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Abstract The aim of the present paper is to study B.Y. Chen inequalities for semi-slant sub-
manifolds in a normal paracontact metric space form.

1 Introduction

The Riemannian invariants of a Riemannian manifold are the intrinsic characteristic of the Rie-
mannian manifold. B-Y. Chen recalls one of the basic problems in submanifolds theory as to find
simple relationship between the main extrinsic invariants and the main intrinsic invariants of a
submanifolds[2]. A sharp inequality was established for the sectional curvature of a submanifold
in a real space form in terms of the scalar curvature and squared mean curvature[3]. After then
many geometers obtained similar inequalities for submanifolds in different space forms. Contact
version of these equalities were studied by many geometers|[1, 5, 8, 9].

Motivated by the studies of the above authors, we have established Chen inequalities for
semi-slant submanifolds in a normal paracontact space form which has not been attempted so
far.

2 Preliminaries

A m-dimensional Riemannian manifold (M, g) is said to be almost contact metric manifold if it
admits an endomorphism ¢ of its tangent bundle T'M, a vector field £, and a 1-form 7 satisfying

¢ = T-ne& ) =1, ¢¢=0, nop=0

for any vector fields X and Y on M. An almost paracontact metric manifold M is said to be
normal if

(Vxo)Y = —g(X,Y)E —n(Y)X +2p(X)n(Y)E, Vi€ =X, (2.2)

for any vector fields X, Y on M[6], where V denotes the Riemannian connection with respect to
g. If a normal paracontact metric manifold M is of a constant sectional curvature ¢, denoted by
M (c), then its the Riemannian curvature tensor R is given by

RXYV)Z = Gle+ MoV 2)X — (X, 2)V}+ (e~ Din(X)n(Z)Y

— n(Y)I(Z2)X +g(X, Z)n(Y)E — g(Y, Z)n(X)E + g(oY, Z)pX
— 90X, 2)pY —29(¢X,Y)pZ}, (2.3)

for any vector fields X, Y, Z on M[6].
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Let (M, g) be a Riemannian manifold and we denote by K () the sectional curvature of M
associated with a plane section m C Tys(p), p € M. For any orthonormal basis {ey, e, ..., €, }
of T (p), the scalar curvature 7 at p is defined by

7(p) = > K(eihey). (24)
i<j
We denote by
(inf K)(p) = inf{ K (7)|m C T (p), dimm = 2}. (2.5)

The first Chen invariant §5/(p) is given by

dn(p) = 7(p) — (inf K)(p). (2.6)
We recall the following Lemma of Chen [4] for later use.
Lemma 2.1. Let n > 2 and a1, az, ..., an, ¢ be (n + 1) real numbers such that

n 2 n
<Z ai> =(n-1) <Z a? + c) . 2.7

i=1
Then 2a1ay > c and the equality holds if and only if
ap+ay=a3=...=ay,.

Now, let M be an n-dimensional isometrically immersed submanifold of a normal paracon-
tact metric manifold M with induced by g. Denoting by h, V and V-~ the second fundamental
form of M, the induced connection on M and T M, respectively. Then the Gauss and Wein-
garten formulae are, respectively, given by

VxY =VxY +h(X,Y) (2.8)
and
VxV = -AyX + V%V, (2.9)

for all vector fields X, Y tangent to M and V normal to M, where Ay is the shape operator of
M in the direction of V. The second fundamental form % and shape operator are related Ay by

g(h(X,Y),V) = g(Ay X, Y). (2.10)
By R we denote the Riemannian curvature tensor of M, then the equation of Gauss is given by

g(R(X,Y)Z,W) = g(R(X,Y)Z,W)—g(h(X,Z),h(Y,W))
+ g(h(X,W),1(Y,Z)), (2.11)

for any vector fields X,Y, Z, W on M.

