b ∈ I and c ∈ I ∩ S. Since P is

a Bezout family, the ideal bR+ cR is principal, necessarily a generator for this ideal must come

from I ∩ S. So we have bR+ cR = dR for some d ∈ I ∩ S ⊆
∪

Ji. Since d divides b, b ∈
∪

Jk
and therefore I ⊆

∪
Jk. Hence P is a �nite union family.
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Corollary 2.3. If R is a weakly additively regular ring, then it has the regular �nite union prop-

erty and it is a Marot ring.

Proof. Let P = {Pα ∈ Spec(R) | Pα ⊆ Z(R)}. Then by Theorem 2.1, R is weakly additively

regular if and only if P is a weakly additively regular family. Also R has the regular �nite union

property if and only if P is a �nite union family. Thus the result follows from Theorem 2.2 (and

[12, Page 134]).

Theorems 2.1 and 2.2 also combine to establish that a regular Bezout ring has the regular

�nite union property.

Corollary 2.4. If R is a regular Bezout ring, then it has the regular �nite union property.

By way of the next �ve results we show that a ring that has the regular �nite union satis�es

a strong form of the Marot property. The �rst of these �ve is a simple observation about �nite

unions.

Theorem 2.5. Let R be a ring and let I , J1, J2, . . . , Jn be regular ideals of R. If the regular

elements of I are contained in
∪

Jk, then they are also contained in
∪

J ′
k where each J ′

k is the

ideal generated by the regular elements in I ∩ Jk. Hence, if we also have that R is a Marot ring,

then I ⊆
∪
Jk if and only if I =

∪
J ′
k.

Next we extend this observation to a family of prime ideals.

Theorem 2.6. Let R be a ring and let P = {Pα} be a nonempty set of nonzero prime ideals of

R with S = R\
∪

Pα. Also let I , J1, J2, . . . , Jn be ideals of R such that none are contained in∪
Pα. If I ∩ S is contained in

∪
Jk, then I ∩ S is also contained in

∪
J ′
k where each J ′

k is the

ideal generated by the set of elements I∩Jk∩S. Hence, if we also have that P is a Marot family,

then I ⊆
∪
Jk if and only if I =

∪
J ′
k.

We say that R is a strong Marot ring if for each regular ideal I and each �nite partition

{X1, X2, . . . , Xn} of I ∩ Reg(I), I =
∪
Hk where each Hk is the ideal generated by the corre-

sponding set Xk. For a family of prime ideals P = {Pα}, P is a strong Marot family if for each

ideal I that is not contained in
∪
Pα and each �nite partition X = {X1, X2, . . . , Xn} of I ∩ S

(with S = R\
∪
Pα), I =

∪
Hk where each Hk is the ideal generated by the corresponding set

Xk.

Theorem 2.7. Let R be a ring and let P = {Pα} be a nonempty set of nonzero prime ideals of R
with S = R\

∪
Pα. Then P is a �nite union family if and only if it is a strong Marot family.

Proof. Suppose P is a �nite union family and I is an ideal that is not contained in
∪
Pα. Next

let {X1, X2, . . . , Xn} be a �nite partition of I ∩ S. For each k, let Hk be the ideal generated by

Xk. Then clearly I ∩ S ⊆
∪

Hk. Hence I =
∪
Hk since P is a �nite union family.

For the converse, let I , J1, J2, . . . , Jn be ideals where none are contained in
∪
Pα and I∩S ⊆∪

Jk. Then for each k, Yk = I ∩ Jk ∩ S is a nonempty set. So let Bk be the ideal generated by

Yk.

If P is a strong Marot family, then I =
∪
Bk. Clearly Bk ⊆ Jk for each k. Hence I ⊆

∪
Jk

and therefore a strong Marot family is a �nite union family.

Corollary 2.8. Let R be a ring. Then R has the regular �nite union property if and only if

for each regular ideal I and each �nite partition {X1, X2, . . . , Xn} of I ∩ Reg(R) (the regular
elements of I), I =

∪
Hk where each Hk is the (regular) ideal generated by the corresponding

set Xk.

Corollary 2.9. Let R be a ring.

(i) For a nonempty set of nonzero prime ideals P = {Pα}, if I is not contained in
∪

Pα and P
is a �nite union family with S = R\

∪
Pα, then for each nonempty set X of I ∩ S, either X

generates I or Y = (I ∩ S)\X does.

(ii) If I is a regular ideal of a ring R where R has the regular �nite union property, then for

each nonempty set X ⊆ I ∩Reg(R), at least one of X and (I ∩Reg(R))\X generates I as

an ideal.
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In [14], P. Quartararo and H.S. Butts introduced the notion of a u-ring as a ring R with the

property that for each ideal I , if I is contained in a �nite union of ideals J1, J2, . . . , Jn, then I
is contained in at least one of the Jks. They showed that a ring R is a u-ring if and only if for

each maximal idealM , either R/M is in�nite or RM is a Bezout ring (a ring where each ideal is

principal) [14, Theorem 2.6].

For a u-ring R, we can give an alternate characterization of when it has the regular �nite

union property, and also when a nonempty set of nonzero primes P is a �nite union family.

Corollary 2.10. Let R be a u-ring.

(i) For a nonempty set of nonzero primes P = {Pα} with S = R\
∪

Pα, P is a �nite union

family if and only if for each ideal I that is not contained in
∪

Pα, each �nite partition

{X1, X2, . . . , Xn} contains a set Xk that generates I as an ideal of R.

(ii) R has the regular �nite union property if and only if for each regular ideal I , every �nite

partition {X1, X2, . . . , Xn} of I ∩ Reg(I) contains a set Xk that generates I as an ideal.

We have two variations on u-rings, the �rst restricts to considering only ideals not contained
in a particular union of primes

∪
Pα and the second is a stronger type of strong Marot ring. First,

we say that P = {Pα} is a u-family if for each �nite collection of ideals I, J1, J2, . . . , Jn where

none are contained in
∪
Pα, I ⊆

∪
Ji if and only if I ⊆ Ji for some i. For a ring R that is not a

domain, R is a regular u-ring if the set P = {P ∈ Spec(R) | P ⊆ Z(R)} is a u-family. Also, P
is a very strong Marot family if for each ideal I that is not contained in

∪
Pα, each �nite partition

of I\
∪
Pα contains a set that generates I as an ideal. For a ring R, it is a very strong Marot ring

if for each regular ideal I , each �nite partition of I ∩ Reg(R) contains a set that generates I as

an ideal.

Next we show that a u-family can be characterized in much the same way that the notion of a

u-ring can be characterized in terms of the maximal ideals (see [14, Proposition 2.1 and Theorem

2.6]).

Theorem 2.11. Let P = {Pα} be a nonempty set of nonzero primes of a ring R. Then the

following are equivalent.

(i) P is a u-family.

(ii) For each �nite set of maximal ideals {M1,M2, . . . ,Mn} where noMi is contained in
∪
Pα,

the ring RT for T = R\
∪
Mi has the property that if I, J1, J2, . . . , Jn are ideals of R that

are not contained in
∪
Pα, IRT ⊆

∪
JiRT implies IRT ⊆ JiRT for some i.

(iii) For each maximal idealM that is not contained in
∪
Pα, either R/M is in�nite or BRM is

principal for each �nitely generated ideal B *
∪
Pα.

Proof. We start by showing (1) implies (2). Let T = R\
∪
Mi where M1,M2, . . . ,Mn are

maximal ideals that are not contained in
∪
Pα. Also let I, J1, J2, . . . , Jn be ideals of R that are

not contained in
∪
Pα. Further assume that IRT ⊆

∪
JkRT . Let J

′
k denote the inverse image

of Jk in R. Then we have I ⊆
∪
J ′
k and so I ⊆ J ′

k for some k. It follows that IRT ⊆ J ′
kRT =

JkRT .

Next we show (2) implies (1). We prove the contrapositive. Suppose there are ideals

I, J1, J2, . . . , Jn that are not contained in
∪
Pα such that I ⊆

∪
Jk but where no Jk contains I .

