B-Y. Chen Inequalities for Semi-Slant Submanifolds in Normal Paracontact Metric Manifolds

Ümit Yıldırım ${ }^{1}$, Mehmet Atçeken ${ }^{1}$, Süleyman Dirik ${ }^{2}$
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 53C15, Secondary 53C42, 53D15.
Keywords and phrases: B.Y. Chen Inequalities, Semi-Slant Submanifolds and Normal Paracontact Manifold.

Abstract

The aim of the present paper is to study B.Y. Chen inequalities for semi-slant submanifolds in a normal paracontact metric space form.

1 Introduction

The Riemannian invariants of a Riemannian manifold are the intrinsic characteristic of the Riemannian manifold. B-Y. Chen recalls one of the basic problems in submanifolds theory as to find simple relationship between the main extrinsic invariants and the main intrinsic invariants of a submanifolds[2]. A sharp inequality was established for the sectional curvature of a submanifold in a real space form in terms of the scalar curvature and squared mean curvature[3]. After then many geometers obtained similar inequalities for submanifolds in different space forms. Contact version of these equalities were studied by many geometers $[1,5,8,9]$.

Motivated by the studies of the above authors, we have established Chen inequalities for semi-slant submanifolds in a normal paracontact space form which has not been attempted so far.

2 Preliminaries

A m-dimensional Riemannian manifold (\bar{M}, g) is said to be almost contact metric manifold if it admits an endomorphism ϕ of its tangent bundle $T \bar{M}$, a vector field ξ, and a 1-form η satisfying

$$
\begin{align*}
\phi^{2} & =I-\eta \otimes \xi, \quad \eta(\xi)=1, \quad \phi \xi=0, \quad \eta \circ \phi=0 \\
g(\phi X, \phi Y) & =g(X, Y)-\eta(X) \eta(Y), \quad \eta(X)=g(X, \xi) \tag{2.1}
\end{align*}
$$

for any vector fields X and Y on \bar{M}. An almost paracontact metric manifold \bar{M} is said to be normal if

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) Y=-g(X, Y) \xi-\eta(Y) X+2 \eta(X) \eta(Y) \xi, \quad \bar{\nabla}_{X} \xi=\phi X \tag{2.2}
\end{equation*}
$$

for any vector fields X, Y on $\bar{M}[6]$, where $\bar{\nabla}$ denotes the Riemannian connection with respect to g. If a normal paracontact metric manifold \bar{M} is of a constant sectional curvature c, denoted by $\bar{M}(c)$, then its the Riemannian curvature tensor \bar{R} is given by

$$
\begin{align*}
\bar{R}(X, Y) Z & =\frac{1}{4}(c+3)\{g(Y, Z) X-g(X, Z) Y\}+\frac{1}{4}(c-1)\{\eta(X) \eta(Z) Y \\
& -\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi+g(\phi Y, Z) \phi X \\
& -g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z\} \tag{2.3}
\end{align*}
$$

for any vector fields X, Y, Z on $\bar{M}[6]$.

Let (M, g) be a Riemannian manifold and we denote by $K(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_{M}(p), p \in M$. For any orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of $T_{M}(p)$, the scalar curvature τ at p is defined by

$$
\begin{equation*}
\tau(p)=\sum_{i<j}^{n} K\left(e_{i} \Lambda e_{j}\right) \tag{2.4}
\end{equation*}
$$

We denote by

$$
\begin{equation*}
(\inf K)(p)=\inf \left\{K(\pi) \mid \pi \subset T_{M}(p), \operatorname{dim} \pi=2\right\} \tag{2.5}
\end{equation*}
$$

The first Chen invariant $\delta_{M}(p)$ is given by

$$
\begin{equation*}
\delta_{M}(p)=\tau(p)-(\inf K)(p) \tag{2.6}
\end{equation*}
$$

We recall the following Lemma of Chen [4] for later use.
Lemma 2.1. Let $n \geq 2$ and $a_{1}, a_{2}, \ldots, a_{n}, c$ be $(n+1)$ real numbers such that

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+c\right) \tag{2.7}
\end{equation*}
$$

