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Abstract The aim of this paper is to study the concept of ordered (m,n) quasi-ideals in

ordered semigroups that are studied analogously to the concept of (m,n) quasi-ideals in semi-

groups considered by Ansari, Khan and Kaushik in 2009. Regular ordered semigroups are char-

acterized by their ordered (m,n) quasi-ideals and the fact that every ordered (m,n) quasi-ideal
of a regular ordered semigroup has the ordered (m,n) intersection property, i.e., the intersection
of an ordered m left ideal and an ordered n right ideal of an ordered semigroup.

1 Introduction and Preliminaries

The study of ordered semigroups began about 1950 by several authors, for example, Alimov [1],

Chehata [5] and Vinogradov [22]. The theory of different types of ideals in semigroups and in or-

dered semigroups was studied by several researches such as: In 1956, Steinfeld [18] introduced

the notion of quasi-ideals in semigroups. Steinfeld [19] gave some characterization of 0-minimal

quasi-ideals in semigroups. In 1963, Saitô [17] gave a catalog of all possible types of subsemi-

groups generated by regular pairs of ordered semigroups. In 1998, Kehayopulu [8] gave some

characterization of quasi-ideals and bi-ideals in completely regular ordered semigroups. Kehay-

opulu [7] gave some characterization of quasi-ideals in strongly regular ordered semigroups. In

2002, Cao [3] gave some characterization of quasi-ideals in regular ordered semigroups. Ke-

hayopulu, Ponizovskii and Tsingelis [9] studied bi-ideals in ordered semigroups and ordered

groups. In 2003, Kehayopulu, Ponizovskii and Tsingelis [10] proved that in commutative or-

dered semigroups with identity each maximal ideal is a prime ideal, the converse statement does

not hold, in general. In 2006, Lee and Lee [15] gave some characterizations of the intra-regular

ordered semigroups in terms of bi-ideals and quasi-ideals, bi-ideals and left ideals, bi-ideals and

right ideals of ordered semigroups. In 2008, Iampan [6] studied the concept of (0-)minimal

and maximal ordered quasi-ideals in ordered semigroups. In 2009, Kim [14] introduced and

characterized the notion of intuitionistic fuzzy semiprime ideals in ordered semigroups. Ansari,

Khan and Kaushik [2] characterized the notion of (m,n) quasi-ideals in semigroups. In 2010,

Khan, Khan and Hussain [12] characterized regular, left and right simple ordered semigroups

and completely regular ordered semigroups in terms of intuitionistic fuzzy left (resp. right) ide-

als. Tang and Xie [21] characterized ordered semigroups in which the radical of every ideal

(right ideal, bi-ideal) is an ordered subsemigroup (resp., ideal, right ideal, left ideal, bi-ideal,

interior ideal) by using some binary relations on an ordered semigroup. Xie and Tang [23] intro-

duced the concept of fuzzy generalized bi-ideals of ordered semigroups and characterized fuzzy

left ideals, fuzzy right ideals and fuzzy (generalized) bi-ideals in regular ordered semigroups.

In 2011, Zeb and Khan [24] introduced the concept of anti-fuzzy quasi-ideals in ordered semi-

groups and investigate the quasi-ideals of ordered semigroups in terms of anti-fuzzy quasi-ideals

and characterized left (resp. right) regular and completely regular ordered semigroups in terms of

anti-fuzzy quasi-ideals and semiprime anti-fuzzy quasi-ideals. In 2012, Mohanraj, Krisnaswamy

and Hema [16] introduced and characterized the notions of (∈,∈∨q)-fuzzy bi-ideals, (∈,∈ ∨q)-
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antifuzzy bi-ideals and (∈,∈ ∨ q)-antifuzzy bi-ideals of an ordered semigroup. Tang and Xie

[20] characterized fuzzy quasi-ideals of ordered semigroups, and introduced the notion of com-

pletely semiprime fuzzy quasi-ideals of ordered semigroups and characterized strongly regular

ordered semigroups in terms of completely semiprime fuzzy quasi-ideals. Khan, Sarmin, Khan

and Faizullah [13] introduced and characterized the concept of (∈,∈ ∨qk)-fuzzy quasi-ideals in
ordered semigroups. In 2013, Changphas [4] characterized 0-minimal (m,n)-ideals in ordered

semigroups.