Letp € M and {ey, 2, ..., e, } be an orthonormal basis of the tangent space T/ (p). Then the
mean curvature tensor H (p) is defined by

1 n
H(p) = ﬁZh(ei,ei). (2.12)
i=1

Also we put

hi: =g(h(ei,ej),er), 1<i,j<n, n+1<r<2m+1, (2.13)

]
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where {e,,11, €142, ..., €211} are orthonormal basis the normal space T35 (p) and

n

1B 1P=" g(hlei e;), hiei e5)). (2.14)

i,5=1

On the other hand, for an orthonormal basis {e1, ez, ...,en_1,€n = &} of Ths(p), the scalar
curvature 7 at p of M assumes the form

n—1 n—1

2r =) K(eihej)+2> K(e; NE). (2.15)

i#] i=1

Now, Let M be a submanifold of a normal paracontact metric manifold M. For X € I['(TM),
we put

¢X =TX + NX, (2.16)

where T'X and N X denote the tangential and normal components of ¢.X. In this case, let us
denote

| T ||*= Z ¢*(Tei,e;) and tr(T) = Zg(Tei,ei). (2.17)
i=1

i,j=1

Definition 2.2. Let M be a submanifold of a normal paracontact metric manifold M. A differ-
entiable distribution D on M is called slant distribution if for each p € M and each non-zero
vector field X € D, the angle 6 (X) between ¢X and the vector subspace D, is constant,
independent of the choice of p € M and X € D,,. In this case, the constant angle ¢p is called
the slant angle D.

A submanifold M is said to be a slant if for any p € M and X € Ty;(p), the angle between
¢X and Ty (p) is constant, that is, it doesn’t dependent of the choice of p € M and X € Ty (p).
The angle 6 € (0, §) is called the slant angle of M in M.

Invariant and anti-invariant submanifolds are special slant submanifolds with slant angle § =
0 and 6 = 7, respectively. A slant submanifold which is neither invariant nor anti-invariant is
called a proper slant submanifold.

Definition 2.3. Let M be a submanifold of a normal paracontact metric manifold M. M is said
to be semi-slant submanifold if there exist two orthogonal distributions D and Dy on M such
that

i.) TM admits the orthogonal direct sum TM = DT @ DY,

ii.) the distribution D7 is an invariant, that is, ¢(DT) = DT

iii.) the distribution D? is a slant with slant angle # # 0, 7

Theorem 2.4. Let M be a slant submanifold of a normal paracontact metric manifold M with
slant angle 0. Then we have

g(TX,TY) = cos?0{g(X,Y) — n(X)n(Y)} (2.18)
g(NX,NY) = sin* 0{g(X,Y) — n(X)n(Y)}, (2.19)

forany XY € T(TM).

3 B-Y. Chen Inequalities for Semi-Slant Submanifolds in a Normal
Paracontact Metric Space Form

In this section, we will establish B.Y. Chen inequalities for proper semi-slant submanifolds in a
normal paracontact metric space form. We will consider a plane sections 7-invariant and m-slant
by T
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Theorem 3.1. Let M be ann = 2(p + q) + 1-dimensional proper semi-slant submanifold of a
2m + 1-dimensional paracontact metric space form M (c). Then we have

K(r) > r+(1—%> <n”21||H||2 W)

+ (641)(@1)m§9+q(n1», 3.1)

for any plane © invariant by T and tangent to slant distribution D° and

K(r) > 7+ (1—%) <n"_21||H||2_(7”‘+1£(C+3)>

+ (c;1>(pam29+q—4ﬂ, (3.2)

for any plane T invariant by T and tangent to invariant distribution DT, where dim(D%) = 2p
and dim(DT) = 2q + 1.