For each maximal ideal N ⊆
∪

Pα (if any), IRN = RN = JkRN for each k. Thus for each

k, there is a maximal ideal Mk that is not contained in
∪
Pα where IRMk

is not contained in

JkRMk
. We have a �nite set of maximal ideals {M1,M2, . . . ,Mn} (with repeats possible). For

T = R\
∪
Mi, we have IRT ⊆

∪
JkRT , but there is no k such that IRT ⊆ JkRT as IRMk

is

not contained in JkRMk
.

To see that (1) implies (3), we prove the contrapositive. So suppose there is a maximal ideal

M that is not contained in
∪
Pα where R/M is �nite and there is a �nitely generated ideal

I ⊆ M where I is not contained in
∪
Pα and IRM is not principal. We will construct a �nite

set of ideals, all properly contained in I with none contained in
∪

Pα such that I is contained (in
fact equal to) the union of these ideals. The proof is adapted from the argument Quartararo and

Butts used to establish [14, Theorem 1.8].
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First, let X = {x1 = 1, x2, . . . , xq = 0} ( R be a complete set of representatives for

R/M . Next let I = b1R + b2R + · · · + bnR. As an index set for our �bad" set of ideals, we

let r = (r1, r2, . . . , rn) be an n-tuple where each ri ∈ {x1, x2, . . . , xq} with at least one ri ̸= 0.

De�ne an ideal Jr as the sum Jr = (
∑

ribi)R + IM . As IRM is not principal, Nakayama's

Lemma implies we have proper containment JrRM ( IRM for each r. Also note that IM is not

contained in
∪
Pα. So no Jr is contained in

∪
Pα.

To see that I ⊆
∪
Jr, consider f =

∑
vibi. If each vi is in M , then f ∈ IM and so it

is in
∪

Jr. So assume some vj is not in M . For each vi, there is an element xki ∈ X and an

element ci ∈ M such that vi = xki + ci (with xki = xq = 0 and ci = vi if vi ∈ M ). Thus

f =
∑

vibi =
∑

xki +
∑

cibi with
∑

cibi ∈ IM . As some vj is not in M , the corresponding

xkj is not in M . Hence the n-tuple s = (xk1
, xk2

, . . . , xkn) is an allowed �r" and therefore

f ∈ Js. It follows that I =
∪
Jr with proper containment Jr ( I for each r.

To complete the proof we show (3) implies (2). We start with a �nite set of maximal ideals

{M1,M2, . . . ,Mn} where noMi is contained in
∪
Pα and consider T = R\

∪
Mi. We have two

�pure" cases, (i) R/Mi in�nite for eachMi and (ii) each �nitely generated I that is not contained
in

∪
Pα is such that IRMi is principal for each Mi, and then a �nal �mixed" case where R/Mi

is in�nite for some Mi and �nite for others but all these forming a subset that satis�es (ii).

For all three cases, Max(RT ) = {M1RT ,M2RT , . . . ,MnRT }. Thus in case (i), RT is u-ring
and so RT satis�es the statement in (2).

For case (ii), start with ideals I , J1, J2, . . . , Jm that are not contained in
∪
Pα with IRT ⊆∪

JkRT . As the goal is to get IRT ⊆ JkRT for some k and there are only �nitely many Jis, it
suf�ces to establish such a containment in the case that I is �nitely generated.

With I �nitely generated, we have IRMi
= aiRMi

for some ai ∈ I . Also for each i, there
is an element mi ∈ R\Mi that is in

∩
j ̸=i Mj . Consider the element a =

∑
miai. For a �xed i,

there are elements ti,j ∈ RMi such that aj = ti,jai for each j ̸= i. We then have a = ai(mi +∑
j ̸=i mjti,j) with mj ∈ MiRMi for all j ̸= i and mi ∈ R\Mi. Hence (mi +

∑
j ̸=i mjti,j) is

unit of RMi and thus aRMi = aiRMi = IRMi for each i and so we have that IRT = aRT is

principal. Since some JkRT contains a, we have IRT ⊆ JkRT for each of these Jks. So again

T satis�es the statement in (2).

For the mixed case, we �rst the split into a problem about two rings, RV where V is the

complement of the union of those maximal idealsM ∈ {M1, . . . ,Mn} such that R/M is in�nite,

and RW where W is the complement of those M where R/M is �nite. By case (ii), IRW is

principal. Also note thatRV satis�es (2) by case (i). So we have ideals Jv, Jw ∈ {J1, J2, . . . , Jm}
such that IRV ⊆ JvRV and IRW = aRW ⊆ JwRW some a ∈ Jw. There may be more than one

�choice" for Jv, what we need is one that contains a.
For the rest of the proof, we make use of the argument given in the proof of [14, Theorem

2.5]. The notation here is somewhat different.

Let I = b1R+ b2R+ · · ·+ bmR and assume {M1,M2, . . . ,Mr} is the set of those maximal

ideals in the set {M1,M2, . . . ,Mn} such that R/Mi is in�nite. For each Mi in this set, there is a

countably in�nite set {si,1, si,2, . . . } ⊆ R\Mi such that si,j − si,h ∈ Mi implies j = h. By the

Chinese Remainder Theorem, there are elements {y1, y2, . . . } such that yj − si,j ∈ Mi for each

pair i, j. It follows that yj − yh ∈ Mi for some i if and only if j = h. Thus yj − yh is a unit in

RV for all j ̸= h. Let q ∈
∩

r+1≤k≤n Mk\
∪

1≤i≤r Mi and let xj = qyj . Since q is a unit in RV ,

xj − xh is a unit in RV for all j ̸= h. We also have xj − xh ∈
∩

r+1≤k≤n Mk\
∪

1≤i≤r Mi.

Next let ck = a+
∑

xi
kbi ∈ I for each 1 ≤ k. We have in�nitely many cks, so clearly at least

one Ji contains at least m+ 1 of these elements. Without loss of generality we may assume J1
contains c1, c2, . . . , cm+1. Let A be them+ 1×m+ 1 matrix where the entry in the ith row, jth

column is xi−1

j . Also let b =
[
a b1 b2 · · · bm

]
and c =

[
c1 c2 · · · , cm+1

]
. Then we

have bA = c. As A is a Vandermonde matrix, d = det(A) =
∏

i<j(yj − yi) which is a unit in

RV and an element of the Jacobson radical of RW . Hence by Cramer's Rule, da and each dbi
is in J1. It follows that J1RV = IRV . Moreover, since d is in the Jacobson radical of RW and

aRW = IRW , bi = tia for some ti ∈ RW and so c1 = a +
∑

yikbi = a(1 + q′) for some q′ in
the Jacobson radical of RW . Hence a ∈ J1RW and thus J1RW = IRW . As J1RV = IRV , we

have IRT = J1RT .

For very strong Marot, there does not seem to be a good local characterization, but we do
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have a semilocal one.

Theorem 2.12. Let P = {Pα} be a nonempty set of nonzero primes of a ring R. Then the

following are equivalent.

(i) P is a very strong Marot family.

(ii) For each �nite set of maximal ideals {M1,M2, . . . ,Mn} where noMi is contained in
∪
Pα,

the ring RT for T = R\
∪
Mi has the property that if I is an ideal that is not contained in∪

Pα, then for each �nite partition X = {X1, X2, . . . , Xm} of I\
∪
Pα, IRT = HkRT for

some k where Hk is the ideal of R generated by Xk.

Proof. The proof that (1) implies (2) is trivial as there is a k such that I = Hk.

For the converse we prove the contrapositive. For this we start with an ideal I that is not

contained in
∪

Pα where there is a �nite partition X = {X1, X2, . . . , Xm} of I\
∪
Pα such that

no Xi generates I as an ideal of R. For each i, let Hi be the ideal generated by Xi. As in the

proof of Theorem 2.11, IRN = RN = HiRN for each maximal ideal N ⊆
∪
Pα and each i.

Hence, for each i, there is a maximal ideal Mi that is not contained in
∪

Pα such that IRMi

properly contains HiRMi . Then for T = R\
∪

Mi, we have IRT ) HiRT for each i.