The notion of quasi-ideals (some authors called an ordered quasi-ideal) play an important

role in studying the structure of ordered semigroups. Now, we know that the notion of ordered

(m,n) quasi-ideals is a generalization of ordered quasi-ideals in ordered semigroups. The main

purpose of this paper is to investigate some properties of ordered (m,n) quasi-ideals of ordered
semigroups which extends the results of Ansari, Khan and Kaushik [2].

Before going to prove the main results we need the following de�nitions that we use later.

An ordered semigroup (some authors called a po-semigroup) (S, ·,≤) is a poset (S,≤) at the
same time a semigroup (S, ·) such that: for any a, b ∈ S,

a ≤ b implies ac ≤ bc and ca ≤ cb for all c ∈ S.

If (S, ·,≤) is an ordered semigroup and A is a subsemigroup of S, then (A, ·,≤) is an ordered

semigroup. For convenience, we simply write S instead of (S, ·,≤). Let now S be an ordered

semigroup. For a subset H of S, we denote

(H] = {s ∈ S | s ≤ h for some h ∈ H}.

For nonempty subsets A and B of S, we denote

AB = {ab | a ∈ A and b ∈ B}.

Then, for nonempty subsets A,B and C of S. We have that (i) A(B ∩ C) ⊆ AB ∩ AC, and (ii)

A(B ∪ C) = AB ∪AC. A nonempty subset A of S is called an ordered left ideal of S if

(i) SA ⊆ A, and

(ii) (A] ⊆ A

an ordered right ideal of S if

(i) AS ⊆ A, and

(ii) (A] ⊆ A

an ordered ideal of S if A is both an ordered left ideal and an ordered right ideal of S. That is,

(i) SA ⊆ A and AS ⊆ A, and

(ii) (A] ⊆ A.

A subsemigroup B of S is called an ordered quasi-ideal of S if

(i) (SB] ∩ (BS] ⊆ B, and

(ii) (B] ⊆ B

an ordered m left ideal of S if

(i) SmB ⊆ B, and

(ii) (B] ⊆ B

an ordered n right ideal of S if

(i) BSn ⊆ B, and

(ii) (B] ⊆ B

an ordered (m,n) quasi-ideal of S if

(i) (SmB] ∩ (BSn] ⊆ B, and
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(ii) (B] ⊆ B.

We have the following lemma.

Lemma 1.1. [11] Let S be an ordered semigroup, and A and B subsets of S. Then the following

statements hold.

(i) A ⊆ (A].

(ii) ((A]] = (A].

(iii) If A ⊆ B, then (A] ⊆ (B].

(iv) (A ∩B] ⊆ (A] ∩ (B].

(v) (A ∪B] = (A] ∪ (B].

(vi) (A](B] ⊆ (AB].

(vii) ((A](B]] = (AB].

The following two lemmas are easy to verify, the proof will be omitted.

Lemma 1.2. Let S be an ordered semigroup and {Ai | i ∈ I} a nonempty family of subsemi-

groups of S. Then
∩

i∈I Ai = ∅ or
∩

i∈i Ai is a subsemigroup of S.

Lemma 1.3. Let S be an ordered semigroup and A a subsemigroup of S. Then An ⊆ A for all

positive integer n.

Proposition 1.4. Let S be an ordered semigroup, Q an ordered (m,n) quasi-ideal of S and A a

subsemigroup of S. Then A ∩Q = ∅ or A ∩Q is an ordered (m,n) quasi-ideal of A.

Proof. Suppose that A ∩ Q ̸= ∅. Since Q and A are subsemigroups of S, we have A ∩ Q is a

subsemigroup of S. Since A ∩Q ⊆ A, we have A ∩Q is a subsemigroup of A . Thus

(Am(A ∩Q)] ∩ ((A ∩Q)An] ∩A ⊆ A ∩ (AmQ] ∩ (QAn]

⊆ A ∩ (SmQ] ∩ (QSn]

⊆ A ∩Q

and

(A ∩Q] ∩A ⊆ A ∩ (A] ∩ (Q]

⊆ A ∩ (Q]

= A ∩Q.

Therefore, A ∩Q is an ordered (m,n) quasi-ideal of A.

Proposition 1.5. Let S be an ordered semigroup and {Qi | i ∈ I} a nonempty family of ordered

(m,n) quasi-ideals of S. Then
∩

i∈I Qi = ∅ or
∩

i∈i Qi is an ordered (m,n) quasi-ideal of S.

Proof. Suppose that
∩

i∈I Qi ̸= ∅. By Lemma 1.2, we have
∩

i∈I Qi is a subsemigroup of S. For
all i ∈ I , we have

(Sm(
∩

i∈IQi)] ∩ ((
∩

i∈IQi)Sn] ⊆ (smQi] ∩ (QiS
n] ⊆ Qi.