Then $2 a_{1} a_{2} \geq c$ and the equality holds if and only if

$$
a_{1}+a_{2}=a_{3}=\ldots=a_{n}
$$

Now, let M be an n-dimensional isometrically immersed submanifold of a normal paracontact metric manifold \bar{M} with induced by g. Denoting by h, ∇ and ∇^{\perp} the second fundamental form of M, the induced connection on M and $T^{\perp} M$, respectively. Then the Gauss and Weingarten formulae are, respectively, given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{2.9}
\end{equation*}
$$

for all vector fields X, Y tangent to M and V normal to M, where A_{V} is the shape operator of M in the direction of V. The second fundamental form h and shape operator are related A_{V} by

$$
\begin{equation*}
g(h(X, Y), V)=g\left(A_{V} X, Y\right) \tag{2.10}
\end{equation*}
$$

By R we denote the Riemannian curvature tensor of M, then the equation of Gauss is given by

$$
\begin{align*}
g(\bar{R}(X, Y) Z, W) & =g(R(X, Y) Z, W)-g(h(X, Z), h(Y, W)) \\
& +g(h(X, W), h(Y, Z)) \tag{2.11}
\end{align*}
$$

for any vector fields X, Y, Z, W on M.
Let $p \in M$ and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be an orthonormal basis of the tangent space $T_{M}(p)$. Then the mean curvature tensor $H(p)$ is defined by

$$
\begin{equation*}
H(p)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) \tag{2.12}
\end{equation*}
$$

Also we put

$$
\begin{equation*}
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), \quad 1 \leq i, j \leq n, \quad n+1 \leq r \leq 2 m+1, \tag{2.13}
\end{equation*}
$$

where $\left\{e_{n+1}, e_{n+2}, \ldots, e_{2 m+1}\right\}$ are orthonormal basis the normal space $T_{M}^{\perp}(p)$ and

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) \tag{2.14}
\end{equation*}
$$

On the other hand, for an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n-1}, e_{n}=\xi\right\}$ of $T_{M}(p)$, the scalar curvature τ at p of M assumes the form

$$
\begin{equation*}
2 \tau=\sum_{i \neq j}^{n-1} K\left(e_{i} \wedge e_{j}\right)+2 \sum_{i=1}^{n-1} K\left(e_{i} \wedge \xi\right) \tag{2.15}
\end{equation*}
$$

Now, Let M be a submanifold of a normal paracontact metric manifold \bar{M}. For $X \in \Gamma(T M)$, we put

$$
\begin{equation*}
\phi X=T X+N X \tag{2.16}
\end{equation*}
$$

where $T X$ and $N X$ denote the tangential and normal components of ϕX. In this case, let us denote

$$
\begin{equation*}
\|T\|^{2}=\sum_{i, j=1}^{n} g^{2}\left(T e_{i}, e_{j}\right) \text { and } \operatorname{tr}(T)=\sum_{i=1}^{n} g\left(T e_{i}, e_{i}\right) \tag{2.17}
\end{equation*}
$$

Definition 2.2. Let M be a submanifold of a normal paracontact metric manifold \bar{M}. A differentiable distribution D on M is called slant distribution if for each $p \in M$ and each non-zero vector field $X \in D_{p}$, the angle $\theta_{D}(X)$ between ϕX and the vector subspace D_{p} is constant, independent of the choice of $p \in M$ and $X \in D_{p}$. In this case, the constant angle θ_{D} is called the slant angle D.

A submanifold M is said to be a slant if for any $p \in M$ and $X \in T_{M}(p)$, the angle between ϕX and $T_{M}(p)$ is constant, that is, it doesn't dependent of the choice of $p \in M$ and $X \in T_{M}(p)$. The angle $\theta \in\left(0, \frac{\pi}{2}\right)$ is called the slant angle of M in \bar{M}.

Invariant and anti-invariant submanifolds are special slant submanifolds with slant angle $\theta=$ 0 and $\theta=\frac{\pi}{2}$, respectively. A slant submanifold which is neither invariant nor anti-invariant is called a proper slant submanifold.

