CHARACTERIZATIONS OF ORDERED SEMIGROUPS BY THE PROPERTIES OF THEIR ORDERED (m,n) QUASI-IDEALS

Suthin Thongrak and Aiyared Iampan

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 06F05; Secondary 20M12.

Keywords and phrases: Ordered semigroup, ordered (m, n) quasi-ideal, ordered (m, n) intersection property.

The authors would like to thank the editor and the anonymous referees for their useful comments and suggestions in this paper.

Abstract The aim of this paper is to study the concept of ordered (m, n) quasi-ideals in ordered semigroups that are studied analogously to the concept of (m, n) quasi-ideals in semi-groups considered by Ansari, Khan and Kaushik in 2009. Regular ordered semigroups are characterized by their ordered (m, n) quasi-ideals and the fact that every ordered (m, n) quasi-ideal of a regular ordered semigroup has the ordered (m, n) intersection property, i.e., the intersection of an ordered m left ideal and an ordered m right ideal of an ordered semigroup.

1 Introduction and Preliminaries

The study of ordered semigroups began about 1950 by several authors, for example, Alimov [1], Chehata [5] and Vinogradov [22]. The theory of different types of ideals in semigroups and in ordered semigroups was studied by several researches such as: In 1956, Steinfeld [18] introduced the notion of quasi-ideals in semigroups. Steinfeld [19] gave some characterization of 0-minimal quasi-ideals in semigroups. In 1963, Saitô [17] gave a catalog of all possible types of subsemigroups generated by regular pairs of ordered semigroups. In 1998, Kehayopulu [8] gave some characterization of quasi-ideals and bi-ideals in completely regular ordered semigroups. Kehayopulu [7] gave some characterization of quasi-ideals in strongly regular ordered semigroups. In 2002, Cao [3] gave some characterization of quasi-ideals in regular ordered semigroups. Kehayopulu, Ponizovskii and Tsingelis [9] studied bi-ideals in ordered semigroups and ordered groups. In 2003, Kehayopulu, Ponizovskii and Tsingelis [10] proved that in commutative ordered semigroups with identity each maximal ideal is a prime ideal, the converse statement does not hold, in general. In 2006, Lee and Lee [15] gave some characterizations of the intra-regular ordered semigroups in terms of bi-ideals and quasi-ideals, bi-ideals and left ideals, bi-ideals and right ideals of ordered semigroups. In 2008, Iampan [6] studied the concept of (0-)minimal and maximal ordered quasi-ideals in ordered semigroups. In 2009, Kim [14] introduced and characterized the notion of intuitionistic fuzzy semiprime ideals in ordered semigroups. Ansari, Khan and Kaushik [2] characterized the notion of (m, n) quasi-ideals in semigroups. In 2010, Khan, Khan and Hussain [12] characterized regular, left and right simple ordered semigroups and completely regular ordered semigroups in terms of intuitionistic fuzzy left (resp. right) ideals. Tang and Xie [21] characterized ordered semigroups in which the radical of every ideal (right ideal, bi-ideal) is an ordered subsemigroup (resp., ideal, right ideal, left ideal, bi-ideal, interior ideal) by using some binary relations on an ordered semigroup. Xie and Tang [23] introduced the concept of fuzzy generalized bi-ideals of ordered semigroups and characterized fuzzy left ideals, fuzzy right ideals and fuzzy (generalized) bi-ideals in regular ordered semigroups. In 2011, Zeb and Khan [24] introduced the concept of anti-fuzzy quasi-ideals in ordered semigroups and investigate the quasi-ideals of ordered semigroups in terms of anti-fuzzy quasi-ideals and characterized left (resp. right) regular and completely regular ordered semigroups in terms of anti-fuzzy quasi-ideals and semiprime anti-fuzzy quasi-ideals. In 2012, Mohanraj, Krisnaswamy and Hema [16] introduced and characterized the notions of $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy bi-ideals, $(\in, \in \vee q)$ -

antifuzzy bi-ideals and $(\overline{\in}, \overline{\in} \vee \overline{q})$ -antifuzzy bi-ideals of an ordered semigroup. Tang and Xie [20] characterized fuzzy quasi-ideals of ordered semigroups, and introduced the notion of completely semiprime fuzzy quasi-ideals of ordered semigroups and characterized strongly regular ordered semigroups in terms of completely semiprime fuzzy quasi-ideals. Khan, Sarmin, Khan and Faizullah [13] introduced and characterized the concept of $(\in, \in \vee q_k)$ -fuzzy quasi-ideals in ordered semigroups. In 2013, Changphas [4] characterized 0-minimal (m,n)-ideals in ordered semigroups.

