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Abstract. In this paper we are interested in studying the existence of a First integral and to

the curves which are formed by the trajectories of the 2-dimensional differential systems of the

form {
x′ =

√
P (x, y) + xR(x,y)

S(x,y) ,

y′ =
√
Q (x, y) + yR(x,y)

S(x,y) ,

where P (x, y) , Q (x, y) , R (x, y) , S (x, y) are homogeneous polynomials of degree n, n, m, b
respectively. Concrete example exhibiting the applicability of our result is introduced.

1 Introduction

We consider two-dimensional autonomous systems of differential equations of the form
x′ =

dx

dt
= F (x, y) ,

y′ =
dy

dt
= G (x, y) .

(1.1)

where F (x, y) and G (x, y) are reals functions. There exist three main open problems in the

qualitative theory of real planar differential systems see [1],[8],[9] and [17], the distinction be-

tween a center and a focus, the determination of the number of limit cycles and their distribution

see [2] and [3], and the determination of its integrability.

System (1.1) is integrable on an open set W of R2 if there exists a non constant C1 function

H : W → R, called a �rst integral of the system on W , which is constant on the trajectories of

the system (1.1) contained in W, i.e. if

dH (x, y)

dt
=

∂H (x, y)

∂x
F (x, y) +

∂H (x, y)

∂y
G (x, y) ≡ 0 in the points of W.

Moreover, H = h is the general solution of this equation, where h is an arbitrary constant.

The importance for searching �rst integrals of a given system was already noted by Poincaré

see [18] in his discussion on a method to obtain polynomial or rational �rst integrals. One of

the classical tools in the classi�cation of all trajectories of a dynamical system is to �nd �rst

integrals. J. Giné and J. Llibre see [12] and [13] characterized a large classes of polynomial

differential systems in terms of the existence of �rst integrals. Llibre and al see [15] and [16]

Zhang see [19] studied the exact upper bound of algebraic limit cycles of polynomial differential

systems with the help of Darboux theory of integrability. For more details about �rst integral see

for instance see [4],[5],[7],[10],[11] and [14].
It is well known that for differential systems de�ned on the plane R2 the existence of a �rst

integral determines their phase portrait see [6].
In this paper we are intersted in studying the existence of a First integral and to the curves

which are formed by the trajectories of the 2-dimensional differential systems of the form{
x′ =

√
P (x, y) + xR(x,y)

S(x,y) ,

y′ =
√
Q (x, y) + yR(x,y)

S(x,y) ,
(1.2)
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where P (x, y) , Q (x, y) , R (x, y) , S (x, y) are homogeneous polynomials of degree n, n, m, b
respectively

We de�ne the trigonometric functions

f1 (θ) =
√
P (cos θ, sin θ) cos θ +

√
Q (cos θ, sin θ) sin θ, f2 (θ) = R(cos θ,sin θ)

S(cos θ,sin θ) , f3 (θ) =√
Q (cos θ, sin θ) cos θ − P (cos θ, sin θ) sin θ.

1.1 Main result

Our main result on the existence of a First integral and the curves which are formed by the

trajectories of the 2-dimensional differential systems (1.2) is the following.

Theorem 1.1. Consider a system (1.2), then the following statements hold.

(a) If f3 (θ) ̸= 0, λ ̸= 0, P (cos θ, sin θ) ≥ 0, Q (cos θ, sin θ) ≥ 0 and S (cos θ, sin θ) ̸= 0,
then system (1.2) has the �rst integral

H (x, y) =
(
x2 + y2

)λ
2 exp

(
−λ

∫ arctan
y
x

A (ω) dω

)
−

λ

∫ arctan
y
x

exp

(
−λ

∫ w

A (ω) dω

)
B (w) dw,

where A (θ) = f1(θ)
f3(θ)

, B (θ) = f2(θ)
f3(θ)

and λ = n
2
−m+ b− 1.

Moreover the curves which are formed by the trajectories of the differential system (1.2), are
written in Cartesian coordinates as

x2 + y2 =

 h exp
(
λ
∫ arctan

y
x A (ω) dω

)
+

λ exp
(
λ
∫ arctan

y
x A (ω) dω

) ∫ arctan
y
x exp

(
−λ
∫ w

A (ω) dω
)
B (w) dw

 2

λ

where h ∈ R.
(b) If f3 (θ) ̸= 0, λ = 0, P (cos θ, sin θ) ≥ 0, Q (cos θ, sin θ) ≥ 0 and S (cos θ, sin θ) ̸= 0,

then system (1.2) has the �rst integral

H (x, y) =
(
x2 + y2

)
exp

(
−
∫ arctan

y
x

(A (ω) +B (ω)) dω

)
.

Moreover the curves which are formed by the trajectories of the differential system (1.2), are
written in Cartesian coordinates as

x2 + y2 = h exp

(∫ arctan
y
x

(A (ω) +B (ω)) dω

)

where h ∈ R.
(c) If f3 (θ) = 0 for all θ ∈ R, then system (1.2) has the �rst integral H = y

x .
Moreover the curves which are formed by the trajectories of the differential system (1.2), are

written in Cartesian coordinates as y = hx where h ∈ R.