Definition 2.3. Let M be a submanifold of a normal paracontact metric manifold $\bar{M} . M$ is said to be semi-slant submanifold if there exist two orthogonal distributions D_{T} and D_{θ} on M such that
i.) $T M$ admits the orthogonal direct sum $T M=D^{T} \oplus D^{\theta}$,
ii.) the distribution D^{T} is an invariant, that is, $\phi\left(D^{T}\right)=D^{T}$
iii.) the distribution D^{θ} is a slant with slant angle $\theta \neq 0, \frac{\pi}{2}$.

Theorem 2.4. Let M be a slant submanifold of a normal paracontact metric manifold \bar{M} with slant angle θ. Then we have

$$
\begin{align*}
g(T X, T Y) & =\cos ^{2} \theta\{g(X, Y)-\eta(X) \eta(Y)\} \tag{2.18}\\
g(N X, N Y) & =\sin ^{2} \theta\{g(X, Y)-\eta(X) \eta(Y)\} \tag{2.19}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$.

3 B-Y. Chen Inequalities for Semi-Slant Submanifolds in a Normal Paracontact Metric Space Form

In this section, we will establish B.Y. Chen inequalities for proper semi-slant submanifolds in a normal paracontact metric space form. We will consider a plane sections π-invariant and π-slant by T

Theorem 3.1. Let M be an $n=2(p+q)+1$-dimensional proper semi-slant submanifold of a $2 m+$ 1-dimensional paracontact metric space form $\bar{M}(c)$. Then we have

$$
\begin{align*}
K(\pi) & \geq \tau+\left(1-\frac{n}{2}\right)\left(\frac{n^{2}}{n-1}\|H\|^{2}-\frac{(n+1)(c+3)}{4}\right) \\
& +\left(\frac{c-1}{4}\right)\left((p-1) \cos ^{2} \theta+q-(n-1)\right) \tag{3.1}
\end{align*}
$$

for any plane π invariant by T and tangent to slant distribution D^{θ} and

$$
\begin{align*}
K(\pi) & \geq \tau+\left(1-\frac{n}{2}\right)\left(\frac{n^{2}}{n-1}\|H\|^{2}-\frac{(n+1)(c+3)}{4}\right) \\
& +\left(\frac{c-1}{4}\right)\left(p \cos ^{2} \theta+q-n\right) \tag{3.2}
\end{align*}
$$

for any plane π invariant by T and tangent to invariant distribution D^{T}, where $\operatorname{dim}\left(D^{\theta}\right)=2 p$ and $\operatorname{dim}\left(D^{T}\right)=2 q+1$.

The equality case in (3.1) and (3.2) hold at a point $p \in M$ if and only if there exist an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n-1}, e_{n}=\xi\right\}$ of $T_{M}(p)$ and an orthonormal basis $\left\{e_{n+1}, e_{n+2}, \ldots, e_{2 m+1}\right\}$ of $T_{M}^{\perp} p$ such that the shape operator of M in $\bar{M}(c)$, at a point p take the following forms;

$$
A_{n+1}=\left(\begin{array}{ccl}
a & 0 & 0 \ldots 0 \tag{3.3}\\
0 & b & 0 \ldots 0 \\
0 & 0 & \ldots \mu I_{n-2}
\end{array}\right), \quad a+b=\mu
$$

and

$$
A_{e_{r}}=\left(\begin{array}{ccc}
h_{11}^{r} & h_{12}^{r} & 0 \ldots 0 \tag{3.4}\\
h_{12}^{r} & -h_{11}^{r} & 0 \ldots 0 \\
0 & 0 & \ldots 0_{n-2}
\end{array}\right), r \in\{n+2, \ldots, 2 m+1\} .
$$

Proof. By using (2.3) and (2.11), we obtain

$$
\begin{align*}
g(R(X, Y) Z, W) & =\frac{1}{4}(c+3)\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\} \\
& +\frac{1}{4}(c-1)\{\eta(X) \eta(Z) g(Y, W)-\eta(Y) \eta(Z) g(X, W) \\
& +g(X, Z) \eta(Y) \eta(W)-\eta(X) \eta(W) g(Y, Z)+g(\phi Y, Z) g(\phi X, W) \\
& -g(\phi X, Z) g(\phi Y, W)-2 g(\phi X, Y) g(\phi Z, W)\} \\
& -g(h(X, W), h(Y, Z))+g(h(X, Z), h(Y, W)) \tag{3.5}
\end{align*}
$$