To see the dif�culty in adapting the local characterization of u-families to obtain one for very

strong Marot families (or even strong Marot families), we revisit an example that appeared in

[10].

Example 2.13. (cf. [10, Example 2.4]) Let D = Z[
√
10]. Then M = 2D +

√
10D and N =

5D +
√
10D are the only maximal ideals that contain

√
10. Consider the family of maximal

ideals P = {Pα} = Max(D)\{M,N}.

(i) Neither M nor N is principal.

(ii) DM and DN are rank one discrete valuation domains, so for each (�nitely generated) ideal

B of D, both BDM and BDN are principal.

(iii) For M , let X1 be the set of numbers that are in M\M2 but not in
∪
Pα (for example,√

10 ∈ X1) and let X2 be the set of numbers that are in M2\
∪

Pα (for example, 2 ∈ X2).

SinceM2 = 2D,M2 is the ideal generated byX2. It is clear thatX1 contains each element

of NM\M2 that is not contained in
∪

Pα. If p ∈ M\M2 is not in N , then it must be

contained in at least one Pα for otherwise pRM = MRM implies M = pR. Thus X1

generates NM = N ∩M .

(iv) As M ) NM and M ) M2, M ̸= NM ∪ M2. Hence P is not a (very) strong Marot

family.

Theorem 2.14. Let P = {Pα} be a nonempty set of nonzero prime ideals of a ring R. Then P is

a very strong Marot family if and only it is both a u-family and a strong Marot family.

Proof. First suppose P is a very strong Marot family and let I be ideal not in
∪
Pα. Suppose we

have ideals J1, J2, . . . , Jn with I ⊆
∪

Ji and no Ji in
∪
Pα. Then for each i, J ′

i = I ∩ Ji is an
ideal that is not contained in

∪
Pα and I =

∪
J ′
i . Also, since P is a Marot family, J ′

i is generated

by Yi = J ′
i\

∪
Pα. Clearly, each b ∈ I\

∪
Pα is contained in at least one J ′

i . Using recursion, we

can build a �nite set of pairwise disjoint sets {X1, X2, . . . , Xn} of I\
∪

Pα: start with X1 = Y1
and then let Xk = Yk\

∪k−1

i=1 Xi for 1 < k ≤ n. Since P is a very strong Marot family, some Xk

generates I as an ideal and from this it follows that I = J ′
k.

For the converse, suppose P is both a u-family and a strong Marot family and let I be an ideal
that is not contained in

∪
Pα. Let {X1, X2, . . . , Xn} be a �nite partition of I\

∪
Pα. Since we

have a strongMarot family, I =
∪

Hk where eachHk is the ideal generated by the corresponding

Xk. But then we get I = Hk for some k as P is also a u-family.

In the next section we concentrate on weakly additively regular rings, additively regular rings

and regular Bezout rings.
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3 Weakly additively regular

As mentioned above, if R is an additively regular ring with only �nitely many regular maximal

ideals, then each invertible ideal is principal. We next consider a case where the same conclusion

holds for certain invertible ideals with regard to a weakly additively regular family of primes.

Theorem 3.1. Let P = {Pα be a weakly additively regular family for a ring R and let S =
R\

∪
Pα. If there are only �nitely many maximal ideals of R that have nonempty intersection

with S, then each invertible ideal that is not contained in
∪
Pα is principal.

Proof. Assume M1,M2, . . . ,Mn are the maximal ideals of R that have nonempty intersection

with S. Also let I be an invertible ideal that is not contained in
∪

Pα. Thus there is an element

f ∈ I ∩ S.
Next let T = R\

∪
Mi and J =

∩
Mi. Since Mi ∩ S ̸= ∅ and S is multiplicatively closed,

there is an element g ∈ J ∩S. Since T is the complement of a �nite union of maximal ideals, the

MiRT s are the only maximal ideals of RT . Hence IRT is principal and thus there is an element

b ∈ I such that bRT = IRT . In addition, since fg ∈ S, fgRN = RN = IRN for each maximal

ideal N which misses S.
If b ∈ S, then we have bR = I by checking locally. So for the remainder of the proof assume

b /∈ S. Since P is a weakly additively regular family, there are elements p, q ∈ R such that

h = fgp+ bq ∈ S and fgR+ qR = R. We will show that hR = I .
First, since h ∈ S, we have hRN = IRN for each maximal ideal N that misses S. So all

we need is to have hRT = bRT . For this, since f ∈ I , there is an element y ∈ RT such that

f = by. Thus viewed in RT , we have h = fgp+ bq = bygp+ bq = (ygp+ q)b. As fg ∈ J and

fgR+ qR = R, q ∈ T and ygp ∈ JRT , the Jacobson radical of RT . Therefore ygp+ q is a unit
of RT and we have hRT = bRT = IRT as desired. Hence I = hR is principal.

Note that for a given weakly additively regular family P = {Pα}, if there are in�nitely many

maximal ideals that are not contained in
∪

Pα, but only �nitely many of these are regular, then

an invertible ideal that is not contained in
∪

Pα need not be principal. Later, we make use of the

ring in [10, Example 2.4] to provide such an example.

Corollary 3.2. Let R be a weakly additively regular ring. If R has only �nitely many regular

maximal ideals, then each invertible ideal is principal.

Proof. The setP = {Pα | Pα ⊆ Z(R)} is a weakly additively regular family. Also S = R\
∪
Pα

is simply the set of regular elements of R. As an invertible ideal is regular, it has nonempty

intersection with S. Thus ifR has only �nitely many regular maximal ideals, then each invertible

ideal is principal by Theorem 3.1.

For a pair of elements f, g ∈ R, we say the ordered pair of elements (f, g) is an additively

regular pair with respect to the family of primes P = {Pα} if f ∈ S = R\
∪
Pα and there is an

element t ∈ R such that g+ft ∈ S. Similarly (f, g) is a weakly additively regular pair if (again)
f ∈ S and there are elements s, t ∈ R such that gs + ft ∈ S with sR + fR = R. For each of

these properties, we drop the reference to the family when
∪
Pα = Z(R). Note that certain pairs

are always additively regular.

Lemma 3.3. Let P = {Pα} be a nonempty set of primes of a ring R and let S = R\
∪

Pα.

(i) If both f, g ∈ S, then (f, g) is an additively regular pair with respect to P .

(ii) If f is a unit of R, then (f, g) is an additively regular pair with respect to P .

(iii) If f divides g and f ∈ S, then (f, g) is an additively regular pair with respect to P .

(iv) If f ∈ S and g is nilpotent, then (f, g) is an additively regular pair with respect to P .

Proof. If both f, g ∈ S, then clearly g + f · 0 meets the requirement for an additively regular

pair. So for the rest of the proof we assume g ∈
∪
Pα and f ∈ S.

Every unit is contained in S, thus for (2) and (3), it suf�ces to prove the statement in (3).

Assume f divides g and write g = fb for some b ∈ R. Since f ∈ S, b ∈
∪
Pα. Thus for a sum
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g + ft, we may factor out the f to get g + ft = f(b + t). Now simply let t = 1 − b so that

g + ft = f ∈ S.
For the case g is nilpotent, we have g ∈

∩
Pα and thus g + f is in no Pα, which puts it in

S.

By Lemma 3.3, if P = {Pα} is such that R\
∪
Pα is the set of units of R, then rather trivially

P is an additively regular family. Also, if P = {Pα} is a �nite set of primes of a ring R, then
trivially P has the FZD property. Hence it is an additively regular family.

