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Abstract The integral transform based decomposition method comprises of coupling a par-

ticular integral transform de�ned in a time domain and the well-known Adomian decomposition

method (ADM) established by G. Adomian. Though, integral transforms are as old as at least

two hundred years, but of recent, many researchers seem to turn their attention to the develop-

ment of this an old area in the last two decades, and more especially this current one. However,

with the emergence of these newly initiated integral transforms and the decomposition method

on the other hand; the decomposition methods based on these integral transforms and the just

introduced transforms that are yet to be coupled with the ADM will be reviewed and coupled

respectively. Further, the decomposition method obtained in each mixture (i.e. based on each

integral transform) will be utilized to treat nonlinear partial differential equations (PDEs), as

the methods are �rmly believed to need no linearization, no discretization and no perturbation

among others in comparison with other methods for solving nonlinear differential equations.

1 Introduction

Mathematical models encountered in applied mathematics, mathematical physics, and engineer-

ing science mostly tend to be nonlinear partial differential equations or even coupled system of

nonlinear partial differential equations. These nonlinear equations cannot generally be solved di-

rectly via utilizing only the known integral transforms due to the nonlinearity present. However,

on coupling these integral transforms with the decomposition method introduced by G. Ado-

mian [18] in particular, a remarkable approximate exact solutions are attained. Besides, integral

transforms are tools used in solving linear ordinary/partial differential equations and integral

equations among other applications as they are also used in control engineering applications. To

talk a little about these integral transforms de�ned in the time domain; the oldest integral trans-

form and also the most commonly used is the Laplace transform by P.S. Laplace in (1780s) [45].

Others include Stieltjes transform (1894) [56], Mellin transform (1896) [30], Hankel transform

[17], Hilbert transform (1912) [11], Radon transform (1917) [34], Laguerre transform (1960)

[38] and wavelet transform (1982) [2] among others. Furthermore, of recent, Watugula intro-

duced the Sumudu transform in the year (1993) [22], Khan and Khan (2008) [63] initiated the

Natural transform. The Elzaki transform was introduced by [55] in the year (2011) and the

Aboodh transform was devised in (2013) by [37]. Other recent integral transforms include the

new integral transform developed in (2013) by Kashuri and Fundo [3]. The new integral trans-

form or M-transform [29] was by Srivastava et al in (2015) . The ZZ transform was initiated

by Zafar [64] in (2016) and �nally the Ramadan Group (RG) transform was by Ramadan et al
in (2016) [49]. On the other hand, the classical Adomian decomposition method (ADM) was

established by G. Adomian in 1980s that generates its solution in form of a convergent series

whose terms are determined recursively [18]. The convergence and analysis aspect of ADM

are discussed in [1, 35-36, 59-61] among others, and it is also regarded as a reliable method

for treating both differential/integral and partial differential equation after the successes of many

researches such as in [12, 23,44] and a quick review of the method can be seen in [20-21, 32, 39].
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To give an overview of the method, consider the more general nonlinear partial differential equa-

tion written in an operator form:

Lu+Ru+Nu = g, (1.1)

where Nu represent the nonlinear terms. Solving for Lu,

Lu = g −Ru−Nu. (1.2)

Where L is invertible, an equivalent ie expressed as

L−1Lu = L−1g − L−1Ru− L−1Nu. (1.3)

If this corresponds to an initial-value problem, the integral operator L−1 may be regarded as

de�nite integrations from 0 to t. As a particular case, if L is a second-order operator, L−1 is a

two-fold integration operator and

L−1Lu = u− u(0)− tut(0).

Thus, Eq.(1.3) can be written as

u = u(0) + tut(0) + L−1g − L−1Ru− L−1Nu. (1.4)

Now, replacing the unknown function u by an in�nite series of um's, i.e.,

u =
∞∑

m=0

um, (1.5)

and the nonlinear terms Nu by an in�nite series of the Adomian polynomials Am's given by

Nu =
∞∑

m=0

Am(u0, u1, u2, ...), m = 0, 1, 2, ..., (1.6)

where,

Am =
1

m!

dm

dλm

[
N
( ∞∑

i=0

λiui

)]
λ=0

, m = 0, 1, 2, ... (1.7)

with few terms as follows:

A0 = N(u0),

A1 = u1N
′(u0),

A2 = u2N
′(u0) +

1

2!
u2

1N
′′(u0),

A3 = u3N
′(u0) + u1u2N

′′(u0) +
1

3!
u3

1
N ′′′(u0),

A4 = u4N
′(u0) +

(
1

2!
u2

2 + u1u3

)
N ′′(u0) +

1

2!
u2

1u2N
′′′(u0) +

1

4!
u4

1N
(iv)(u0),

...