for any $X, Y, Z, W \in \Gamma(T M)$. Now let

$$
\begin{aligned}
& \left\{e_{1}, e_{2}=\sec \theta T e_{1}, e_{3}, e_{4}=\sec \theta T e_{3}, \ldots, e_{2 p}=\sec \theta T e_{2 p-1}, e_{2 p+1}, e_{2 p+2}=T e_{2 p+1}\right. \\
& \left., \ldots, e_{2(p+q)-1}, e_{2(p+q)}=T e_{2(p+q)-1}, \xi=e_{2(p+q)+1)}\right\}
\end{aligned}
$$

be an orthonormal basis of $T_{M}(p)$ such that $e_{i}, 1 \leq i \leq 2 p$, are tangent to D^{θ} and $e_{j}, 2 p+1 \leq$ $j \leq 2(p+q)+1=n$, are tangent to D^{T}. Making use of (2.15) and (3.5), we have

$$
\begin{align*}
2 \tau & =\sum_{i, j=1}^{n-1} g\left(R\left(e_{i}, e_{j}\right) e_{i}, e_{j}\right)+2 \sum_{i=1}^{n-1} g\left(R\left(e_{i}, \xi\right) e_{i}, \xi\right)=-\frac{1}{4}(c+3) n(n-1) \\
& +\frac{1}{4}(c-1)\left\{2(n-1)-\sum_{i, j=1}^{n} g^{2}\left(\phi e_{i}, e_{j}\right)\right\}+n^{2}\|H\|^{2}-\|h\|^{2} \tag{3.6}
\end{align*}
$$

We note that in general, $g(\phi X, X) \neq 0$, for any unit vector $X \in \Gamma(T \bar{M})$, in almost paracontact metric manifolds contrary to complex manifolds. Whereas, we can construct that the paracontact metric structure ϕ such that $g(\phi X, X)=0$. If \bar{M} is $2 m+1$-dimensional almost paracontact metric manifold with an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{m}, e_{m+1}, \ldots, e_{2 m}, e_{2 m+1}=\xi\right\}$, then we can define ϕ by

$$
\phi\left(e_{i}\right)=e_{m+i} \text { and } \phi\left(e_{m+i}\right)=e_{i}, \quad i \in\{1,2, \ldots, m\}
$$

In this case, we can easily to see that $g\left(\phi e_{i}, e_{i}\right)=0$. Obviously, we observe

$$
g\left(\phi e_{1}, e_{2}\right)=g\left(T e_{1}, \sec \theta T e_{1}\right)=\cos \theta
$$

and

$$
g\left(\phi e_{2 p+1}, e_{2 p+2}\right)=g\left(T e_{2 p+1}, T e_{2 p+1}\right)=1
$$

from which

$$
g^{2}\left(\phi e_{i}, e_{i+1}\right)=\left\{\begin{array}{lll}
\cos ^{2} \theta & ; \quad \text { for } i=1,2, \ldots, 2 p-1 \\
1 & ; \quad \text { for } i=2 p+1, \ldots, 2(p+q)-1
\end{array}\right\}
$$

Thus we have

$$
\begin{equation*}
\sum_{i, j=1}^{n} g^{2}\left(\phi e_{i}, e_{j}\right)=2\left(p \cos ^{2} \theta+q\right) \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7), we reach at

$$
2 \tau=-\frac{1}{4}(c+3) n(n-1)+\frac{1}{4}(c-1)\left\{2(n-1)-2\left(p \cos ^{2} \theta+q\right)\right\}+n^{2}\|H\|^{2}-\|h\|^{2}
$$

or

$$
n^{2}\|H\|^{2}=2 \tau+\|h\|^{2}+\frac{1}{4}(c+3) n(n-1)+\frac{1}{2}(c-1)\left\{p \cos ^{2} \theta+q-(n-1)\right\}
$$

If we put

$$
\begin{align*}
\epsilon & =2 \tau-\frac{n^{2}(n-2)}{n-1}\|H\|^{2}+\left(\frac{c+3}{4}\right) n(n-1) \\
& +\left(\frac{c-1}{2}\right)\left\{p \cos ^{2} \theta+q-(n-1)\right\} \tag{3.8}
\end{align*}
$$

we obtain

$$
\begin{equation*}
n^{2}\|H\|^{2}=(n-1)\left(\|h\|^{2}+\epsilon\right) \tag{3.9}
\end{equation*}
$$