Thus (Sm(
∩

i∈IQi)] ∩ ((
∩

i∈IQi)Sn] ⊆
∩

i∈I Qi and (
∩

i∈IQi] ⊆
∩

i∈I(Qi] =
∩

i∈IQi. There-

fore,
∩

i∈IQi is an ordered (m,n) quasi-ideal of S.
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2 Ordered (m,n) Quasi-Ideals and Ordered (m,n) Intersection Property

In this section, we characterize ordered m left ideals and ordered n right ideals in ordered semi-

groups and investigate the ordered (m,n) intersection property of ordered (m,n) quasi-ideals in
ordered semigroups.

Theorem 2.1. Let S be an ordered semigroup. Then the following statements hold.

(i) If {Ai | i ∈ I} is a nonempty family of ordered m left ideals of S, then
∩

i∈I Ai = ∅ or∩
i∈I Ai is an ordered m left ideal of S.

(ii) If {Bi | i ∈ I} is a nonempty family of ordered n right ideals of S, then
∩

i∈I Bi = ∅ or∩
i∈I Bi is an ordered n right ideal of S.

Proof. (i) Assume that {Ai | i ∈ I} is a nonempty family of ordered m left ideals of S and

let
∩

i∈I Ai ̸= ∅. By Lemma 1.2, we have
∩

i∈I Ai is a subsemigroup of S. For all i ∈ I , we
have Sm(

∩
i∈I Ai) ⊆ SmAi ⊆ Ai. Thus S

m(
∩

i∈I Ai) ⊆
∩

i∈I Ai and (
∩

i∈I Ai] ⊆
∩

i∈I(Ai] =∩
i∈I Ai. Therefore,

∩
i∈I Ai is an ordered m left ideal of S.

(ii) In a similar way, we can prove that
∩

i∈I Bi is an ordered n right ideal of S.

Lemma 2.2. Let S be an ordered semigroup and Q a nonempty subset of S. Then the following

statements hold.

(i) (SmQ] is an ordered m left ideal of S.

(ii) (QSn] is an ordered n right ideal of S.

Proof. (i) By Lemma 1.3, we have that

(SmQ](SmQ] ⊆ ((SmQ)(SmQ)]

⊆ ((SmS)SmQ]

⊆ (S(SSm−1Q)]

= ((SS)(Sm−1Q)]

⊆ (S(Sm−1Q)]

= ((SSm−1)Q]

= (SmQ].

Thus (SmQ] is a subsemigroup of S. We see that

Sm(SmQ] ⊆ S(SSm−1Q]

= (S](SSm−1Q]

⊆ (S(SSm−1Q)]

= ((SS)(Sm−1Q)]

⊆ (S(Sm−1Q)]

= ((SSm−1)Q]

= (SmQ]

and ((SmQ]] = (SmQ]. Therefore, (SmQ] is an ordered m left ideal of S.
(ii) In a similar way, we can prove that (QSn] is an ordered n right ideal of S.

Lemma 2.3. Let S be an ordered semigroup. Then the following statements hold.

(i) Every ordered m left ideal is an ordered (m,n) quasi-ideal of S for all positive integer n.

(ii) Every ordered n right ideal is an ordered (m,n) quasi-ideal of S for all positive integer m.

Proof. (i) Suppose that A is an ordered m left ideal of S and let n be a positive integer. Then A
is a subsemigroup of S. Thus (SmA] ∩ (ASn] ⊆ (SmA] ⊆ (A] ⊆ A and (A] ⊆ A. Therefore, A
is an ordered (m,n) quasi-ideal of S for all positive integer n.
(ii) In a similar way, we can prove that every ordered n right ideal is an ordered (m,n) quasi-ideal
of S for all positive integer m.
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Theorem 2.4. Let S be an ordered semigroup, and A an ordered m left ideal and B an ordered

n right ideal of S. Then A ∩B = ∅ or A ∩B is an ordered (m,n) quasi-ideal of S.

Proof. Suppose that A ∩B ̸= ∅. Then A ∩B is a subsemigroup of S. Thus

(Sm(A ∩B)] ∩ ((A ∩B)Sn] ⊆ (SmA] ∩ (BSn]

⊆ (A] ∩ (B]

= A ∩B

and (A ∩B] ⊆ (A] ∩ (B] = A ∩B. Hence, A ∩B is an ordered (m,n) quasi-ideal of S.