The equality case in (3.1) and (3.2) hold at a point p € M if and only if there exist an or-
thonormal basis {e1, ez, ...,en_1,e, = £} of Tm (p) and an orthonormal basis {e, 11, €n12, -, €2m+1}
of Ti;p such that the shape operator of M in M c), at a point p take the following forms;

Apii=| 0 b 0.0 . a+b=p (3.3)

and
hi; R, 0..0

Ao, = | b3, —hr, 0.0 |, re{n+2,..2m+1}. (3.4)
0 0 .0,

Proof. By using (2.3) and (2.11), we obtain

GRCY)ZW) = (et 3oV, 2)g(X, W) ~ g(X, 2)g(¥, W)

e DOM(D)a(v. W) — n(¥ In(2)g(X. W)
9(X, Z)n(Y )n(W) = n(X)n(W)g(Y, Z) + g(¢Y. Z)g(6X, W)
— 9(6X,Z)g(¢Y, W) —29(¢X,Y)g(¢Z, W)}
— g(WX, W), h(Y, Z)) + g(h(X, Z), (Y, W)), (3.5)
forany X|Y, Z, W € T(TM). Now let
{e1,er =secOTey,e3,e4 = secOTes, ..., ez, = sec Ol e, 1, €2p41,€2p42 = Terp 11
s w0 €2(ptg)—15 €2(prq) = L€2(ptq)—1:€ = €2(prq)+1) )

be an orthonormal basis of T, (p) such that e;, 1 < i < 2p, are tangent to D? and ej,2p+1<
j <2(p+q)+ 1 =n, are tangent to DT. Making use of (2.15) and (3.5), we have

n—1 n—1

2r = Z g(R(e;,ej)ei,e5) + 2Zg(R(ei,£)ei,§) = —%(c—i— 3)n(n—1)

i,j=1 i=1

—

+ =D -1) - > G (geie))} +nlllH|P — ||, (3.6)

i,7=1
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We note that in general, g(¢X, X) # 0, for any unit vector X € ['(T'M), in almost paracontact
metric manifolds contrary to complex manifolds. Whereas, we can construct that the paracontact
metric structure ¢ such that g(¢X, X) = 0. If M is 2m + 1-dimensional almost paracontact
metric manifold with an orthonormal basis {e1, €2, ..., €, €mt1, -y €2m, €2ms+1 = £}, then we
can define ¢ by

o(e;) = emri and Plemss) = ei, i€ {1,2,...,m}.
In this case, we can easily to see that g(¢e;, e;) = 0. Obviously, we observe
g(ger,ex) = g(Tey,sec0Te;) = cosd
and
g(Perpi1,erpi2) = g(Tezpi1, Terpir) = 1,
from which

(¢ ) cos’d ;  fori=12,..2p—1
64’64 = -
g iy Ci41 1 ; fO?” Z:2p+17~-~72(p+q)_1

Thus we have

> g ¢eirej) = 2(pcos® 6 + q). (3.7)
i,5=1

From (3.6) and (3.7), we reach at

1 1
2r = —Z(C+3)ﬂ(n—1)+Z(C—1){2(n—1)—2(p00829+Q)}+n2||HH2—||h||2,
or
2 2 2, 1 1 2
n||H||* =27 + ||A|| +Z(c+3)n(n—1)+§(c— 1){pcos“0 +q— (n—1)}.
If we put
n?(n —2) 5 c+3
c—1 2
+ 2 {pcos*0+q— (n—1)}, (3.8)
we obtain
n?[H[* = (n = D(|[p]* + €). (3.9)

Letp € M, m C Ty (p), dimm=2 and 7 orthogonal to £, and invariant by 7. We discusses two
cases.

(i) The plane section 7 is tangent to D?. We suppose that 7 = sp{e;,e;} and we take e, =
H/||H]||. Relation (2.7) becomes

(S o[£ 5

i,j=1r=n+1

or,

n 2 n 2m+1 n
<ZhZ+l> n—l Z hnz‘H)Z‘FZ(hZ‘H)z‘F Z Z(h )2_|_6

i=1 i=1 i#£] r=n+21i,j=1
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By using Lemma 2.1, we can infer

n  2m+1
20 = (R DY (b)) e (3.10)
i#£] i, r=n+2

From the Gauss equation for X = W =e¢; and Y = Z = e;, we reach

g(R(er,ex)er, e2) = (Cz3> {g(e2,e1)g(ea, e1) — gler,e1)gler, e2)}

K(m)

+

<C; 1> {g(gea, e1)g(per, e2) — g(der, e1)g(pez, e2)