Let $p \in M, \pi \subset T_{M}(p), \operatorname{dim} \pi=2$ and π orthogonal to ξ, and invariant by T. We discusses two cases.
(i) The plane section π is tangent to D^{θ}. We suppose that $\pi=\operatorname{sp}\left\{e_{1}, e_{2}\right\}$ and we take $e_{n+1}=$ $H /\|H\|$. Relation (2.7) becomes

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=(n-1)\left\{\sum_{i, j=1}^{n} \sum_{r=n+1}^{2 m+1}\left(h_{i j}^{r}\right)^{2}+\epsilon\right\}
$$

or,

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=(n-1)\left\{\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}+\epsilon\right\}
$$

By using Lemma 2.1, we can infer

$$
\begin{equation*}
2 h_{11}^{n+1} h_{22}^{n+1} \geq \sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{i, j}^{n} \sum_{r=n+2}^{2 m+1}\left(h_{i j}^{r}\right)^{2}+\epsilon \tag{3.10}
\end{equation*}
$$

From the Gauss equation for $X=W=e_{1}$ and $Y=Z=e_{2}$, we reach

$$
\begin{align*}
K(\pi) & =g\left(R\left(e_{1}, e_{2}\right) e_{1}, e_{2}\right)=\left(\frac{c+3}{4}\right)\left\{g\left(e_{2}, e_{1}\right) g\left(e_{2}, e_{1}\right)-g\left(e_{1}, e_{1}\right) g\left(e_{2}, e_{2}\right)\right\} \\
& +\left(\frac{c-1}{4}\right)\left\{g\left(\phi e_{2}, e_{1}\right) g\left(\phi e_{1}, e_{2}\right)-g\left(\phi e_{1}, e_{1}\right) g\left(\phi e_{2}, e_{2}\right)\right. \\
& \left.-2 g\left(\phi e_{1}, e_{2}\right) g\left(\phi e_{1}, e_{2}\right)\right\}+g\left(h\left(e_{1}, e_{1}\right), h\left(e_{2}, e_{2}\right)\right)-g\left(h\left(e_{1}, e_{2}\right), h\left(e_{1}, e_{2}\right)\right) \\
& =-\left(\frac{c+3}{4}\right)-\left(\frac{c-1}{4}\right) g^{2}\left(\phi e_{2}, e_{1}\right)+\sum_{r=n+1}^{2 m+1}\left[h_{11}^{r} h_{22}^{r}-\left(h_{12}^{r}\right)^{2}\right] \\
& =-\left(\frac{c+3}{4}\right)-\left(\frac{c-1}{4}\right) \cos ^{2} \theta+\sum_{r=n+1}^{2 m+1}\left[h_{11}^{r} h_{22}^{r}-\left(h_{12}^{r}\right)^{2}\right] . \tag{3.11}
\end{align*}
$$

Taking account of (3.10) and (3.11), we obtain

$$
\begin{aligned}
K(\pi) & \geq-\left(\frac{c+3}{4}\right)-\left(\frac{c-1}{4}\right) \cos ^{2} \theta+\frac{1}{2} \sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{i, j=1}^{n} \sum_{r=n+2}^{2 m+1}\left(h_{i j}^{r}\right)^{2}+\frac{\epsilon}{2} \\
& +\sum_{r=n+2}^{2 m+1} h_{11}^{r} h_{22}^{r}-\sum_{r=n+1}^{2 m+1}\left(h_{12}^{r}\right)^{2} \\
& =-\left(\frac{c+3}{4}\right)-\left(\frac{c-1}{4}\right) \cos ^{2} \theta+\frac{1}{2} \sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i, j>2}\left(h_{i j}^{r}\right)^{2} \\
& +\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(h_{11}^{r}+h_{22}^{r}\right)^{2}+\sum_{j>2}\left[\left(h_{1 j}^{n+1}\right)^{2}+\left(h_{2 j}^{n+1}\right)^{2}\right]+\frac{\epsilon}{2}
\end{aligned}
$$

that is,

$$
\begin{equation*}
K(\pi) \geq-\left(\frac{c+3}{4}\right)-\left(\frac{c-1}{4}\right) \cos ^{2} \theta+\frac{\epsilon}{2} \tag{3.12}
\end{equation*}
$$