As stated above, we do not know if each regular Bezout ring is weakly additively regular. At

least for certain Bezout domains we can show that each nonempty set of (nonzero) primes is a

weakly additively regular family. The basis for this claim starts with noticing that if d, f, g, s, t, y
and z are elements of a ring R such that d = gs + ft, f = dy and g = dz, then d = g(s ±
jy) + f(t ∓ jz) for each j ∈ R. For at least some Bezout domains, one can show that if d,
f and g are nonzero nonunits of one of these particular Bezout domains R with d = gs + ft,
f = dy and g = dz for some elements s, t, y, z ∈ R, then there are elements h, k ∈ R such

that fR + (s + hy)R = R = gR + (t + kz)R. In Theorem 3.6, we show if R is a Bezout

domain with this property, then each nonempty set of prime ideals is a weakly additively regular

family. Before presenting this result, we show that each R of the form R = D(X) for some

Prüfer domainD has this property as does each �adequate" Bezout domain. Recall that a Bezout

domain R is said to be adequate if for each pair of nonzero elements k,m ∈ R, there is a pair
of elements b, c ∈ R such that k = bc and gcd(b,m) = 1 ̸= gcd(j,m) for each nonunit j that
divides c. All PIDS are adequate as is the ring of entire functions [5]. For PIDs, if each prime

that divides k also divides m, then b = 1 and c = k work. Otherwise, factor k into powers of

primes k = pr1
1
pr2
2
· · · prnn , the element b is the product of those prii where pi does not divide m.

For the ring of entire function, we set b = 1 if each zero of k is also a zero of m. Otherwise, b is
an entire function whose zero set is Z(b) = Z(k)\Z(m) and for each β ∈ Z(b), the multiplicity

of β as a zero of b is the same as its multiplicity as a zero of k.

Theorem 3.4. Let R be a Bezout domain and let d, f and g be nonzero nonunits of R with d =
gs+ft, f = dy and g = dz for some elements s, t, y, z ∈ R. IfR is either adequate or of the form

R = D(X) for some Prüfer domain D, then there is an h ∈ R such that fR+ (s+ hy)R = R.

Proof. We have 1 = zs + yt. There are two possibilities for y, y a unit, and y a nonunit.

The simplest case is y a unit. In this case, simply note that setting h = (1 − s)y−1 yields

s+ hy = s+ (1− s) = 1, so trivially fR+ (s+ hy)R = R.
For the remainder of the proof we suppose y is a nonunit.
We start with the case that R is adequate. For this case, we have a pair of elements b, c ∈ R

such that f = bc, gcd(b, s) = 1 ̸= gcd(e, s) for each nonunit e that divides c. Consider f and

s+ by. We have gcd(b, s) = 1 = gcd(y, s). So gcd(by, s) = 1. Suppose p is a nonzero element

of R that divides both f and s + by. If some nonunit factor of p divides s, then it also divides

by which is impossible. Thus gcd(p, s) = 1. Similarly, if some nonunit factor of p divides by,
then it also divides s, also impossible. Thus gcd(p, b) = gcd(p, by) = 1. As p divides f = bc,
p divides c, but then each nonunit factor of p, if any, divides s. Hence p is a unit and we have

fR+ (s+ by)R = R.
Next we consider the case that R = D(X) for some Prüfer domain D. In this case there

are polynomials a(X), b(X),m(X), n(X), p(X), q(X), u(X), v(X) and w(X) in D[X] with
C(u) = C(v) = C(w) = D, f = a(X)/u(X), g = b(X)/u(X), t = m(x)/v(X), s =
n(X)/v(X), y = p(X)/w(X) and z = q(X)/w(X). Since 1 = zs+ yt,D = C(wv) = C(qn+
pm) ⊆ C(n)+C(p) ⊆ D. Let j > deg(n)+deg(w). Then C(wn+pvXj) = C(wn)+C(pv) =
C(n) + C(p) = D, the second equality follows from knowing C(w) = D = C(v). So in this

case, we may set h = Xj to have s+ yh = s+ yXj a unit of R.

Corollary 3.5. If R is either a PID or the ring of entire functions and d, f, g, s, t, y, z ∈ R are

such that d = gs + ft, f = dy and g = dz with d, f and g nonzero, then there is an element

h ∈ R such that fR+ (s+ hy)R = R.

Theorem 3.6. Let R be a Bezout domain. If for all nonzero a, b, c ∈ R with a = bp+ cq, c = am
and b = an for some p, q,m, n ∈ R, there are elements i and j in R such that cR+(p+ im)R =
R = bR + (q + jn)R, then each nonempty set of nonzero prime ideals is a weakly additively

regular family.
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Proof. Let P = {Pα} and suppose f ∈ S = R\
∪
Pα and g ∈

∪
Pα. Since R is Bezout, there

are elements d, s, t, y, z ∈ R such that d = gs+ ft, f = dy and g = dz. By assumption, we have

an h ∈ R such that fR+ (s+ hy)R = R. We also have d = g(s+ hy) + f(t− hz). As d = fy
with f ∈ S and S is saturated, we also have d ∈ S. Therefore P is a weakly additively regular

family.

An immediate corollary is the following.

Corollary 3.7. If R is the ring of entire function and P = {Pα} is a nonempty set of prime ideals
of R, then P is a weakly additively regular family.

We also have the following for Bezout domains of the form R = D(X) for some Prüfer

domain D.

Theorem 3.8. IfR = D(X) whereD is a Prüfer domain, then each nonempty set of prime ideals

P = {Pα} is additively regular.

Proof. Let f(X), g(X) ∈ R be such that g(X) ∈
∪
Pα, f(X) ∈ S = R\

∪
Pα. Then

there are polynomials a(X), b(X), u(X) ∈ D[X] such that f(X) = a(X)/u(X) and g(X) =
b(X)/u(X). Since D is a Prüfer domain each Pα has the form QαR for some prime ideal Qα of

D. For a(X) and b(X) we have C(a) *
∪
Qα and C(b) ⊆

∪
Qα. Let h(X) = b(X) + a(X)Xn

where n > deg(b(X)). Then C(h) = C(a) + C(b) which is not contained in
∪

Qα. It follows

that h(X) ∈ S and therefore P is additively regular.

Theorem 3.9. Let P = {Pα} ( Max(R) be a nonempty set of maximal ideals of a PID R.

(i) P is a weakly additively regular family.

(ii) If P is �nite, then it is an additively regular family.

(iii) If R = Z and Max(R)\P is �nite (and nonemtpy), then P is not an additively regular

family.

Proof. Theorems 3.4 and 3.6 combine to establish that P is a weakly additively regular family.

In the event P is �nite, it is a FZD family and thus an additively regular family.

Finally we consider the case that R = Z and there are only �nitely many maximal ideals

that are not contained in P . As we have assumed P is a proper subset of Max(R) = Max(Z),
Max(R)\P = {M1,M2, . . . ,Mn}. For each 1 ≤ i ≤ n, let pi > 1 be the prime that generates

Mi and set f =
∏

pi. Next choose a nonzero nonunit g ∈
∪
Pα that is in no Mi. Then for a

suf�ciently large positive integer k, there is no integer t such that g+fkt is a unit of Z. Moreover,

no pi divides g + fkt. It follows that there is no integer t such that g + fkt is in S. Therefore P
is not an additively regular family.

With regard to the question of whether or not each regular Bezout ring is weakly additively

regular, we can show that a regular Bezout ring that is �regularly adequate" is weakly additively

regular where by regularly adequate we mean that for pair of elements f, s ∈ R with f regular

(and with R a regular Bezout ring), there is a pair of elements b, c ∈ R (necessarily, regular) such

that f = bc, bR+ sR = R and for each nonunit divisor e of c, eR+ sR ( R.

Theorem 3.10. Let R be a regular Bezout ring. If R is regularly adequate, then R is weakly

additively regular.

Proof. Assume R is regularly adequate and let d, f, g, s, t, y, z ∈ R be such that d = gs + ft,
f = dy, g = dz with f regular. Since the goal is to �nd an h ∈ R such that fR+ (s+ hy) = R
(in order to have regular d = g(s + hy) + f(t − hz)), we may assume fR ( dR ( dR (by

Lemma 3.3). Thus we have that y is not a unit. We are done if fR+ sR = R, so assume proper

containment.