(1.8)

Using Eq.'s (1.5) and (1.6) into Eq.(1.4) after identifying u(0) + tut(0) + L−1g with u0, we get

∞∑
m=0

um = u0 − L−1R
∞∑

m=0

um − L−1

∞∑
m=0

Am. (1.9)

We thus obtain the solution recursively as

u1 = −L−1Ru0 − L−1A0,

u2 = −L−1Ru1 − L−1A1,

u3 = −L−1Ru2 − L−1A2,

...

un+1 = −L−1Run − L−1An.

(1.10)



264 R. I. Nuruddeena,∗, Lawal Muhammadb, A.M. Nassc, T. A. Sulaimana

The general solution is written in compact form as{
u0 = u(0) + tut(0) + L−1g , n = 0

un+1 = −L−1Run − L−1An , n > 0.
(1.11)

Furthermore, the Adomian decomposition method has undergone several modi�cations by many

researchers in an attempt to improve the ef�ciency of ADM. Adomian and Rach [19] introduced

modi�ed Adomian polynomials which converge slightly faster than the original polynomials and

are also convenient for computer computations. Adomian also introduced accelerated Adomian

polynomials [20-21].

Wazwaz [7] split the initial iteration in Eq. (1.11) into two, that is

u0 = f0 + f1,

thereby expressing the general solution in Eq.(1.11) as
u0 = f0 , n = 0

u1 = f1 − L−1Ru0 − L−1A0 , n = 1

un+1 = −L−1Run − L−1An , n > 1.

(1.12)

Further, Wazwaz and El-Sayed [8] used the Taylor series expansion to expand the initial iteration

into an in�nite series in what they called the new modi�cation of the Adomian decomposition

method for linear and nonlinear operators, that is,

u0 =
∞∑
n=0

fm

{
u0 = f0 , n = 0

un+1 = fn+1 − L−1Run − L−1An , n > 0.
(1.13)

New modi�cation called the two-step ADM was by Luo [58], the restarted Adomian method

[65], to conclude, some modi�cations of ADM can also be seen in [5-6, 9-10, 28, 33, 41, 50-51,

62]. It is also good however to note that several researchers are of the opinion that the classical

ADM is handy and advantageous due to its convenient algorithm that is easily remembered de-

spite all the available modi�cations obtainable in the literature.

Now, having con�rmed and proven the effectiveness and ef�ciency of ADM through the works

of many researchers, this and more are what makes ADM a unique method and further led to

coupling it with some available integral transforms de�ned in the time domain to further devise

more methods to solve mostly initial value problems of differential and partial differential equa-

tions forms among others. Firstly, on using Laplace transform [45], Khuri [52] used the Laplace

transform coupled with ADM and named it Laplace decomposition method (LDM) as a byprod-

uct of ADM to solve some nonlinear differential equations. Khuri [66] applied LDM to Bratu's

problem, Islam et al [53] and Khan and Austin [57] used LDM respectively in solving various

problems. Hussain and Khan [41] and Eltayeb et al [26] applied the modi�ed LDM to solve

nonlinear and couple nonlinear PDEs and system of Emden-Fowler type equations respectively,

and Yin et al [67] applied it on Lane-Emden type differential equations. Gadain [24] further

used double LDM to treat coupled singular and nonsingular thermoelastic system. For Sumudu

transform [16, 22], the Sumudu decomposition method (SDM) [27] was applied by Eltayeb and

Kilicman to solve nonlinear system of nonlinear PDEs, Ramadan and Al-Luhaibi [40] used the

SDM to solve nonlinear wave-like equations with variable coef�cients, while Eltayeb et al [25]
applied modi�ed SDM on Lane-Emden-type differential equations, see also [13] for SLM. For

Natural transform [63], Loonker and Banerji solved the fractional differential equations using

