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Abstract. In this paper we study the minimal polynomial af�ne translation surfaces in the

3-dimensional hyperbolic space H3. We suppose that the af�ne translation surface is minimal in

E3 and then we prove that there are not any minimal polynomial af�ne translation surfaces in

H3.

1 Introduction

The surfaces in the 3-dimensional Euclidean space E3 which can be written as a sum of two

real curves are called translation surface, i.e., r (x, y) = α (x) + β (y), where α and β are real

curves. Such surfaces are obtained by translating one curve along another and are well-studied

in Euclidean and Lorentzian space [1, 2, 6, 11].

The half-space model of the hyperbolic space H3 is R3
+ =

{
(x, y, z) ∈ R3; z > 0

}
equipped

with the hyperbolic metric

ds2 =
dx2 + dy2 + dz2

z2
.

In this model, the surfaces can be considered as a sum of planar curves, in other words the

curves in R3
+ involved in Euclidean space. A classi�cation for complete umbilical surfaces in

the hyperbolic space with constant mean curvature is as follows

Totally geodesic surfaces or geodesic planes. In our model of hyperbolic space, they may be

identi�ed with vertical Euclidean planes and Euclidean hemispheres that orthogonally intersect

the xy- plane. For such a surface, the mean curvature is zero. After an isometry of H3, any

geodesic plane can be considered as

P (a) =
{
(x, y, z) ∈ R3

+;x
2 + y2 + z2 = a2

}
,

where a > 0 [7]. For the other models: equidistant spheres, horospheres, hyperbolic spheres see

also [7].

A translation surface in the half-space model of the 3-dimensional hyperbolic space H3 is a

graph surface given by

r (x, y) = (x, y, f (x) + g (y)) (type I)

or

r (x, z) = (x, f (x) + g (z) , z) (type II)

where f and g are smooth functions [8].

A surface with H = 0 at every point then called minimal. Examples of minimal surfaces in

H3 are totally geodesic planes. Such minimal translation surfaces are studied by R. Lopez [8],

by proving that there are no minimal translation surfaces in H3 of type I and the only minimal

translation surfaces in H3 of type II are totally geodesic planes.

Most recently H. Liu and Y. Yu introduced a new translation surface so-called af�ne trans-

lation surfaces. The af�ne translation surface in E3 is de�ned as a parameter surface r (u, v)
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which can be written as

r (u, v) = (u, v, f (u) + g (v + au))

for some non zero constant a and smooth functions f (u) and g (v + au). Such surfaces are in-

vestigated in [5]. The authors classi�ed minimal af�ne translation surfaces in three dimensional

Euclidean space. They proved that if r (x, y) = (x, y, z (x, y)) is a minimal af�ne translation

surface, then either z (x, y) is linear or can be written as

z (x, y) =
1

c
log

cos
(
c
√
1+ a2x

)
cos [c (y + ax)]

. (1.1)

The minimal translation surface given by (1.1) is called generalized Sherk surface or af�ne

Sherk surface in E3. For more details of af�ne translation surfaces, we refer the reader to [3, 9,

13].

In this paper we study the af�ne translation surfaces in H3, then we provide a result for

polynomial minimal af�ne translation surfaces in H3.

2 Polynomial Af�ne Translation Surfaces in E3

Let M an af�ne translation surface in E3 parametrized by

r : U ⊆ E2 → E3, (x, y) 7→ r (x, y) = (x, y, f (x) + g (y + ax)) , a ̸= 0 (2.1)

where f and g are real-valued and smooth functions on U . Then the Gauss and mean curvatures

of M are given, respectively,

K =
LN −M2

EG− F 2
= f ′′g′′D−4 (2.2)

and

H =
LG− 2FM +NE

2 (EG− F 2)
=

1

2

[
f ′′ (1+ g′2

)
+ g′′

(
1+ a2 + f ′2)]D−3 (2.3)

where f ′ =
df (x)

dx
, g′ =

dg (v)

dv
=

dg (y + ax)

d (y + ax)
and D2 = EG − F 2 for v = y + ax. Note that

the af�ne translation surface given by (2.1) is �at, i.e. K ≡ 0, if and only if at least one of f or g
is a linear function.

A polynomial translation surface is parametrized by

r : U ⊆ E2 → E3, (x, y) 7→ r (x, y) = (x, y, f (x) + g (y)) ,

where f and g are polynomial functions on U [10, 12]. We suppose that the polynomials f and

g are given by

f = bmum + bm−1u
m−1 + ...+ b1u+ b0

and

g = cnv
n + cn−1v

n−1 + ...+ c1v + c0

where bm and cn are non-zero constants. Then in [4] we considered the polynomial af�ne trans-

lation surfaces in E3 with constant curvature. So we proved the following two non-existence

results:

Theorem 2.1. There does not exist a polynomial af�ne translation surface with non-zero constant

Gaussian curvature in E3.