Since R is regularly adequate, there is a pair of elements b, c ∈ R such that f = bc, bR +
sR = R and eR + sR ( R for each nonunit e that divides c. As in the proof of Theorem 3.4,

fR+ (s+ by)R = R. Hence R is weakly additively regular.
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4 Rings of the form A+B rings and A+zB[[z]]

Let D be an integral domain that is not a �eld and let P = {Pα}α∈A be a nonempty set of

nonzero primes of D. Next let I = A × N and for each i = (α, n), let Ki denote the quotient

�eld of D/Pα. Also for each i, let Zi be an indeterminate over the �eld Ki. For B =
∑

Ki and

C =
∑

ZiKi[[Zi]] we form a pair of rings R = D +B and S = D +C from D ×B and D × C,
respectively with addition de�ned as (r, b)+ (s, c) = (r+ s, b+ c) and multiplication de�ned as

(r, b)(s, c) = (rs, rc+ sb+ bc). Both R and S are reduced rings. We say that R is the ring of the

form A+B corresponding to D and P and S is the ring of the form A+ ZB[[Z]] corresponding
to D and P . For both R and S, the regular ideals have the form IR = I + B and IS = I + C,
respectively, where I is an ideal of D that is not contained in

∪
Pα. In particular, each regular

prime ideal has the form PR = P+B and PS = P+S for some prime P that is not contained in∪
Pα. For S, the regular elements and zero divisors are easy to distinguish, (r, b) is a zero divisor

if and only if r ∈
∪
Pα. On the other hand for R, if r ∈

∪
Pα, then (r, b) is a zero divisor for

each b ∈ B. But consider a nonzero idempotent e of B (so ei = 1 for �nitely many i and ei = 0

for all other i). Both (0, e) and (1,−e) are nonzero zero divisors with (0, e)(1,−e) = (0, 0). For
R, an element (s, c) is a zero divisor if and only if there is an i ∈ I such that si + ci = 0 (where

si is the image of s in Ki and ci is the ith component of c). In both rings, if (t, d) is regular,
then (t, d)R = (t, 0)R = tD + B (for d ∈ B) and (t, d)S = (t, 0)S = tD + C (for d ∈ C).
Both constructions have been used extensively to create examples of reduced rings with various

desired properties (not always �positive").

We start by collecting a few useful properties of rings formed using these techniques. First

we consider the rings of the form A+B.

Theorem 4.1. [9, Theorems 8.3 & 8.4] Let P be a nonempty set of prime ideals of a domain D
and let R = D +B be the A+B ring corresponding to D and P .

(i) For each i ∈ I, the setMi = {(r, b) ∈ R | ri = −bi} is both a maximal ideal and a minimal
prime ideal of R. All other prime ideals of R are of the form P + B for some prime ideal

P of D.

(ii) The total quotient ring of R can be identi�ed with the ring DS +B where S = D\
∪
{Pα |

Pα ∈ P}.

(iii) If I is an ideal ofD such that I∩S ≠ ∅, then IR = I+B is a regular ideal ofR. Conversely,
if J is a regular ideal of R, then J = I +B = IR for some I of D such that I ∩ S ̸= ∅.

(iv) If I is an ideal of D, then IR is an invertible of R if and only if I is an invertible ideal of D
and I ∩ S ̸= ∅.

For rings of the form A+ ZB[[Z]] we have the following from [8].

Theorem 4.2. [8, Theorem 3.7] Let D be a domain (that is not a �eld) and let P = {Pα}α∈A
be a nonempty set of nonzero prime ideals of D. Next, let R = D + C be the ring of form

A+ ZB[[Z]] corresponding to D and P .

(i) The element r = (u, b) ∈ R is a unit of R if and only if u is a unit of D.

(ii) Z(R) = {(a, b) | a ∈
∪
Pα, b ∈ B}.

(iii) The total quotient ring of R can be identi�ed with the ring DS + C where S = D\
∪
{Pα |

Pα ∈ P}.

(iv) Each regular ideal ofR has the form IR = I+C for some ideal I ofD that is not contained

in
∪
Pα. Also if I is an ideal ofD that is not contained in

∪
Pα, then IR = I+B is regular.

(v) If I is an ideal of D, then IR is invertible if and only if I is an invertible ideal of D and I
is not contained in

∪
Pα.

(vi) For each prime ideal P of D, the ideal P + C is a prime of R.

(vii) For each i = (α, n), let Ci = {b ∈ C | bi = 0}. The ideal Pα +Ci is a minimal prime ideal

of R properly contained in the prime Pα + C.
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(viii) Spec(R) = {P+C | P ∈ Spec(D)}
∪
{Pα+Ci | i = (α, n) ∈ I} andMax(R) = {M+C |

M ∈ Max(D)}.

As R = D + B has in�nitely many idempotents, there are in�nitely many primes that are

maximal with respect to containing only zero divisors. Hence R is never a ring with few zero

divisors. On the other hand, the ring S = D+ ZB[[Z]] has only two idempotents, 1 and 0. It turns

out that S = D + ZB[[Z]] has few zero divisors if and only if P is an FZD family.

Theorem 4.3. Let P = {Pα} be a nonempty set of prime ideals of an integral domain D and let

S = D+C be the ring of the form A+ ZB[[Z]] corresponding to D and P . Then S has few zero

divisors if and only if P is an FZD family.

Proof. As noted above, an element (s, b) is a zero divisor if and only if s ∈
∪
Pα. Thus for

a prime ideal Q of D, Q + C ⊆ Z(S) if and only if Q ⊆
∪
Pα. It follows that if primes

Q1, Q2, . . . , Qn ∈ Spec(D) are such that
∪

Qk =
∪
Pα, then Z(S) =

∪
Qk +C is a �nite union

of prime ideals.

For the converse we make use of the fact that an ideal J of S is contained in Z(S) if and only
if J ⊆ I + C for some ideal I of D that is contained in

∪
Pα. Hence if S has few zero divisors,

then
∪

Pα can be realized as a �nite union of prime ideals.

Let P = {Pα} be the set of height one primes of the UFD D = K[X, Y] that are contained
in the maximal ideal M = XD + YD. Then clearly M =

∪
Pα and so the corresponding ring

S = D + C has few zero divisors even though the family P is an in�nite set of incomparable

primes.

We next look at the possibility that the created ringsD+B andD+C are additively regular.

After that we characterize the weakly additively regular rings of these two forms plus Marot

rings, and those with the regular �nite union property. We also consider regular Bezout rings.

Theorem 4.4. Let R = D +B be the ring of the form A+B corresponding to a domain D and

a nonempty set of nonzero prime ideals P = {Pα}α∈A of D also let S = D + C be the ring of

the form A+ ZB[[Z]] corresponding to D and P . The following are equivalent.

(i) R is additively regular.

(ii) P is an additively regular family.

(iii) S is additively regular.

Proof. For both R and S, an element (r, b) is regular if and only if there is no i ∈ A × N such

that ri + bi = 0. In both rings, a necessary condition for (r, b) to be regular is that r ∈ D\
∪
Pα.

In S, this condition is also suf�cient, but in R it is not (even if r is a unit of D).

We start by showing (1) and (3) imply (2). Let f ∈ D\
∪
Pα and g ∈

∪
Pα. Then for each

b ∈ B and c ∈ C, (g, b) ∈ Z(R) and (g, c) ∈ Z(S). It is also the case that (f, 0) is regular in
both R and S. To have (g, c) + (f, 0)(h, d) regular for some (h, d), a necessary condition is that
g + fh ∈ D\

∪
Pα. Hence (2) holds if at least one of R and S is additively regular.

Next assume P is an additively regular family. We �rst show that S is additively regular.

For this let (f, a) be a regular element of S and let (g, b) be a zero divisor of S. Then from

above, f ∈ D\
∪
Pα and g ∈

∪
Pα. Then there is an element h ∈ D such that g+fh ∈ D\

∪
Pα.

It follows that the element (g, b) + (f, a)(h, 0) = (g + fh, b + ha) is regular (since g + fh ∈
D\

∪
Pα).

The proof that R is additively regular requires a more careful analysis since even for a unit

u ∈ D, there are elements k ∈ B such that (u, k) ∈ Z(R) (simply choose an i = (α, n) and
de�ne k by ki = −ui and kj = 0 for j ̸= i).