The notion of quasi-ideals (some authors called an *ordered quasi-ideal*) play an important role in studying the structure of ordered semigroups. Now, we know that the notion of ordered (m,n) quasi-ideals is a generalization of ordered quasi-ideals in ordered semigroups. The main purpose of this paper is to investigate some properties of ordered (m,n) quasi-ideals of ordered semigroups which extends the results of Ansari, Khan and Kaushik [2].

Before going to prove the main results we need the following definitions that we use later.

An ordered semigroup (some authors called a po-semigroup) (S, \cdot, \leq) is a poset (S, \leq) at the same time a semigroup (S, \cdot) such that: for any $a, b \in S$,

$$a \leq b$$
 implies $ac \leq bc$ and $ca \leq cb$ for all $c \in S$.

If (S, \cdot, \leq) is an ordered semigroup and A is a subsemigroup of S, then (A, \cdot, \leq) is an ordered semigroup. For convenience, we simply write S instead of (S, \cdot, \leq) . Let now S be an ordered semigroup. For a subset S of S, we denote

$$(H] = \{ s \in S \mid s \le h \text{ for some } h \in H \}.$$

For nonempty subsets A and B of S, we denote

$$AB = \{ab \mid a \in A \text{ and } b \in B\}.$$

Then, for nonempty subsets A, B and C of S. We have that (i) $A(B \cap C) \subseteq AB \cap AC$, and (ii) $A(B \cup C) = AB \cup AC$. A nonempty subset A of S is called an *ordered left ideal* of S if

- (i) $SA \subseteq A$, and
- (ii) $(A] \subseteq A$

an ordered right ideal of S if

- (i) $AS \subseteq A$, and
- (ii) $(A] \subseteq A$

an ordered ideal of S if A is both an ordered left ideal and an ordered right ideal of S. That is,

- (i) $SA \subseteq A$ and $AS \subseteq A$, and
- (ii) $(A] \subseteq A$.

A subsemigroup B of S is called an ordered quasi-ideal of S if

- (i) $(SB] \cap (BS] \subseteq B$, and
- (ii) $(B] \subseteq B$

an ordered m left ideal of S if

- (i) $S^m B \subseteq B$, and
- (ii) $(B] \subseteq B$

an ordered n right ideal of S if

- (i) $BS^n \subseteq B$, and
- (ii) $(B] \subseteq B$

an ordered (m, n) quasi-ideal of S if

(i)
$$(S^m B] \cap (BS^n] \subseteq B$$
, and

П

(ii) $(B] \subseteq B$.

We have the following lemma.

Lemma 1.1. [11] Let S be an ordered semigroup, and A and B subsets of S. Then the following statements hold.

- (i) $A \subseteq (A]$.
- (ii) ((A)] = (A].
- (iii) If $A \subseteq B$, then $(A] \subseteq (B]$.
- (iv) $(A \cap B] \subseteq (A] \cap (B]$.
- (v) $(A \cup B] = (A] \cup (B]$.
- (vi) $(A](B] \subseteq (AB]$.
- (vii) ((A](B]] = (AB].

The following two lemmas are easy to verify, the proof will be omitted.

Lemma 1.2. Let S be an ordered semigroup and $\{A_i \mid i \in I\}$ a nonempty family of subsemigroups of S. Then $\bigcap_{i \in I} A_i = \emptyset$ or $\bigcap_{i \in i} A_i$ is a subsemigroup of S.

Lemma 1.3. Let S be an ordered semigroup and A a subsemigroup of S. Then $A^n \subseteq A$ for all positive integer n.

Proposition 1.4. Let S be an ordered semigroup, Q an ordered (m,n) quasi-ideal of S and A a subsemigroup of S. Then $A \cap Q = \emptyset$ or $A \cap Q$ is an ordered (m,n) quasi-ideal of A.