Natural decomposition method (NDM) [14], Rawashdeh and Maitama solved coupled systems

of nonlinear PDEs using the Natural decomposition method [43] while Suleiman et al [54] ap-
plied the Natural decomposition method on telegraph equations. Next is the Elzaki transform
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[55], the Elzaki decomposition method EDM was applied by Ziane and Hamdi-Cherif [15] to

resolve some nonlinear partial differential equations. Khalid et al [42] applied EDM to a class

of nonlinear differential equations, while Nuruddeen [46] used it in solving linear and nonlinear

Schrodinger equations. Further, the Aboodh transform was coupled with ADM by Nuruddeen

and Nass [47-48] to solve some heat and wave-like equations, while the fractional diffusion

equation by solved Nuruddeen and Aboodh [68] using the same method. Furthermore, the new

integral transform developed by Kashuri and Fundo [3] is not found in the literature to be cou-

pled with ADM in this regards; but will be coupled accordingly in this paper. Moreover, the

Ramadan Group (RG) transform was by Ramadan et al [49] has the same properties with Nat-

ural decomposition.

However, in this paper, an attempt shall be made to revisit and review this newly introduced inte-

gral transforms coupled with the Adomian decomposition method and utilized simultaneously to

tackle some nonlinear partial differential equations arising in real-life applications such as heat

conduction equations, wave propagation equations, Burger's equations, telegraph equations and

other nonlinear nonhomogeneous partial differential equations among others.

2 Recent Integral Transforms

We present here the some integral transforms starting with the oldest and most used one, the

Laplace transform, followed by the some recent transforms such as Sumudu transform, Natural

transform, Elzaki transform, Aboodh transform, the new integral transform by Kashuri & Fundo,

the new integral transform by Srivastava et al , the ZZ transform by Zain Ul Abadin and lastly

the Ramadan Group (RG) transform.

2.1 Laplace Transform

The classical Laplace transform of u(t) is de�ned (in the usual manner) by ([38], [45])

L[u(t)] =

∫ ∞

0

u(t)e−stdt = U(s), Re(s) > 0. (2.1)

The nth order derivative of u(t) with respect to t using Laplace transform is given by

L{un(t)} = snU(s)−
n−1∑
k=0

sn−k−1uk(0). (2.2)

2.2 Sumudu Transform

The Sumudu transform over the set A of functions given by

A = {u : |u(t)| < Me|t|/kj t ∈ (−1)j × [0,∞); (M,k1, k2 > 0 )}

is de�ned by ([22])

S[u(t)] =
∫ ∞

0

u(vt)e−tdt = U(v), v ∈ (−k1, k2). (2.3)

The nth order derivative of u(t) with respect to t using Sumudu transform is given by

S{un(t)} =
U(v)

vn
−

n−1∑
k=0

uk(0)

vn−k
. (2.4)

2.3 Natural Transform

The Natural transform over the set A of functions given by

A = {u : |u(t)| < Me|t|/kj t ∈ (−1)j × [0,∞); (M,k1, k2 > 0 )}
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is de�ned by ([63])

N+[u(t)] =

∫ ∞

0

u(vt)e−stdt = U(v, s), v, s ∈ (−k1, k2). (2.5)

And the nth order derivative of u(t) with respect to t using Natural transform is given by

N+{un(t)} =
sn

vn
U(v, s)−

n−1∑
k=0

sn−k−1

vn−k
uk(0). (2.6)

2.4 Elzaki Transform

The Elzaki transform over the set A of functions given by

A = {u : |u(t)| < Me|t|/kj t ∈ (−1)j × [0,∞); (M,k1, k2 > 0 )}

is de�ned by ([55])

E[u(t)] = v

∫ ∞

0

u(t)e−
t
v dt = U(v), v ∈ (k1, k2). (2.7)

The nth order derivative of u(t) with respect to t using Elzaki transform is given by

E{un(t)} =
U(v)

vn
−

n−1∑
k=0

v2−n+kuk(0). (2.8)

2.5 Aboodh Transform

The Aboodh transform over the set A of functions given by

A = {u : |u(t)| < Me−vt t ∈ (−1)j × [0,∞); (M,k1, k2 > 0 )}

is de�ned by ([37])

A[u(t)] =
1

v

∫ ∞

0

u(t)e−vtdt = U(v), v ∈ (k1, k2). (2.9)

The nth order derivative of u(t) with respect to t using Aboodh transform is given by