As above, let (f, a) be a regular element of R and let (g, b) be a zero divisor of R. Then

f ∈ D\
∪
Pα but all we know about g is that there is an i such that gi + bi = 0. We split the

proof into two cases. The �rst case is when g ∈ D\
∪
Pα.

In this case, there are only �nitely many i ∈ I where gi + bi = 0. We will construct an

element c ∈ B such that fici + aici ̸= 0 for these i and cj = 0 for all other js. Since (f, a) is
regular, there is no i such that fi + ai = 0. So for c, we simply set ci = 1 when gi + bi = 0 and

cj = 0 for all other j. It follows that (g, b) + (f, a)(0, c) = (g, b+ fc+ ac) is regular.
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Next suppose g ∈
∪
Pα. Then there is an element h ∈ D such that g+fh ∈ D\

∪
Pα. We will

construct a c ∈ B such that (g, b)+(f, a)(h, c) = (g+fh, b+fc+ha+ac) is regular. There is no
i such that gi + fihi is 0. On the other hand, there are in�nitely many i such that gi + bi = 0, but

only �nitely many where bi ̸= 0, and only �nitely many where ai ̸= 0. Similarly, we may select

at most �nitely many i ∈ I where ci ̸= 0. Hence xi = gi+ fihi+ bi+ fici+hiai+aici reduces
to xi = gi + fihi ̸= 0 except for at most �nitely many choices of i. When both bi = 0 = ai, we
set ci = 0.

Assume i is such that at least one of bi and ai is nonzero. Regrouping, we have xi = (gi +
fihi + bi + hiai) + (fi + ai)ci. If gi + fihi + bi + hiai = 0, we set ci = 1; otherwise, we set

ci = 0. This completes the de�nition of c and the result is that there is no i such that xi = 0.

Hence (g, b) + (f, a)(h, c) is regular.
Therefore R is additively regular.

Corollary 4.5. Let R = D+B be the ring of the form A+B corresponding to a domainD and

a nonempty set of nonzero prime ideals P = {Pα}α∈A of D also let S = D + C be the ring

of the form A + ZB[[Z]] corresponding to D and P . If P is a �nite set, then both R and S are

additively regular.

Proof. Simply apply (in order) Theorems 4.3, 2.2 and 4.4.

Next we consider weakly additively regular rings and families.

Theorem 4.6. Let R = D +B be the ring of the form A+B corresponding to a domain D and

a nonempty set of nonzero prime ideals P = {Pα}α∈A of D also let S = D + C be the ring of

the form A+ ZB[[Z]] corresponding to D and P . The following are equivalent.

(i) R is weakly additively regular.

(ii) P is a weakly additively regular family.

(iii) S is weakly additively regular.

Proof. As noted in the proof of Theorem 4.4, for both R and S, an element (r, b) is regular if
and only if there is no i ∈ A × N such that ri + bi = 0. Also, a necessary condition for (r, b) to
be regular is that r ∈ D\

∪
Pα.

We start by showing (1) and (3) imply (2). Let f ∈ D\
∪

Pα and g ∈
∪

Pα. Then (f, 0) is
regular in both R and S and (g, 0) is a zero divisor in both rings. If at least one of R and S is

weakly additively regular, there are elements (p, b) and (q, c) such that (g, 0)(p, b) + (f, 0)(q, c)
is regular with (p, b) and (f, 0) comaximal. It follows that p and f are comaximal in D and we

have gp+ fq ∈ D\
∪
Pα.

Next assume P is a weakly additively regular family. For both R and S, each regular ideal is
the extension to that ring of an ideal ofD that is not contained in

∪
Pα. In particular, if (f, a) is a

regular element in R (or S), then (f, a)R = (f, 0)R ((f, a)S = (f, 0)S). Thus if pD+ fD = D,

then (p, 0)R+ (f, a)R = (p, 0)R+ (f, 0)R and (p, 0)S + (f, a)S = (p, 0)S + (f, 0)S.
As above, the easier case is to show that S is weakly additively regular.

For this let (f, a) be a regular element of S and let (g, b) be a zero divisor of S. Then

from above, f ∈ D\
∪
Pα and g ∈

∪
Pα. Also, there is are elements p, q ∈ D such that

gp+ fq ∈ D\
∪
Pα and pD + fD = D. It follows that the element (g, b)(p, 0) + (f, a)(q, 0) =

(gp+ fq, pb+ qa) is regular (since gp+ fq ∈ D\
∪
Pα). There are elements x, y ∈ D such that

px+ fy = 1. In S, we get (p, 0)(x, 0) + (f, 0)(y, 0) = (1, 0). Hence S = (p, 0)S + (f, 0)S =
(p, 0)S + (f, a)S.

Continue with the assumption that (f, a) is regular and (g, b) is a zero divisor, but now of the

ring R. Then f ∈ D\
∪
Pα and there is no i such that fi + ai = 0, but all we know about g is

that there is an i such that gi + bi = 0. We split the proof into two cases.

The �rst case is when g ∈ D\
∪
Pα. For this case, we start by setting p = 1 and q = 0

(as elements of D). There are there are only �nitely many i ∈ I where gi + bi = 0. As in the

proof of Theorem 4.4, we de�ne c ∈ B by setting ci = 1 when gi + bi = 0 and set ci = 0 for

all other i. Then (g, b)(1, 0) + (f, a)(0, c) = (g, b + fc + ac) is such that g ∈ D\
∪
Pα and

there is no i such that gi + bi + fici + aici = 0. Hence (g, b)(1, 0) + (f, a)(0, c) is regular with
(1, 0)R+ (f, a)R = R.
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Next suppose g ∈
∪

Pα. Then there are elements p, q ∈ D such that gp + fq ∈ D\
∪
Pα

with pD + fD = D. From above, we have (p, 0)R + (f, a)R = R. So all we need to do is to

de�ne a c ∈ B such that (g, b)(p, 0) + (f, a)(q, c) = (gp + fq, pb + fc + qa + ac) is regular.
There is no i such that gipi + fihi is 0. But there are in�nitely many i such that gipi + pibi = 0.

However, there are only �nitely many i ∈ I where pibi ̸= 0, and only �nitely many where

ai ̸= 0. Similarly, we may select at most �nitely many i ∈ I where ci ̸= 0. As in the proof of

Theorem 4.4, xi = gipi + fiqi + pibi + fici + qiai + aici reduces to xi = gipi + fiqi ̸= 0 for all

but �nitely many i ∈ I. Thus, when both pibi = 0 = ai, we set ci = 0.

Assume i is such that at least one of pibi and ai is nonzero. Regrouping, we have xi =
(gipi + fiqi + pibi + qiai) + (fi + ai)ci. If gipi + fiqi + pibi + qiai = 0, we set ci = 1 and then

have xi = (fi + ai) ̸= 0; otherwise, we set ci = 0 to have xi = gipi + fiqi + pibi + qiai ̸= 0.

This completes the de�nition of c and the result is that there is no i such that xi = 0. Hence

(g, b)(p, 0) + (f, a)(q, c) is regular.
Therefore R is weakly additively regular.

Recall from above that we showed that each nonempty set of primes of a PID is a weakly

additively regular family (Theorem 3.9). Thus when the base domain is a PID, the corresponding

rings R = D +B and S +D + C are weakly additively regular.

Corollary 4.7. LetD be a PID and let P = {Pα}α∈A be a nonempty set of nonzero prime ideals

of D and let R = D + B be the ring of form A + B and S = D + C be the ring of the form

A+ ZB[[Z]] corresponding toD and P . Both R and S are weakly additively regular. In addition,

if P is a �nite set, then both R and S are additively regular

Proof. By Theorem 3.9, P is a weakly additively regular family. Hence bothR and S are weakly

additively regular by Theorem 4.6. Also, by Corollary 4.5 both R and S are additively regular

when P is �nite.

Theorem 4.8. Let R = D +B be the ring of the form A+B corresponding to a domain D and

a nonempty set of nonzero prime ideals P = {Pα}α∈A of D also let S = D + C be the ring of

the form A + ZB[[Z]] corresponding to D and P . Finally, let S = D\
∪

Pα. The following are

equivalent.