Proof. Suppose that $A \cap Q \neq \emptyset$. Since Q and A are subsemigroups of S, we have $A \cap Q$ is a subsemigroup of S. Since $A \cap Q \subseteq A$, we have $A \cap Q$ is a subsemigroup of A. Thus

$$(A^{m}(A \cap Q)] \cap ((A \cap Q)A^{n}] \cap A \subseteq A \cap (A^{m}Q] \cap (QA^{n}]$$
$$\subseteq A \cap (S^{m}Q] \cap (QS^{n}]$$
$$\subseteq A \cap Q$$

and

$$(A \cap Q] \cap A \subseteq A \cap (A] \cap (Q]$$
$$\subseteq A \cap (Q]$$
$$= A \cap Q.$$

Therefore, $A \cap Q$ is an ordered (m, n) quasi-ideal of A.

Proposition 1.5. Let S be an ordered semigroup and $\{Q_i \mid i \in I\}$ a nonempty family of ordered (m,n) quasi-ideals of S. Then $\bigcap_{i \in I} Q_i = \emptyset$ or $\bigcap_{i \in i} Q_i$ is an ordered (m,n) quasi-ideal of S.

Proof. Suppose that $\bigcap_{i \in I} Q_i \neq \emptyset$. By Lemma 1.2, we have $\bigcap_{i \in I} Q_i$ is a subsemigroup of S. For all $i \in I$, we have

$$(S^m(\bigcap_{i\in I}Q_i)]\cap ((\bigcap_{i\in I}Q_i)S^n]\subseteq (s^mQ_i]\cap (Q_iS^n]\subseteq Q_i.$$

Thus $(S^m(\bigcap_{i\in I}Q_i)]\cap ((\bigcap_{i\in I}Q_i)S^n]\subseteq \bigcap_{i\in I}Q_i$ and $(\bigcap_{i\in I}Q_i]\subseteq \bigcap_{i\in I}(Q_i]=\bigcap_{i\in I}Q_i$. Therefore, $\bigcap_{i\in I}Q_i$ is an ordered (m,n) quasi-ideal of S.

2 Ordered (m, n) Quasi-Ideals and Ordered (m, n) Intersection Property

In this section, we characterize ordered m left ideals and ordered n right ideals in ordered semigroups and investigate the ordered (m,n) intersection property of ordered (m,n) quasi-ideals in ordered semi-groups.

Theorem 2.1. Let S be an ordered semigroup. Then the following statements hold.

- (i) If $\{A_i \mid i \in I\}$ is a nonempty family of ordered m left ideals of S, then $\bigcap_{i \in I} A_i = \emptyset$ or $\bigcap_{i \in I} A_i$ is an ordered m left ideal of S.
- (ii) If $\{B_i \mid i \in I\}$ is a nonempty family of ordered n right ideals of S, then $\bigcap_{i \in I} B_i = \emptyset$ or $\bigcap_{i \in I} B_i$ is an ordered n right ideal of S.

Proof. (i) Assume that $\{A_i \mid i \in I\}$ is a nonempty family of ordered m left ideals of S and let $\bigcap_{i \in I} A_i \neq \emptyset$. By Lemma 1.2, we have $\bigcap_{i \in I} A_i$ is a subsemigroup of S. For all $i \in I$, we have $S^m(\bigcap_{i \in I} A_i) \subseteq S^m A_i \subseteq A_i$. Thus $S^m(\bigcap_{i \in I} A_i) \subseteq \bigcap_{i \in I} A_i$ and $(\bigcap_{i \in I} A_i] \subseteq \bigcap_{i \in I} (A_i] = \bigcap_{i \in I} A_i$. Therefore, $\bigcap_{i \in I} A_i$ is an ordered m left ideal of S.

(ii) In a similar way, we can prove that $\bigcap_{i \in I} B_i$ is an ordered n right ideal of S.

Lemma 2.2. Let S be an ordered semigroup and Q a nonempty subset of S. Then the following statements hold.

- (i) (S^mQ) is an ordered m left ideal of S.
- (ii) $(QS^n]$ is an ordered n right ideal of S.