Substituting (3.8) into (3.12), we obtain (3.1).
In the same way, if the subspace π is tangent to D^{T}, we obtain (3.2).
If at any point $p \in M$, equalities in (3.1) and (3.2) hold, then inequalities in (3.10) and (3.12) become equalities. Thus we have

$$
\begin{aligned}
& h_{i j}^{n+1}=0, \quad i \neq j, \quad i, j>2 \\
& h_{i j}^{r}=0, \quad i \neq j, \quad r=n+1, \ldots, 2 m+1 \\
& h_{11}^{r}+h_{22}^{r}=0, \quad r=n+2, \ldots, 2 m+1 \\
& h_{1 j}^{n+1}=h_{2 j}^{n+1}=0, \quad j>2, \\
& h_{11}^{n+1}+h_{22}^{n+1}=h_{33}^{n+1}=\ldots h_{n n}^{n+1} .
\end{aligned}
$$

If we choose $\left\{e_{1}, e_{2}\right\}$ such that $h_{12}^{n+1}=0$ and we denoting $a=h_{11}^{r}, b=h_{22}^{r}, \mu=h_{33}^{n+1}=h_{44}^{n+1}=$ $\ldots=h_{n n}^{n+1}$, then the shape operators take the desired (3.3) and (3.4) forms.

Theorem 3.2. Let M be an $n=2(p+q)+$ 1-dimensional semi-slant submanifold of a $2 m+1$ dimensional paracontact metric space form \bar{M}. Then
i.) For any plane section π-invariant by T and tangent to D^{θ},

$$
\begin{align*}
\delta_{M} & \leq\left(\frac{n-2}{2}\right)\left(\frac{n^{2}}{n-1}\|H\|^{2}-\frac{(n+1)(c+3)}{4}\right) \\
& +\left(\frac{c-1}{4}\right)\left(n-1-(p-1) \cos ^{2} \theta-q\right) \tag{3.13}
\end{align*}
$$

and for any plane section π-invariant by T and tangent to D^{T}

$$
\begin{align*}
\delta_{M} & \leq\left(\frac{n-2}{2}\right)\left(\frac{n^{2}}{n-1}\|H\|^{2}-\frac{(n+1)(c+3)}{4}\right) \\
& +\left(\frac{c-1}{4}\right)\left(n-p \cos ^{2} \theta-q\right) \tag{3.14}
\end{align*}
$$

The equality case of inequalities (3.13) and (3.14) hold at a point $p \in M$ if and only if there exists an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of $T_{M}(p)$ and an orthonormal basis $\left\{e_{n+1}, e_{n+2}, \ldots, e_{2 m+1}\right\}$ of $T_{M}^{\perp}(p)$ such that the shape operators of M in $\bar{M}(c)$ at p have the (3.15) and (3.16) following forms;

$$
A_{n+1}=\left(\begin{array}{lll}
a & 0 & 0 \ldots 0 \tag{3.15}\\
0 & b & 0 \ldots 0 \\
0 & 0 & \ldots \mu I_{n-2}
\end{array}\right), \quad a+b=\mu
$$

and

$$
A_{e_{r}}=\left(\begin{array}{ccc}
h_{11}^{r} & h_{12}^{r} & 0 \ldots 0 \tag{3.16}\\
h_{12}^{r} & -h_{11}^{r} & 0 \ldots 0 \\
0 & 0 & \ldots 0_{n-2}
\end{array}\right), r \in\{n+2, \ldots, 2 m+1\}
$$

Example 3.3. Let M be a submanifold of \mathbb{R}^{9} with coordinates $\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}, t\right)$ given by

$$
\psi(u, w, v, s, t)=(u, o, w, o, v \cos \theta, v \sin \theta, s, 0, t)
$$

It is easy to see that the tangent bundle of M is spanned by the vectors

$$
e_{1}=\frac{\partial}{\partial x_{1}}, \quad e_{2}=\frac{\partial}{\partial x_{3}}, \quad e_{3}=\cos \theta \frac{\partial}{\partial y_{1}}+\sin \theta \frac{\partial}{\partial y_{2}}, \quad e_{4}=\frac{\partial}{\partial y_{3}}, \quad e_{5}=\frac{\partial}{\partial t}
$$