A{un(t)} = vnU(v)−
n−1∑
k=0

uk(0)

v2−n+k
. (2.10)

2.6 New Integral Transform by Kashuri & Fundo

The new integral transform over the set A of functions given by

A = {u : |u(t)| ≤ Me
|t|
kj

2

t ∈ (−1)j × [0,∞); (M,k1, k2 > 0 )}

is de�ned by ([3])

K[u(t)] =
1

v

∫ ∞

0

u(t)e−
t

v2 dt = U(v), v ∈ (−k1, k2), (2.11)

and the nth order derivative of u(t) with respect to t using Kashuri & Fundo transform is given

by

K{un(t)} =
1

v2n
U(v)−

n−1∑
k=0

uk(0)

v2(n−k)−1
. (2.12)
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2.7 New Integral Transform by Srivastava et al

If a function u(t) is continuous or piecewise continuous in [0,∞) satisfying the property that,

for given K > 0, T > 0 and β > 0,

|u(t)| ≤ KtR(ρ)e
t
β
for all t > T,

then theM-transform of u(t) given by ([29])

Mρ,m[u(t)](s, v) =

∫ ∞

0

u(vt)e−st

(tm + vm)ρ
dt = U(s, v), (2.13)

exists for all v ∈ (0, µ) and u such that R(u) > µ
β .

2.8 ZZ Transform

The ZZ transform for any exponential order function u(t) and t ≥ 0 is de�ned by ([64]) as

H{u(t)} = s

∫ ∞

0

u(vt)e−stdt = U(s, v), (2.14)

and the nth order derivative of u(t) with respect to t using ZZ transform is given by

H{un(t)} =
sn

vn
U(s, v)−

n−1∑
k=0

sn−k

vn−k
uk(0). (2.15)

2.9 Ramadan Group (RG) Transform

The RG transform over the set A of functions given by

A = {u : |u(t)| ≤ Me
|t|
kj t ∈ (−1)j × [0,∞); (M,k1, k2 > 0 )}

is de�ned by ([49])

RG[u(t)] =

∫ ∞

0

u(vt)e−stdt = U(v, s), v ∈ (k1, k2), (2.16)

and the nth order derivative of u(t) with respect to t using RG transform is given by

RG{un(t)} =
sn

vn
U(v)−

n−1∑
k=0

sn−k−1

vn−k
uk(0). (2.17)

3 Integral Transform Based Decomposition Method

We consider the more general form of nonhomogeneous two-dimensional nonlinear partial dif-

ferential equation

Lu(x, t) +Ru(x, t) +Nu(x, t) = h(x, t), (3.1)

with the initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ [a, b], (3.2)

where L = ∂2

∂2t
is the second order linear differential operator, R is the remaining linear opera-

tor of order less than L and Nu(x, t) represents the general nonlinear differential operator with
h(x, t) as a nonhomogeneous term.

Furthermore, since we are going to use varieties of the integral transforms stated above cou-

pled with the ADM [18], we now present the integral transform based decomposition method
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with an arbitrary integral transform say P.
Now, on applying this arbitrary transform P in t on both sides of Eq.(3.1) we get

P{Lu(x, t)}+ P{Ru(x, t)}+ P{Nu(x, t)} = P{h(x, t)}. (3.3)

Then, on using the differentiation property in each of the various transforms as the case maybe,

we get

P{au(x, t)} − bu(x, t)− cut(x, t) + P{Ru(x, t)}+ P{Nu(x, t)} = P{h(x, t)}, (3.4)

where a ̸= 0, b and c are functions of one or two variables coming from the respective integrals

as transform parameters. We also assume that P−1{ b
a} = 1 and P−1{ c

a} = t.
We thereafter as the next step represent the solution u(x, t) by an in�nite series

u(x, t) =
∞∑

m=0

um(x, t), (3.5)

and the nonlinear operator Nu(x, t) by

Nu(x, t) =
∞∑

m=0

Am, (3.6)

where Am's are the Adomian polynomial given in Eq.(1.7). Thus, on substituting Eq.(3.5) and

Eq.(3.6) into Eq.(3.4) we obtain

P{L
∞∑

m=0

um(x, t)} − b

a
u(x, 0)− c

a
ut(x, 0) +

1

a
P{R

∞∑
m=0

um(x, t)}+

1

a
P{

∞∑
m=0

Am} =
1

a
P{h(x, t)}.