— 2g(ge1,e2)g(ger, e2)} + g(h(er, e1), hea, e2)) — g(h(er, e2), h(er, e2))

_ <CZ3> _ <C; 1) Pldes,er) + 2§1 [hi1h3y — (1))

r=n+1
2m—+1
- (c:3> - (c_ )cos 0+ > [nhhiy — ()] . (3.11)
r=n+1
Taking account of (3.10) and (3.11), we obtain
n  2m+l1
K(m) > —(0—23)—(0 1)cos 0+ = Zh”“ + = Z Z
7.7&] z_y 1r=n+2
2m+1 2m+1
+ Z hithy, — Z (hip)?
r=n+2 r=n+1
c+ 3 c—1 1 2m+1
= —( 2 )—( 1 )00529+22h"+1 Z Z
i#£] r=n+214,7>2
2m+1 c
n+1 n+1
+ 22 TR Y (R (hy )]+§,
r=n+2 j>2
that is,
c+3 c—1 5 €
> - — - .
K(r) > ( ) ) ( y) )cost9+2 (3.12)

Substituting (3.8) into (3.12), we obtain (3.1).
In the same way, if the subspace 7 is tangent to DT, we obtain (3.2).

If at any point p € M, equalities in (3.1) and (3.2) hold, then inequalities in (3.10) and (3.12)
become equalities. Thus we have
Wittt =0, i, i, >2
hi; =0, i#j, r=n+1,.,2m+1
hii+h% =0, r=n+2,...,2m+1
Wit =hitt =0, j>2,

n+1 n+1 n+1 n+1
Wi 4 B = he R

If we choose {ey, e} such that ;™! = 0 and we denoting a = hi;, b= hb,, u = iy = hpt =
= h™*1 then the shape operators take the desired (3.3) and (3.4) forms. O

nn °
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Theorem 3.2. Let M be ann = 2(p + q) + 1-dimensional semi-slant submanifold of a 2m + 1-
dimensional paracontact metric space form M. Then
i.) For any plane section w-invariant by T and tangent to DY,

5 < (n;2> (nnZIHHZ_(n+IZ1(c+3))

+ <C41>@1Qa])m§9@ (3.13)

and for any plane section w-invariant by T and tangent to DT

o < (52 (o - e

+ <C; 1> (n—pcos 0 —q). (3.14)

The equality case of inequalities (3.13) and (3.14) hold at a point p € M if and only if there exists
an orthonormal basis {e1, ey, ...,en } of Tas(p) and_an orthonormal basis {€,41,€nt2, ..., €2m+1}
of Ti; (p) such that the shape operators of M in M (c) at p have the (3.15) and (3.16) following
forms;

a 0 0.0
Aps1=1 0 b 0.0 , a+b=p (3.15)
0 0 ...,uln_z

and

Wy, hl, 0.0
Ao, =| b5, —hi, 0.0 |, re{n+2,...2m+1}. (3.16)
0 0 .0,

Example 3.3. Let M be a submanifold of R? with coordinates
(xla T2, T3, T4, Y1,Y2,Y3, Y4, t) given by

¥(u, w,v,s,t) = (u,0,w,0,vcos0,vsinb,s,0,t).
It is easy to see that the tangent bundle of M is spanned by the vectors

i e —i cost9i—0—sm0i e —i e _ﬁ
or, T oy T o oy’ T oy O ot

e =
On the other hand, we can define the almost paracontact metric structure ¢ of R° by

0 0 0 0 0
() = g W) = g UG =01 <i<4, ¢

Then for any vector field X = \; -2~ 50, THiz, a -+ 12 € T(RY), we can easily to see that ¢ satisfies
(2.1). Thus ¢(T'M) is spanned by

7] 0

Ay’ per = ——, ¢63——cos94é17+»mn9 % peq = a -, ¢es =0.
1

el =
Per 9 021
Since g(¢er, e3) = cosd and pes = eq, we can define DY = sp{eq,e3} and DT = sp{ey, eq, €5}
Thus M defines a 5-dimensional semi-slant submanifold of R® with usual paracontact metric
structure.
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