Proof. In order to prove our results we write the polynomial differential system (1.2) in polar

coordinates (r, θ) , de�ned by x = r cos θ and y = r sin θ, then system (1.2) becomes{
r′ = f1 (θ) r

n
2 + f2 (θ) rm−b+1,

θ′ = f3 (θ) r
n−2

2 ,
(1.3)

where the trigonometric functions f1 (θ) , f2 (θ) , f3 (θ) are given in introduction, r′ = dr
dt and

θ′ = dθ
dt

If f3 (θ) ̸= 0, λ ̸= 0, P (cos θ, sin θ) ≥ 0, Q (cos θ, sin θ) ≥ 0 and S (cos θ, sin θ) ̸= 0.
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Taking as new independent variable the coordinate θ, this differential system (1.3) writes

dr

dθ
= A (θ) r +B (θ) r1−λ, (1.4)

where A (θ) = f1(θ)
f3(θ)

, B (θ) = f2(θ)
f3(θ)

and λ = n
2
−m+ b − 1, which is a Bernoulli equation. By

introducing the standard change of variables ρ = rλ we obtain the linear equation

dρ

dθ
= λ (A (θ) ρ+B (θ)) . (1.5)

The general solution of linear equation (1.5) is

ρ (θ) = exp

(
λ

∫ θ

A (ω) dω

)(
α+ λ

∫ θ

exp

(
−λ

∫ w

A (ω) dω

)
B (w) dw

)
,

where α ∈ R, which has the �rst integral

H (x, y) =
(
x2 + y2

)λ
2 exp

(
−λ

∫ arctan
y
x

A (ω) dω

)
−

λ

∫ arctan
y
x

exp

(
−λ

∫ w

A (ω) dω

)
B (w) dw.

The curves H = h with h ∈ R, which are formed by trajectories of the differential system

(1.2), are written in Cartesian coordinates as

x2 + y2 =

 h exp
(
λ
∫ arctan

y
x A (ω) dω

)
+

λ exp
(
λ
∫ arctan

y
x A (ω) dω

) ∫ arctan
y
x exp

(
−λ
∫ w

A (ω) dω
)
B (w) dw

 2

λ

where h ∈ R.
Hence statement (a) of Theorem 1 is proved.

Suppose now that f3 (θ) ̸= 0, λ = 0, P (cos θ, sin θ) ≥ 0, Q (cos θ, sin θ) ≥ 0 and S (cos θ, sin θ) ̸=
0.

Taking as new independent variable the coordinate θ, this differential system (1.3) writes

dr

dθ
= (A (θ) +B (θ)) r, (1.6)

where A (θ) = f1(θ)
f3(θ)

, B (θ) = f2(θ)
f3(θ)

.

The general solution of equation (1.6) is

r (θ) = α exp

(∫ θ

(A (ω) +B (ω)) dω

)
,

where α ∈ R, which has the �rst integral

H (x, y) =
(
x2 + y2

) 1

2 exp

(
−
∫ arctan

y
x

(A (ω) +B (ω)) dω

)
.

The curves H = h with h ∈ R, which are formed by trajectories of the differential system

(1.2), are written in Cartesian coordinates as

x2 + y2 = h exp

(∫ arctan
y
x

(A (ω) +B (ω)) dω

)

where h ∈ R.
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Hence statement (b) of Theorem 1 is proved.

Assume now that f3 (θ) = 0 for all θ ∈ R, then from (1.3) it follows that θ′ = 0. So the

straight lines through the origin of coordinates of the differential system (1.2) are invariant by
the �ow of this system. Hence, y

x is a �rst integral of the system.

The curves H = h with h ∈ R
, which are formed by trajectories of the differential system (1.2), are written in Cartesian

coordinates as y = hx where h ∈ R
This completes the proof of statement (c) of Theorem 1. 2

2 Examples

The following example are given to illustrate our result

Example 1 If we take P (x, y) = x4y4 − 4x5y3 + 4x6y2, Q (x, y) = 4x4y4 + 4x5y3 + x6y2,
R (x, y) = x2 − xy and S (x, y) = x+ y, then system (1.2) reads{

x′ =
√
x4y4 − 4x5y3 + 4x6y2 + xx2−xy

x+y ,

y′ =
√
4x4y4 + 4x5y3 + x6y2 + y x2−xy

x+y ,
(2.1)

the planar system (2.1) in Polar coordinates (r, θ) becomes{
r′ = (sin 2θ) r3 + cos θ−sin θ

cos θ+sin θ r,

θ′ = 1

2
(sin 2θ) r2,

here f1 (θ) = sin 2θ, f2 (θ) =
cos θ−sin θ
cos θ+sin θ and f3 (θ) =

1

2
sin 2θ, then the planar system (2.1) has

the �rst integral

H (x, y) =
(
x2 + y2

)
exp

(
−4 arctan y

x

)
−∫ arctan

y
x

exp (−4w)
(

4 cosw − 4 sinw

(cosw + sinw) sin 2w

)
dw.

The curves H = h with h ∈ R, which are formed by trajectories of the differential system

(2.1), in Cartesian coordinates are written as

x2 + y2 = h exp
(
4 arctan

y

x

)
+

exp
(
4 arctan

y

x

)∫ arctan
y
x

exp (−4w)
(

4 cosw − 4 sinw

(cosw + sinw) sin 2w

)
dw,

where h ∈ R

3 Conclusion

The elementary method used in this paper seems to be fruitful to investigate more general planar

differential systems of ODEs in order to obtain explicit expression for a �rst integral and charac-

terizes its trajectories, this is a one of the classical tools in the classi�cation of all trajectories of

dynamical systems. In short our methods can be used to obtain rich integrable planar differential

systems, and to get the explicit expression for a �rst integral and characterizes its trajectories of

these systems.
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