(3.7)

Thus, on comparing the both sides of Eq.(3.7) and thereafter taking the inverse transform, after

using the initial conditions given in Eq.(3.2) we then obtain the general solution recursively as{
u0(x, t) = f(x) + tg(x) + P−1{ 1

aP{h(x, t)}} , n = 0

un+1(x, t) = −P−1{ 1

aP{Run(x, t) +An}} , n > 0.
(3.8)

4 Application of the Methods

To demonstrate the application of the aforesaid various integral transforms based decomposi-

tions, we consider the following initial value problems modelled in nonlinear partial differential

equations like nonlinear wave equation, nonlinear heat, Burger's equation and other various non-

linear nonhomogeneous PDEs. Each problem will however be solved using a speci�c coupling

accordingly.

4.1 Example One

Consider the nonlinear PDE [Kashuri at al [4]]given by

ut = u2

x + uuxx, (4.1)

with the initial condition

u(x, 0) = x2. (4.2)

Here, we couple the Laplace transform with ADM on Eq.(4.1), we get the general solution

recursively as {
u0(x, t) = u(x, 0) , n = 0

un+1(x, t) = L−1{ 1

sL{An}}+ L−1{ 1

sL{Bn}} , n ≥ 0,
(4.3)
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where An's and Bn's are the Adomian polynomials with few terms expressed from Eq.(1.7) as

follows

A = u2

x, (4.4)

A0 = u2

0x
,

A1 = 2u0xu1x ,

A2 = 2u0xu2x + u2

1x
,

(4.5)

and so on.

B = uuxx, (4.6)

B0 = u0uoxx ,

B1 = u0u1xx
+ u0xx

u1,

B2 = u0u2xx
+ u1u1xx

+ u2u0xx
,

(4.7)

and so on.

So we get few iterations as follows

u0(x, t) = x2, (4.8)

u1(x, t) = = L−1{1
s
L{A0}}+ L−1{1

s
L{B0}},

= L−1{1
s
L{4x2}}+ L−1{1

s
L{2x2}},

= −L−1{1
s
L{6x2}},

= 6x2t,

(4.9)

u2(x, t) = = L−1{1
s
L{A1}}+ L−1{1

s
L{B1}},

= L−1{1
s
L{48x2t}}+ L−1{1

s
L{24x2t}},

= −L−1{1
s
L{72x2t}},

= 36x2t2,

(4.10)

u3(x, t) = = L−1{1
s
L{A2}}+ L−1{1

s
L{B2}},

= L−1{1
s
L{432x2t2}}+ L−1{1

s
L{216x2t2}},

= −L−1{1
s
L{648x2t2}},

= 216x2t3,

(4.11)

and so on. Thus, summing the above iterations we obtain

u(x, t) =
∞∑
n=0

un(x, t) = x2

(
1+ (6t) + (6t)2 + (6t)3 + . . .

)
, (4.12)

which is leading to the exact solution

u(x, t) =
x2

1− 6t
. (4.13)
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4.2 Example Two

Consider the nonlinear PDE [Biazar [31]]

ut + uux = uxx, (4.14)

with the initial condition

u(x, 0) = 2x, t > 0. (4.15)

Applying the Sumudu transform coupled with ADM, we get the solution of Eq.(4.14) as{
u0(x, t) = u(x, 0) , n = 0

un+1(x, t) = S−1{vS{unxx}} − S−1{vS{An}} , n ≥ 0,
(4.16)

where An's are the Adomian polynomials with few terms expressed from Eq.(1.7) as follows

A = uux, (4.17)

A0 = u0uox ,

A1 = u0u1x + u0xu1,

A2 = u0u2x + u1u1x + u2u0x ,

(4.18)

and so on. So we get few iterations as follows

u0(x, t) = 2x, (4.19)

u1(x, t) = S−1{vS{u0xx
}} − S−1{vS{A0}},

= −S−1{vS{u0xx
}},

= −S−1{vS{4x}},
= −4xt,

(4.20)

u2(x, t) = S−1{vS{u1xx
}} − S−1{vS{A1}},

= −S−1{vS{u1xx
}},

= −S−1{vS{−16xt}},

= 8xt2,

(4.21)

u3(x, t) = S−1{vS{u2xx
}} − S−1{vS{A2}},

= −S−1{vS{u2xx
}},

= −S−1{vS{48xt2}},

= −16xt3,

(4.22)

and so on. Thus, summing the above iterations we obtain

u(x, t) =
∞∑
n=0

un(x, t) = 2x
(
1− (2t) + (2t)2 − (2t)3 + ...