Proof. (i) By Lemma 1.3, we have that

$$(S^{m}Q)(S^{m}Q) \subseteq ((S^{m}Q)(S^{m}Q))$$

$$\subseteq ((S^{m}S)S^{m}Q)$$

$$\subseteq (S(SS^{m-1}Q))$$

$$= ((SS)(S^{m-1}Q))$$

$$\subseteq (S(S^{m-1}Q))$$

$$= ((SS^{m-1}Q))$$

$$= (S^{m}Q).$$

Thus (S^mQ) is a subsemigroup of S. We see that

$$S^{m}(S^{m}Q) \subseteq S(SS^{m-1}Q)$$

$$= (S](SS^{m-1}Q)$$

$$\subseteq (S(SS^{m-1}Q))$$

$$= ((SS)(S^{m-1}Q))$$

$$\subseteq (S(S^{m-1}Q))$$

$$= ((SS^{m-1}Q))$$

$$= (S^{m}Q)$$

and $((S^mQ)] = (S^mQ]$. Therefore, (S^mQ) is an ordered m left ideal of S. (ii) In a similar way, we can prove that $(QS^n]$ is an ordered n right ideal of S.

Lemma 2.3. Let S be an ordered semigroup. Then the following statements hold.

(i) Every ordered m left ideal is an ordered (m, n) quasi-ideal of S for all positive integer n.

(ii) Every ordered n right ideal is an ordered (m, n) quasi-ideal of S for all positive integer m.

Proof. (i) Suppose that A is an ordered m left ideal of S and let n be a positive integer. Then A is a subsemigroup of S. Thus $(S^mA] \cap (AS^n] \subseteq (S^mA] \subseteq (A] \subseteq A$ and $(A] \subseteq A$. Therefore, A is an ordered (m,n) quasi-ideal of S for all positive integer n.

(ii) In a similar way, we can prove that every ordered n right ideal is an ordered (m, n) quasi-ideal of S for all positive integer m.

Theorem 2.4. Let S be an ordered semigroup, and A an ordered m left ideal and B an ordered n right ideal of S. Then $A \cap B = \emptyset$ or $A \cap B$ is an ordered (m, n) quasi-ideal of S.

Proof. Suppose that $A \cap B \neq \emptyset$. Then $A \cap B$ is a subsemigroup of S. Thus

$$(S^{m}(A \cap B)] \cap ((A \cap B)S^{n}] \subseteq (S^{m}A] \cap (BS^{n}]$$
$$\subseteq (A] \cap (B]$$
$$= A \cap B$$

and $(A \cap B] \subseteq (A] \cap (B] = A \cap B$. Hence, $A \cap B$ is an ordered (m, n) quasi-ideal of S.

Definition 2.5. A subsemigroup Q of an ordered semigroup S has the *ordered* (m, n) *intersection* property if Q is the intersection of an ordered m left ideal and an ordered n right ideal of S.

Theorem 2.6. Let S be an ordered semigroup and Q an ordered (m,n) quasi-ideal of S. Then the following statements are equivalent.

- (i) Q has the ordered (m, n) intersection property.
- $(ii) \ (Q \cup S^m Q] \cap (Q \cup QS^n] = Q.$
- (iii) $(S^mQ] \cap (Q \cup QS^n] \subseteq Q$.
- (iv) $(Q \cup S^m Q] \cap (QS^n] \subseteq Q$.

Proof. (i)⇒(ii) Assume that Q has the ordered (m,n) intersection property. Since $Q \subseteq Q \cup (S^mQ] = (Q] \cup (S^mQ] = (Q \cup S^mQ]$ and $Q \subseteq Q \cup (QS^n] = (Q] \cup (QS^n] = (Q \cup QS^n]$, we have $Q \subseteq (Q \cup S^mQ) \cap (Q \cup QS^n]$. Since Q has the ordered (m,n) intersection property, there exist an ordered m left ideal A and an ordered n right ideal B of S such that $Q = A \cap B$. Thus $Q \subseteq A$ and $Q \subseteq B$, so $(S^mQ) \subseteq (S^mA] \subseteq (A] = A$ and $(QS^n] \subseteq (BS^n] \subseteq (B] = B$. Thus $(Q \cup S^mQ) = (Q] \cup (S^mQ) = Q \cup (S^mQ) \subseteq A$ and $(Q \cup QS^n] = (Q] \cup (QS^n] = Q \cup (QS^n] \subseteq B$. Hence, $(Q \cup S^mQ) \cap (Q \cup QS^n] \subseteq A \cap B = Q$. Therefore, $(Q \cup S^mQ) \cap (Q \cup QS^n] = Q$. (ii)⇒(i) Assume that $(Q \cup S^mQ) \cap (Q \cup QS^n] = Q$. We shall show that $(Q \cup S^mQ)$ is an ordered M left ideal and $(Q \cup QS^n]$ an ordered M right ideal of M so M and so M and so M and so M and so M are subsemigroups of M. We see that