(i) R has the regular �nite union property.

(ii) P is a �nite union family.

(iii) S has the regular �nite union property.

Proof. For an ideal I of D such that I ∩ S ≠ ∅, IR = I + B is a regular ideal of R and

IS = I + C is a regular ideal of S. These are the only types of regular ideals in the two rings.

Thus if we have �nitely many regular ideals in R (or S), we may assume these ideals have

the form IR, J1R,J2R, . . . , JnR (IS, J1S, . . . , JnS) for ideals I , J1, . . . , Jn of D, each with

nonempty intersection with S.
SupposeR has the regular �nite union property. As in the proof that weakly additively regular

rings have the regular �nite union property, we start with the assumption that I is not contained

in
∪
Jk with the goal of �nding an element in I∩S that is not in

∪
Jk. InR, we have IR = I+B

is not contained in
∪
JkR. Hence by the regular �nite union property, there is a regular element

(f, b) ∈ IR that is not in
∪

JkR. Since B ⊆ JkR for each k, it must be that f /∈
∪
Jk. We also

have f ∈ S. Thus (1) implies (2). The proof that (3) implies (2) is essentially the same, simply

substitute C for B.

Next assume P is a �nite union family. We will show that (2) implies (3). As in the proof that

(1) implies (2), we start with regular ideals IS, J1S, J2S, . . . , JnS such that IS is not contained

in
∪

JkS. Since each JkS contains C, there must be an element f ∈ I that is not in
∪

Jk.
But then by assumption, we may assume f ∈ S. In S, the element (f, 0) is a regular element

contained in IS but not
∪
JkS.

Theorem 4.9. Let R = D +B be the ring of the form A+B corresponding to a domain D and

a nonempty set of nonzero prime ideals P = {Pα}α∈A of D also let S = D + C be the ring of

the form A + ZB[[Z]] corresponding to D and P . Finally, let S = D\
∪

Pα. The following are

equivalent.
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(i) R is a Marot ring.

(ii) P is a Marot family.

(iii) S is a Marot ring.

Proof. For an ideal I of D with I ∩ S ̸= ∅, a necessary condition for (r, b) ∈ I +B (∈ (I +C))
to be regular is that r ∈ S. Also, for both R and S, each regular ideal is extended from an ideal

of D that is not contained
∪
Pα. Hence IR = I + B and IS = I + C are generated by regular

elements if and only if I has a generating set Y such that Y ⊆ S.

Theorem 4.10. Let R = D+B be the ring of the form A+B corresponding to a domainD and

a nonempty set of nonzero prime ideals P = {Pα}α∈A of D also let S = D + C be the ring of

the form A+ ZB[[Z]] corresponding to D and P . The following are equivalent.

(i) R is a regular Bezout ring.

(ii) P is a Bezout family.

(iii) S is a regular Bezout ring.

Proof. The proof follows easily from the fact that the regular ideals of R and S all have the form

IR = I +B and IS = I + C for those ideals I of D that are not contained in
∪

Pα.

Corollary 4.11. Let D be a Bezout domain and let P = {Pα}α∈A be a nonempty set of nonzero

prime ideals of D and let R = D +B be the ring of form A+B and S = D + C be the ring of

the form A+ ZB[[Z]] corresponding to D and P . Both R and S are regular Bezout domains.

Proof. Since D is a Bezout domain, P is (trivially) a Bezout family. It follows that both R and

S are regular Bezout rings.

5 Examples

Our �rst example is formed using Nagata's principle of idealization: for a ringD andD-module

B, one can form a ring R = D(+)B from D × B with (r, b) + (s, c) = (r + s, b + c) and
(r, b)(s, c) = (rs, rc+sb). WhenD is an integral domain, an element (r, b) ∈ R is a zero divisor

if and only if rc = 0 for some nonzero c ∈ B (see for example [6, Theorem 25.3]). In addition,

(r, b) is a unit if and only if r is a unit of D. We revisit Matsuda's example of a ring with the

regular �nite union property that is not additively regular.

Example 5.1. (cf. [12, Propositions 11 & 12]) Let P = {pZ | p odd prime} and for each odd

prime pn, let Bn = Z/pnZ. Form the ring R = Z(+)B using idealization where B =
∑

Bn.

Matsuda showed that R is not additively regular, but does have the regular �nite union property.

We will show that R is weakly additively regular.

Proof. If m is divisible by an odd prime, then (m, b) is a zero divisor for each b ∈ B. On the

other hand if f is a power of 2, then (f, c) is a regular element for each c ∈ B.

Since f is a power of 2, fBn = Bn for each n. Hence (f, c) divides (0, d) for each d ∈ B.

Thus by Lemma 3.3, we may start with a zero divisor (m, b) wherem ̸= 0 and a regular element

(f, c) that is not a unit with f positive (so f is a positive power of 2). Factor m as m = s2k

with s odd (and neither 1 nor −1) and k ≥ 0. It does no harm to start by multiplying (f, c) by
(2k, 0) to get (2kf, 2kc). Since s is odd, there are integers x and y such that sx+fy = 1. Clearly

(x, 0)R+(f, c)R = R. We also have (m, b)(x, 0)+(2kf, 2kc)(y, 0) = (mx+2kfy, xb+2kyc) =
(2k, xb+ 2kyc) a regular element in R. Thus R is weakly additively regular.

Here are the A+B and A+ ZB[[Z]] versions of Example 5.1.

Example 5.2. Let R = Z+B be the A+B ring corresponding to Z and P where P = {pnZ | pn
an odd prime}. Also let S = Z + C be the A + ZB[[Z]] ring corresponding to Z and P . By

Corollaries 4.11 and 4.7, both R and S are regular Bezout rings that are also weakly additively

regular. But neither is additively regular (Theorems 3.9 and 4.4).
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Recall that Theorem 3.1 shows that if P = {Pα} is a weakly additively regular family such

that there are only �nitely many maximal ideals that are not contained in
∪
Pα, then each invert-

ible ideal that is not contained in
∪
Pα is principal. In the next example, we show that it is not

enough to know that there are only �nitely many regular ideals that are not contained in
∪
Pα.

In this case the family (called Q) is actually an FZD family. We make use of the domain and

family of primes from Example 2.13 to build the ring R.

Example 5.3. Let D = Z[
√
10] and let P = Max(D)\{M,N} where M = 2D +

√
10D and

N = 5D+
√
10D. For R = D+B, the A+B ring corresponding toD and P , choose any �nite

set of prime idealsQ = {Q1, Q2, . . . , Qn} that includes neitherMR = M+B norNR = N+B.

Since Q is a FZD family, it is also a weakly additively regular family. The maximal ideals MR
andNR are the only regular maximal ideals ofR, so trivially only �nitely many regular maximal

ideals of R are not contained in
∪
Qi. Both MR and NR are invertible, but neither is principal.

For the next example, we construct a partitioning of the prime numbers into a pair of in�nite

sets X and Y in such a way that for each pair of integers g, f such that some prime in X divides

g and no prime inX divides f , there is an integer h such that no prime inX divides g+fh. This
will allow the construction of a ring of the form A + B and one of the form A + ZB[[Z]] where
each is additively regular. The ring R = D + B has in�nitely many regular maximal ideals of

the form M + B, and the ring S = D + C has in�nitely many regular maximal ideals of the

formM +C. Also, R has in�nitely many maximal ideals of the formN +B that are not regular,

and S has in�nitely many maximal ideals of the form N +C that are not regular. The particular

partitioning here is based on a general scheme for partitioning the primes of Z developed by Jim

Coykendall. In the appendix, we present one of two general schemes by Coykendall that satisfy

the suf�cient condition in Theorem 4.4. We also show that such a partitioning can be fragile

in the sense that if some particular prime is shifted from the set X to the set Y , then the new

partitioning {X ′, Y ′} yields rings R′ = Z+B′ and S′ = Z+ C ′ that are not additively regular.
To start let Qr be the set of odd primes that are congruent to r mod 8 for r ∈ {1, 3, 5, 7}.