)
, (4.23)

which is leading to the exact solution

u(x, t) =
2x

1+ 2t
. (4.24)
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4.3 Example Three

Consider nonlinear nonlinear PDE [Kashuri at al [4]]

utt + uux = −sin(t), (4.25)

with the initial conditions

u(x, 0) = 0, and ut(x, 0) = 1. (4.26)

Applying the Natural transform coupled with ADM to Eq.(4.25), we get{
u0(x, t) = u(x, 0) + tut(x, 0)−N−{v2

s2
N+{ v

s2+v2 }} , n = 0

un+1(x, t) = −N−{v2

s2
N+{An}} , n ≥ 0,

(4.27)

where An's are the Adomian polynomials with few terms expressed from Eq.(1.7) as follows

A = uux (4.28)

A0 = u0uox ,

A1 = u0u1x + u0xu1,

A2 = u0u2x + u1u1x + u2u0x ,

(4.29)

and so on. So we get few iterations as follows

u0(x, t) = t−N−{v
2

s2
{ v

s2 + v2
}},

= t− {t− sin(t)},
= sin(t),

(4.30)

u1(x, t) = −N−{v
2

s2
N+{A0}},

= 0,

(4.31)

u2(x, t) = −N−{v
2

s2
N+{A1}},

= 0,

(4.32)

u3(x, t) = −N−{v
2

s2
N+{A2}},

= 0,

(4.33)

and so on. Thus, summing the above iterations we obtain

u(x, t) =
∞∑
n=0

un(x, t) = sin(t) + 0+ 0+ 0..., (4.34)

which is leading to the exact solution

u(x, t) = sin(t). (4.35)

Note that, we used the convolution theorem of Natural transform into Eq.(4.25) expressed as

N+{f ∗ g} = vF (v)G(v),

where, F (v) = N+{f} and G(v) = N+{g}. Note also that, the Ramadan Group (RG) trans-

form [37] has similar properties with the Natural transform [27]; so we use only the Natural

transform being the older transform among the two.
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4.4 Example Four

Consider nonlinear nonlinear Schroedinger differential equation [Wazwaz [7]]

iut + uxx + 2|u|2u, (4.36)

with the initial condition

u(x, 0) = eix. (4.37)

Applying the Elzaki transform coupled with ADM to Eq.(4.36), we obtain the general solution

recursively given by{
u0(x, t) = u(x, 0) , n = 0

un+1(x, t) = iE−1{vE{unxx}}+ 2iE−1{vE{An}} , n ≥ 0.
(4.38)

Where An's are the Adomian polynomials to be determined from the nonlinear term

Nu = |u|2u = u2u, (4.39)

and u is the conjugate of u, with few terms using the formula in Eq.(1.7) expressed as:

A0 = u2

0u0,

A1 = 2u0u1u0 + u2

0u1,

A2 = 2u0u2u0 + u2

1u0 + 2u0u1u1 + u2

0u2,

(4.40)

and so on.

We now express few components as follows:

u0(x, t) = eix, (4.41)

u1(x, t) = iE−1{vE{u0xx
}}+ 2iE−1{vE{A0}}

= iE−1{i2v3eix}+ 2iE−1{v3eix},

= iteix,

(4.42)

u2(x, t) = iE−1{vE{u1xx
}}+ 2iE−1{vE{A1}}

= iE−1{i3v4eix}+ 2iE−1{iv4eix},

=
−t2eix

2!
,

(4.43)

u3(x, t) = iE−1{vE{u2xx
}}+ 2iE−1{vE{A2}}

= iE−1{v5eix}+ 2iE−1{−v5eix},

=
−it3eix

3!
,

(4.44)

and so on. Thus, summing the above iterations we obtain

u(x, t) =
∞∑
n=0

un(x, t) = eix
(
1+ (it) +

(it)2

2!
+

(it)3

3!
+ . . .