On the other hand, we can define the almost paracontact metric structure ϕ of \mathbb{R}^{9} by

$$
\phi\left(\frac{\partial}{\partial x_{i}}\right)=\frac{\partial}{\partial y_{i}}, \quad \phi\left(\frac{\partial}{\partial y_{i}}\right)=\frac{\partial}{\partial x_{i}}, \quad \phi\left(\frac{\partial}{\partial t}\right)=0,1 \leq i \leq 4, \quad \xi=\frac{\partial}{\partial t}, \quad \eta=d t
$$

Then for any vector field $X=\lambda_{i} \frac{\partial}{\partial x_{i}}+\mu_{i} \frac{\partial}{\partial y_{i}}+\nu \frac{\partial}{\partial t} \in \Gamma\left(\mathbb{R}^{9}\right)$, we can easily to see that ϕ satisfies (2.1). Thus $\phi(T M)$ is spanned by

$$
\phi e_{1}=\frac{\partial}{\partial y_{1}}, \quad \phi e_{2}=\frac{\partial}{\partial y_{3}}, \quad \phi e_{3}=\cos \theta \frac{\partial}{\partial x_{1}}+\sin \theta \frac{\partial}{\partial x_{2}}, \quad \phi e_{4}=\frac{\partial}{\partial x_{3}}, \quad \phi e_{5}=0 .
$$

Since $g\left(\phi e_{1}, e_{3}\right)=\cos \theta$ and $\phi e_{2}=e_{4}$, we can define $D^{\theta}=s p\left\{e_{1}, e_{3}\right\}$ and $D^{T}=s p\left\{e_{2}, e_{4}, e_{5}\right\}$. Thus M defines a 5 -dimensional semi-slant submanifold of \mathbb{R}^{9} with usual paracontact metric structure.

References

[1] A. Ali, W. A. M. Othman and C. Özel, Some inequalities for warped product pseudo-slant submanifolds of nearly Kenmotsu manifolds, J. of Inequalities and Appl. 2015, (2015) 291.
[2] B. Y. Chen, Mean curvature and shape operator of isometric immersions in real space forms, Glasgow Math. J., 38(1996) 87-97.
[3] B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math., 60(1993) 568-578.
[4] B. Y. Chen, Some new obstructions to minimal and Lagrange isometric immersions, Japan J. Math. (N.S), 26(2000) 105-127.
[5] D. Cioroboiu, and A. Oiaga, BY Chen inequalities for slant submanifolds in Sasakian space forms, Rendiconti del Circolo Matematico di Palermo, 52.3 (2003) 367-381.
[6] H. B. Pandey, and A. Kumar, Anti-Invariant Submanifolds of Almost Para Contact Manifolds, Indian J. Pure Math., 16 (6) (1985) 586-590.
[7] M. Atçeken, Warped product semi-slant submanifolds in Kenmotsu manifolds, Turk. J. of Math., 34 (3) (2010) 425-433.
[8] R. S. Gupta, B. Y. Chen's Inequalities for Bi-Slant Submanifolds in Cosymplectic Space Forms, Sarajevo Journal of Mathematics, 9(21) (2013) 117-128.
[9] S. S. Shukla, and P. K. Rao, B.Y. Chen Inequalities for Bi-Slant Submanifolds in Generalized Complex Space Forms, Journal of Nonlinear Sciences and its Applications, 3 (2010) 283-292.

Author information

Ümit Yıldırım ${ }^{1}$, Mehmet Atçeken ${ }^{1}$, Süleyman Dirik ${ }^{2},{ }^{1}$ Department of Mathematics, Gaziosmanpasa University, Tokat, Turkey, ${ }^{2}$ Department of Statistic, Amasya University, Amasya, Turkey.
E-mail: umit.yildirim@gop.edu.tr, mehmet.atceken@gop.edu.tr, suleyman.dirik@amasya.edu.tr

Received: July 13, 2016.
Accepted: May 14, 2017.