Next let X = {2} ∪ Q3 ∪Q5 and Y = Q1 ∪Q3.

Lemma 5.4. For X = {2} ∪ Q3 ∪ Q5 and Y = Q1 ∪ Q7, if n is a positive integer with a prime

factor inX and r = q1q2 · · · qm with each qi ∈ Y , then there are in�nitely many positive integers

k such that each prime factor of n+ rk is in Y .

Proof. Factor n = st into positive integers s and t where each prime factor of s is in X and no

prime factor of t is inX. It suf�ces to show there are in�nitely many k > 1 such that each prime

factor of n+ rtk = t(s+ rk) is in Y . We already know each prime factor of t (if any) is in Y .

What we will show is that there are in�nitely many k such that s+ rk is a prime in the set Y .

Consider the system of congruences x ≡ s (mod r), x ≡ 1 (mod 8). Since 8 and r are

relatively prime, there is a positive integer y that satis�es both congruences. Next consider the

integers of the form 8rz + y. Since gcd(8, r) = 1 = gcd(s, r), gcd(y, 8r) = 1. Hence by

Dirichlet's Theorem, there are in�nitely many primes of the form 8rz + y. Each of these primes

is in Y since y ≡ 1 (mod 8). Also, for such a prime we have 8rz + y = s+ rk for some k since

y ≡ s (mod r).

Example 5.5. Let P = {pZ | p ∈ X} where X = {2} ∪ Q3 ∪Q5, also let Y = Q1 ∪Q7. Then

the ring R = Z+B corresponding to Z and P is additively regular with in�nitely many regular

maximal ideals Q+B where Q = qZ for some q ∈ Y and in�nitely many maximal ideals of the

form P + B for some P ∈ P that are not regular. Also the ring S = Z+ C corresponding to Z
and P is additively regular with in�nitely many regular maximal ideals Q + C where Q = qZ
for some q ∈ Y and in�nitely many maximal ideals of the form P + C for some P ∈ P that are

not regular.

Proof. As in the proof of Lemma 5.4, suppose n is a nonzero integer with at least one prime

factor in X and let r be a (�nite) product of primes in the set Y . Here we no longer assume that

n is positive.

If n is positive, then by Lemma 5.4, there is an integer z such that each prime factor of n+rz
is in Y . On the other hand, if n is a negative integer, then by Lemma 5.4 there is an integer z
such that each prime factor of (−n) + rz is in Y . In this case each prime factor of n+ r(−z) is
in Y .
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For the case f is a negative integer with each prime factor in Y , −f can play the role of r to
get an integer n + rk = n + f(−k) with each prime factor in Y . That R and S are additively

regular now follows by Theorem 4.4 (and Lemma 5.4).

With a very small change in the partitioning using X and Y , it possible to get corresponding

rings R = Z + B and S = Z + C that are not additively regular. For the new partitioning, we

simply move 2 to get X ′ = Q3 ∪Q5 and Y ′ = {2} ∪ Q1 ∪Q7.

Example 5.6. Let P = {pZ | p ∈ X ′} where X ′ = Q3 ∪ Q5 and let Y
′ = {2} ∪ Q1 ∪ Q7. Then

neither the ring R′ = Z + B′ nor the ring S′ = Z + C ′ corresponding to Z and P is additively

regular. Since both X ′ and Y ′ are in�nite sets, there are in�nitely many regular maximal ideals

of the form M + B′ and M + C ′ and in�nitely many maximal ideals of the form P + B′ and

P + C ′ that are not regular.

Proof. By Theorem 4.4, it suf�ces to �nd a pair of positive integers f, g such that some prime in

X ′ divides g and each prime divisor of f is in Y ′ with the property that for each k, g+ fk has at

least one prime divisor in X ′.
Consider f = 8 and g = 3. From elementary number theory, each integer of the form 8k+ 3

has at least one prime divisor in X ′. Therefore by Theorem 4.4, neither R′ nor S′ is additively

regular.

6 Appendix

Below is one of the two general schemes developed by Jim Coykendall for constructing a par-

tition of the (positive) primes into two in�nite sets so that the corresponding rings of the form

A + B and A + ZB[[Z]] are additively regular. Note that a key feature is that the prime divisors

of the selected integer N are placed in the set X .

Let N > 2 be an integer and let a1, a2, . . . , at, b1, b2, . . . , bs be a list of the integers between
1 and N that are relatively prime to N (not necessarily in order) but with both t and s positive.
For X we set X = {p ∈ Z+ | p prime with p ≡ ai (mod N ) for some 1 ≤ i ≤ t} ∪ {p ∈ Z+ | p a
prime divisor ofN} and then Y = {q ∈ Z+ | q prime with q ≡ bj (modN ) for some 1 ≤ j ≤ s}.
By Dirichlet's Theorem, bothX and Y are in�nite. For a prime that does not divideN , it is clear

that the prime is in exactly one of the sets X and Y .

As above, if n is a positive integer with at least one prime divisor in X and r is an integer

with each prime divisor in Y , then we may factor n = fg where each prime divisor of f is in X
and each prime divisor of g (if any) is in Y . We shift to considering n + rgx for some integer

x. We have n + rgx = g(f + rx), so to have no prime divisor of n + rgx in X it suf�ces to

make f + rx a prime in the set Y . As above, we consider the system of congruences y ≡ f
(mod r) and y ≡ b1 (mod N ). For a solution z, we consider the set of positive integers of the
form Nrk + z. We have gcd(Nr, z) = 1 since gcd(r, f) = 1 = gcd(N, r) and gcd(N, z) = 1.

Hence by Dirichlet's Theorem, there are in�nitely many primes of the formNrk+ z for positive
k when r > 0, negative k when r < 0. Each such prime is in the set Y and congruent to f mod

r. Thus there are in�nitely many primes of the form rh+ f ∈ Y .

As in the proof of Example 5.5, if n is negative, we simply consider the positive integer

n′ = −n. We have in�nitely many integers h′ such that rh′ + w is a prime in Y . It follows that

the only prime divisor of r(−h) + n is in Y .

Therefore, for P = {pZ | p ∈ X}, the corresponding rings R = Z+ B and S = Z+ C are

additively regular with in�nitely many regular maximal ideals of the form Q + B and Q + C
where Q = qZ for some q ∈ Y and in�nitely many maximal ideals of the form P +B (( Z(R))
and P + C (( Z(S)) where P = pZ for some p ∈ X.

While the �bad" partitioning in Example 5.6 places 2 in the set Y , simply start with an

odd integer N > 1 and when partitioning the primes that do not divide N , place 2 (and those

congruent to 2 mod N ) in the set Y . For an alternate partitioning scheme (with 2 in Y ), start

with p1 = 3, p2 = 7 ∈ X, then recursively de�ne pn to be the smallest prime of the form

2mn(2kn + 1)− 1 for some nonnegative integer kn and some integermn > mn−1 with 2pn−1 <
2mn . We have pn ≡ −1 (mod 2mn) and pn ≡ 2mn − 1 (mod 2mn+1). In addition, note that

pn is the only prime in X that is congruent to 2mn − 1 mod 2mn+1. All larger primes in X
are congruent to −1 mod 2mn+1, and each smaller prime in X is congruent mod 2mn+1 to a
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positive integer that is strictly smaller than 2mn − 1. In terms of pairs (pn,mn), the �rst �ve are
(3, 2), (7, 3), (31, 5), (127, 7), (1279, 8) [note that while 2 · 7 < 16 and 47 = 16 · 3− 1 is prime,

47 is larger than 31 = 25 − 1]. The set Y simply contains each prime that is not in X .

Assume this partitioning and suppose g > 1 and f > 1 are such that each prime divisor of g
is in X and each prime divisor of f is in Y . Next let m be a positive integer such that 2m > 4g
and consider positive integers of the form g + 2mfk with k > 0. By Dirichlet's Theorem there

are in�nitely many choices of k such that g + 2mfk is prime. By the argument above, at most

one such prime is in X as all are congruent to g mod 2m (since 4g < 2m).
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