)
, (4.45)

which is leading to the exact solution

u(x, t) = ei(x+t). (4.46)
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4.5 Example Five

Consider the nonlinear wave equation [Kaya [12]] given by

ut + u2

x = 0, (4.47)

with the initial condition

u(x, 0) = −x2. (4.48)

Applying the Aboodh transform coupled with ADM to Eq.(4.47), we get general solution{
u0(x, t) = u(x, 0), n = 0

un+1(x, t) = −A−1{ 1

vA{An}}, n ≥ 0.
(4.49)

where An's are the Adomian polynomials to be obtained from the nonlinear term

Nu = u2

x, (4.50)

given some few terms as

A0 = u2

ox ,

A1 = 2u0xu1x ,

A2 = 2u0xu2x + u2

1x
,

(4.51)

and so on. Now, few terms of the solution are as follows

u0(x, t) = −x2, (4.52)

u1(x, t) = −A−1{1
v
A{A0}},

= −A−1{4x
2

v3
},

= −4x2t,

(4.53)

u2(x, t) = −A−1{1
v
A{A1}},

= −A−1{32x
2

v4
},

= −16x2t2,

(4.54)

u3(x, t) = −A−1{1
v
A{A2}},

= −A−1{1
v
A{384x

2

v5
},

= −64x2t3,

(4.55)

and so on. Summing the above iterations, we get the solution as

u(x, t) =
∞∑
n=0

un(x, t) = −x2
(
1+ 4t+ 16t2 + 64t3 + ...

)
, (4.56)

which is leading to the exact solution

u(x, t) =
x2

4t+ 1
. (4.57)
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4.6 Example Six

Consider the nonhomogeneous nonlinear PDE [Kashuri et al [4]]

ut − uux = 0, (4.58)

with the initial condition

u(x, 0) = x. (4.59)

Applying the Kashuri and Fundo transform coupled with ADM to Eq.(4.58), we get{
u0(x, t) = u(x, 0), n = 0

un+1(x, t) = K−1{v2K{An}}, n ≥ 0.
(4.60)

where An's are the Adomian polynomials with few terms expressed from Eq.(1.7) as follows

A = uux, (4.61)

A0 = u0uox ,

A1 = u0u1x + u0xu1,

A2 = u0u2x + u1u1x + u2u0x ,

(4.62)

and so on.

So we get few iterations as follows

u0(x, t) = x, (4.63)

u1(x, t) = K−1{v2K{A0}},

= K−1{v2K{x}},

= K−1{xv3},
= xt,

(4.64)

u2(x, t) = K−1{v2K{A1}},

= K−1{v2K{2xt}},

= K−1{2xv5},

= xt2,

(4.65)

u3(x, t) = K−1{v2K{A2}},

= K−1{v2K{3xt2}},

= K−1{6xv7},

= xt3,

(4.66)

and so on. Thus, on summing the above iterations we get

u(x, t) =
∞∑
n=0

un(x, t) = x
(
1+ t+ t2 + t3 + ...

)
, (4.67)

which is leading to the exact solution

u(x, t) =
x

1− t
. (4.68)
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4.7 Example Seven

Consider the one dimensional nonlinear wave-like equation [Ghoreish at al [44]]

utt = x2
∂

∂x
(uxuxx)− x2(uxx)

2 − u, (4.69)

with the initial conditions

u(x, 0) = 0, and ut(x, 0) = x2. (4.70)

Applying the ZZ transform coupled with ADM to Eq.(4.69) as described, the above system

has the following solution given recursively as
u0(x, t) = u(x, 0) + tut(x, 0), n = 0

un+1(x, t) = H−1{v2

s2
H{x2 ∂

∂x(An)}}−
H−1{ v2

s2
H{x2Bn}} −H−1{ v2

s2
H{un}}, n ≥ 0.

(4.71)

where An's and Bn's are the Adomian polynomials with few terms expressed from Eq.(1.7) as

follows

A = uxuxx, (4.72)

A0 = u0xuoxx ,

A1 = u0xu1xx
+ u0xx

u1x ,

A2 = u0xu2xx
+ u1xu1xx

+ u2xu0xx
,

(4.73)

and so on.