De�nition 2.5. A subsemigroupQ of an ordered semigroup S has the ordered (m,n) intersection
property if Q is the intersection of an ordered m left ideal and an ordered n right ideal of S.

Theorem 2.6. Let S be an ordered semigroup and Q an ordered (m,n) quasi-ideal of S. Then
the following statements are equivalent.

(i) Q has the ordered (m,n) intersection property.

(ii) (Q ∪ SmQ] ∩ (Q ∪QSn] = Q.

(iii) (SmQ] ∩ (Q ∪QSn] ⊆ Q.

(iv) (Q ∪ SmQ] ∩ (QSn] ⊆ Q.

Proof. (i)⇒(ii) Assume that Q has the ordered (m,n) intersection property. Since Q ⊆ Q ∪
(SmQ] = (Q] ∪ (SmQ] = (Q ∪ SmQ] and Q ⊆ Q ∪ (QSn] = (Q] ∪ (QSn] = (Q ∪ QSn], we
have Q ⊆ (Q ∪ SmQ] ∩ (Q ∪QSn]. Since Q has the ordered (m,n) intersection property, there
exist an ordered m left ideal A and an ordered n right ideal B of S such that Q = A ∩ B. Thus

Q ⊆ A and Q ⊆ B, so (SmQ] ⊆ (SmA] ⊆ (A] = A and (QSn] ⊆ (BSn] ⊆ (B] = B. Thus

(Q∪SmQ] = (Q]∪(SmQ] = Q∪(SmQ] ⊆ A and (Q∪QSn] = (Q]∪(QSn] = Q∪(QSn] ⊆ B.

Hence, (Q ∪ SmQ] ∩ (Q ∪QSn] ⊆ A ∩B = Q. Therefore, (Q ∪ SmQ] ∩ (Q ∪QSn] = Q.

(ii)⇒(i) Assume that (Q∪SmQ]∩ (Q∪QSn] = Q. We shall show that (Q∪SmQ] is an ordered
m left ideal and (Q ∪ QSn] an ordered n right ideal of S. By Lemma 2.2, we have (SmQ] is
an ordered m left ideal and (QSn] an ordered n right ideal of S and so (SmQ] and (QSn] are
subsemigroups of S. We see that

(Q ∪ SmQ](Q ∪ SmQ] = (Q ∪ (SmQ])(Q ∪ (SmQ])

= QQ ∪ (SmQ]Q ∪Q(SmQ] ∪ (SmQ](SmQ]

= QQ ∪ (SmQ](Q] ∪ (S](SmQ] ∪ (SmQ](SmQ]

⊆ QQ ∪ (SmQQ] ∪ (SSmQ] ∪ (SmQSmQ]

⊆ Q ∪ (SmQ] ∪ (SmQ] ∪ (SmQ]

= Q ∪ (SmQ]

= (Q ∪ SmQ].

Thus (Q ∪ SmQ] is a subsemigroup of S. Now,

Sm(Q ∪ SmQ] = Sm(Q ∪ (SmQ])

= SmQ ∪ Sm(SmQ]

⊆ SmQ ∪ (SmQ] (by Lemma 2.2)

= (SmQ]

⊆ (Q] ∪ (SmQ]

= (Q ∪ SmQ]

and ((Q∪ SmQ]] = (Q∪ SmQ]. Hence, (Q∪ SmQ] is an orderedm left ideal of S. In a similar

way, we can prove that (Q∪QSn] is an ordered n right ideal of S. Therefore, Q has the ordered

(m,n) intersection property.
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(ii)⇒(iii) Assume that (Q∪SmQ]∩(Q∪QSn] = Q. Since (SmQ] ⊆ (Q]∪(SmQ] = (Q∪SmQ],
we have (SmQ]∩ (Q∪QSn] ⊆ (Q∪SmQ]∩ (Q∪QSn] = Q. Hence, (SmQ]∩ (Q∪QSn] ⊆ Q.

(iii)⇒(ii) Assume that (SmQ] ∩ (Q ∪ QSn] ⊆ Q. Since Q ⊆ Q ∪ (SmQ] = (Q ∪ SmQ] and
Q ⊆ Q ∪ (QSn] = (Q ∪ SmQ], we have Q ⊆ (Q ∪ SmQ] ∩ (Q ∩QSn]. Now,

(Q ∪ SmQ] ∩ (Q ∪QSn] = (Q ∪ (SmQ]) ∩ (Q ∪ (QSn])

= (Q ∩ (Q ∪ (QSn])) ∪ ((SmQ] ∩ (Q ∪QSn])

⊆ Q ∪Q

= Q.