Theorem 2.2. There does not exist a polynomial af�ne translation surface with constant mean

curvature in E3.
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3 Minimal Polynomial Af�ne Translation Surfaces in H3

LetX : M ⊂ R2 → R3
+ be an immersion inR3

+. Suppose that n is a unit normal vector �eld with

respect to the hyperbolic metric andN is a unit normal vector �eld with respect to the Euclidean

metric, thus the relation between the unit normal vector �elds on M is given by N = n/z. If

κi are the hyperbolic principal curvatures and κe
i are the Euclidean principal curvatures, the

equation related with κi and κe
i can be written as follows

κi = zκe
i +N3, (3.1)

where N3 is the third component of the unit normal vector N . If we put by H and He the

hyperbolic and Euclidean mean curvature onM , respectively, we get

H (x, y, z) = zHe (x, y, z) +N3 (x, y, z) . (3.2)

By considering (3.2) we have the following result for the polynomial af�ne translation surfaces

corresponding the graphs of z (x, y) = f (x) + g (y + ax) .

Theorem 3.1. Assume that the given af�ne translation surfaces in E3 is minimal, then there are

not minimal polynomial af�ne translation surfaces in H3.

Proof. Let M be a polynomial af�ne translation surface in H3. The He and N3 can be written,

respectively,

He =
1

2

[
f ′′ (1+ g′2

)
+ g′′

(
1+ a2 + f ′2)]D−3

and

N3 =
1(

1+ (f ′ + ag′)
2
+ g′2

)1/2

Substituting the above equation in equation (3.2) we obtain the mean curvature onM as follows

H = (f + g)

(
f ′′ (1+ g′2

)
+ g′′

(
1+ a2 + f ′2))(

1+ (f ′ + ag′)
2
+ g′2

)3/2
+

2(
1+ (f ′ + ag′)

2
+ g′2

)1/2
. (3.3)

If the surface is minimal, we get

(f + g)

(
f ′′ (1+ g′2

)
+ g′′

(
1+ a2 + f ′2))(

1+ (f ′ + ag′)
2
+ g′2

)3/2
+

2(
1+ (f ′ + ag′)

2
+ g′2

)1/2
= 0

We can rewrite this equation as

(f + g)
(
f ′′ (1+ g′2

)
+ g′′

(
1+ a2 + f ′2))+ 2

(
1+ (f ′ + ag′)

2
+ g′2

)
= 0. (3.4)

Differentiating (3.4) with respect to y, we have

g′
[
f ′′ (1+ g′2

)
+ g′′

(
1+ a2 + f ′2)]+ (f + g)

[
2f ′′g′g′′ + g′′′

(
1+ a2 + f ′2)]

+2 (2 (f ′ + ag′) ag′′ + 2g′g′′) = 0
(3.5)

On the other hand suppose that the polynomials f and g are given by

f = bmum + bm−1u
m−1 + ...+ b1u+ b0

and

g = cnv
n + cn−1v

n−1 + ...+ c1v + c0

where bm and cn are non-zero constants. Replacing f and g in (3.5) we get a polynomial ex-

pression in u and v vanishing, i.e., all the coef�cients are zero. Let us consider some cases of

equation (3.5)
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Case 1. m,n ≥ 2

i. Suppose that m > n (≥ 2) The dominant term according to u3m−2vn−3 which comes from

ff ′2g′′′ + 2f ′′gg′g′′ + gg′′′ having the coef�cient b3mcnm
2n (n− 1) (n− 2). This cannot vanish

since bm, cn ̸= 0 and m > n ≥ 2 .

ii. Suppose that n > m (≥ 2) or m = n (≥ 2) Using similar way, this case cannot occur.

Case 2. m,n ≥ 1

i. m > n = 1 . We get g = cv + d with real constants c, d and c ̸= 0 . If we consider this

situation in equation (3.5), we obtain

f ′′ (c3 + c
)
= 0

Since c ̸= 0 we have f ′′ = 0 , i.e., f is a linear function. However in this case the degree of f
must be 1. This contradicts our initial assumption, so the equation (3.5) is not satisfying.

ii. n > m = 1. In this case f = bu+d (and suppose that g′′ ̸= 0) with real constants b, d and b ̸=
0. The coef�cient of highest degree v2n−3comes from g′g′′

(
1+ a2 + f ′2)+fg′′′

(
1+ a2 + f ′2)

having the coef�cient

c2nn
2 (n− 1)

(
1+ a2 + b2

)
. Then this expression cannot occur since cn ̸= 0 .

iii. n = m = 1. From equation (3.4) this case con not occur.

Case 3. m,n ≥ 0

i. m ≥ n = 0. Then g is a constant, so the equation (3.5) is satis�ed. But if g is constant,

from the equation (3.4) f is not be a polynomial function. It is a contradiction, so this situation

cannot occur.

ii. n ≥ m = 0. Then f(f = b) is constant, so the equation (3.5) can rewrite with this case

in the following way

g′
[
g′′

(
1+ a2

)]
+ (f + g)

[
g′′

(
1+ a2

)]′
+ 2 (2 (ag′) ag′′ + 2g′g′′) = 0

Corresponding to the same idea like in case1, 2 we can say that this situation cannot occur since

cn ̸= 0. Therefore the proof is completed.
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