B = u2

xx, (4.74)

and

B0 = u2

0xx
,

B1 = 2u0xxu1xx
,

B2 = 2u0xx
u2xx

+ u2

1xx
,

(4.75)

and so on. So we get few iterations as follows

u0(x, t) = xt, (4.76)

u1(x, t) =H−1{v
2

s2
H{x2

∂

∂x
(A0)}} −H−1{v

2

s2
H{x2B0}} −H−1{v

2

s2
H{u0}},

= −H−1{v
2

s2
H{xt}},

= −H−1{xv
3

s3
},

= −xt3

3!
,

(4.77)

u2(x, t) =H−1{v
2

s2
H{x2

∂

∂x
(A1)}} −H−1{v

2

s2
H{x2B1}} −H−1{v

2

s2
H{u1}},

= −H−1{v
2

s2
H{−xt3

3!
}},

= H−1{xv
5

s5
},

=
xt5

5!
,

(4.78)
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u3(x, t) =H−1{v
2

s2
H{x2

∂

∂x
(A2)}} −H−1{v

2

s2
H{x2B2}} −H−1{v

2

s2
H{u2}},

= −H−1{v
2

s2
H{−xt5

5!
}},

= H−1{−x
v7

s7
},

= −−xt7

7!
,

(4.79)

and so on. Thus, on summing the above iterations we get

u(x, t) =
∞∑
n=0

un(x, t) = x

(
t− t3

3!
+

t5

5!
− t7

7!
+ ...

)
, (4.80)

which is leading to the exact solution

u(x, t) = xsin(t). (4.81)

5 Conclusion

In conclusion, the general review of the integral transforms based decomposition methods has

been attempted and further applied to solve some nonlinear partial differential equations. The

method comprises of coupling a given particular integral transform de�ned in a time domain with

the decomposition method by G. Adomian. Started with the Laplace decomposition method, fol-

lowed by the recent initiated integral transforms mixed with Adomian decomposition method,

such as the Sumudu decomposition method, the Natural decomposition method, the Elzaki de-

composition method, the Aboodh decomposition method, the mixture of the new integral trans-

form by Kashuri et al with the Adomian decomposition method, and �nally the ZZ decom-

position method. Finally, the respective methods are highly recommended for solving nonlinear

ordinary and partial differential equations as they require no linearization, no discretization and

no perturbation among others in comparison with other methods used in solving nonlinear dif-

ferential equations.

Appendix

Table 1. Properties of Laplace & Sumudu Transform

u(t) Laplace transform Sumudu Transform

1 1

s 1

tn, n ≥ 0 n!
Sn+1 n! vn

e−at 1

s+a
1

1+av

sin(at) a
s2+a2

av
1+a2v2

cos(at) s
s2+a2

1

1+a2v2



A Review of the Integral Transforms-Based Decomposition Methods 277

References

[1] A. Abdelrazec and D. Pelinovsky, Convergence of the Adomian decomposition method for initial-value
problems, Numer. Methods Partial Differential Equations, 27 (2011) 749-766

[2] A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of con-
stant shape, SIAM J. Math. Anal., 15, (1984) 723-736

[3] A. Kashuri and A. Fundo, "A new integral transform", Advances in Theoretical and Applied Mathematics,
8 (1) (2013) 27-43

[4] A. Kashuri, Fundo A. and Kreku M., Mixture of a new integral transform and homotopy perturbation
method for solving nonlinear partial differential equations, Advances in Pure Mathematics, 3 (2013) 317-
323

[5] A.M. Wazwaz, The modi�ed decomposition method and PadÃl' approximants for solving the Thomas-
Fermi equation, Applied Mathematics and Computation, 105(1) (1999) 11-19

[6] A.M. Wazwaz, A reliable modi�cation of Adomian decomposition method, Applied Mathematics Com-
putation, 102(1) (1999) 77-86

[7] A.M. Wazwaz, A reliable technique for solving linear and nonlinear Schrodinger equations by Adomian
decomposition method, Bulletin of institute of mathematics, 29 (2) (2001) 125-134

[8] A.M. Wazwaz and S.M. El-Sayed, A new modi�cation of the Adomian decomposition method for linear
and nonlinear operators, Applied Mathematics and Computation, 122(3) (2001) 393-405

[9] A.M. Wazwaz, A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl.
Math. Comput. 111 (2000) 53-69

[10] C. Jin and M. Liu, A new modi�cation of Adomian decomposition method for solving a kind of evolution
equations, Applied Mathematics and Computation, 169(2) (2005) 953-962
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av3
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v2
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v

1+av2

sin(at) a
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av2
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cos(at) 1

(v2+a2)
v2
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s
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