Therefore, (Q ∪ SmQ] ∩ (Q ∪QSn] = Q
(ii)⇒(iv) The proof is almost similar to the proof of (ii)⇒(iii).

(iv)⇒(ii) The proof is almost similar to the proof of (iii)⇒(ii).

Lemma 2.7. Every ordered m left ideal and ordered n right ideal of an ordered semigroup have

the ordered (m,n) intersection property.

Proof. Let A be an ordered m left ideal and B an ordered n right ideal of an ordered semigroup

S. By Lemma 2.3, we have that A is an ordered (m,n) quasi-ideal of S. Now,

(SmA] ∩ (A ∪ASn] = (SmA] ∩ (A ∪ (ASn])

= ((SmA] ∩A) ∪ ((SmA] ∩ (ASn])

⊆ A ∪A

= A.

By Theorem 2.6, we have that A has the ordered (m,n) intersection property. Similarly, we can

prove that B has the ordered (m,n) intersection property.

Proposition 2.8. Let S be an ordered semigroup and Q an ordered (m,n) quasi-ideal of S. If

SmQ ⊆ QSn or QSn ⊆ SmQ, then Q has the ordered (m,n) intersection property.

Proof. Assume that SmQ ⊆ QSn. Then (SmQ] ⊆ (QSn]. Since Q is an ordered (m,n) quasi-
ideal of S, we have SmQ ⊆ (SmQ] = (SmQ] ∩ (QSn] ⊆ Q. Thus Q is an ordered m left ideal

of S. By Lemma 2.7, we have that Q has the ordered (m,n) intersection property. Similarly, we

can prove that Q has the ordered (m,n) intersection property.

3 Ordered (m,n) Quasi-Ideals in Regular Ordered Semigroups

We have investigated in the previous section that every ordered m left ideal and ordered n right

ideal of an ordered semigroup have the ordered (m,n) intersection property, but not for ordered
(m,n) quasi-ideals in ordered semigroups. In this section, we will prove that every ordered

(m,n) quasi-ideal of a regular ordered semigroup has the ordered (m,n) intersection property.

De�nition 3.1. An ordered semigroup S is called regular if for any x ∈ S there exists y ∈ S
such that x ≤ xyx.

Lemma 3.2. Let S be a regular ordered semigroup and A a nonempty subset of S. Then the

following statements hold.

(i) A ⊆ (SmA] for all positive integer m.

(ii) A ⊆ (ASn] for all positive integer n.

Proof. (i) Let x ∈ A. Since S is regular, there exists y ∈ S such that x ≤ xyx. Since xy ∈ S,
we have x ≤ xyx = (xy)x ∈ SA and so A ⊆ (SA]. Let m be a positive integer such that A ⊆
(SmA]. Then SA ⊆ S(SmA] = (S](SmA] ⊆ (S(SmA)] = (Sm+1A]. Therefore, A ⊆ (SmA]
for all positive integer m.

(ii) In a similar way, we can prove that A ⊆ (ASn] for all positive integer n.
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Theorem 3.3. Every ordered (m,n) quasi-ideal of a regular ordered semigroup has the ordered

(m,n) intersection property.

Proof. Let Q be an ordered (m,n) quasi-ideal of a regular ordered semigroup S. By Lemma

3.2, we haveQ ⊆ (QSn] and so (Q∪QSn] = Q∪ (QSn] = (QSn]. Thus (SmQ]∩ (Q∪QSn] =
(SmQ] ∩ (QSn] ⊆ Q. By Theorem 2.6, we have that Q has the ordered (m,n) intersection
property.

Theorem 3.4. Let S be a regular ordered semigroup and A a nonempty subset of S. Then A is

an ordered (m,n) quasi-ideal of S if and only if A = (SmA] ∩ (ASn].

Proof. Assume that A is an ordered (m,n) quasi-ideal of S. Then (SmA] ∩ (ASn] ⊆ A. By

Lemma 3.2, we have A ⊆ (SmA] and A ⊆ (ASn] and so A ⊆ (SmA] ∩ (ASn]. Therefore,

A = (SmA] ∩ (ASn].
Conversely, assume that A = (SmA] ∩ (ASn]. By Lemma 2.2, we have (SmA] is an ordered

m left ideal and (ASn] an ordered n right ideal of S. By Theorem 2.4, we have that A is an

ordered (m,n) quasi-ideal of S.
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