$$\begin{split} (Q \cup S^m Q](Q \cup S^m Q) &= (Q \cup (S^m Q])(Q \cup (S^m Q)) \\ &= QQ \cup (S^m Q]Q \cup Q(S^m Q) \cup (S^m Q)(S^m Q) \\ &= QQ \cup (S^m Q)(Q) \cup (S](S^m Q) \cup (S^m Q)(S^m Q) \\ &\subseteq QQ \cup (S^m QQ) \cup (SS^m Q) \cup (S^m QS^m Q) \\ &\subseteq Q \cup (S^m Q) \cup (S^m Q) \cup (S^m Q) \\ &= Q \cup (S^m Q) \\ &= Q \cup (S^m Q). \end{split}$$

Thus $(Q \cup S^m Q)$ is a subsemigroup of S. Now,

$$S^{m}(Q \cup S^{m}Q) = S^{m}(Q \cup (S^{m}Q])$$

$$= S^{m}Q \cup S^{m}(S^{m}Q]$$

$$\subseteq S^{m}Q \cup (S^{m}Q] \text{ (by Lemma 2.2)}$$

$$= (S^{m}Q]$$

$$\subseteq (Q] \cup (S^{m}Q]$$

$$= (Q \cup S^{m}Q)$$

and $((Q \cup S^m Q)] = (Q \cup S^m Q)$. Hence, $(Q \cup S^m Q)$ is an ordered m left ideal of S. In a similar way, we can prove that $(Q \cup QS^n)$ is an ordered n right ideal of S. Therefore, Q has the ordered (m,n) intersection property.

(ii) \Rightarrow (iii) Assume that $(Q \cup S^m Q] \cap (Q \cup QS^n] = Q$. Since $(S^m Q) \subseteq (Q) \cup (S^m Q) = (Q \cup S^m Q)$, we have $(S^m Q) \cap (Q \cup QS^n) \subseteq (Q \cup S^m Q) \cap (Q \cup QS^n) = Q$. Hence, $(S^m Q) \cap (Q \cup QS^n) \subseteq Q$. (iii) \Rightarrow (ii) Assume that $(S^m Q) \cap (Q \cup QS^n) \subseteq Q$. Since $Q \subseteq Q \cup (S^m Q) = (Q \cup S^m Q)$ and $Q \subseteq Q \cup (QS^n) = (Q \cup S^m Q)$, we have $Q \subseteq (Q \cup S^m Q) \cap (Q \cap QS^n)$. Now,

$$\begin{array}{lcl} (Q \cup S^mQ] \cap (Q \cup QS^n] & = & (Q \cup (S^mQ]) \cap (Q \cup (QS^n]) \\ & = & (Q \cap (Q \cup (QS^n])) \cup ((S^mQ] \cap (Q \cup QS^n]) \\ & \subseteq & Q \cup Q \\ & = & Q. \end{array}$$

Therefore, $(Q \cup S^m Q) \cap (Q \cup QS^n) = Q$

- (ii)⇒(iv) The proof is almost similar to the proof of (ii)⇒(iii).
- (iv)⇒(ii) The proof is almost similar to the proof of (iii)⇒(ii).

Lemma 2.7. Every ordered m left ideal and ordered n right ideal of an ordered semigroup have the ordered (m, n) intersection property.

П

Proof. Let A be an ordered m left ideal and B an ordered n right ideal of an ordered semigroup S. By Lemma 2.3, we have that A is an ordered (m, n) quasi-ideal of S. Now,

$$(S^{m}A] \cap (A \cup AS^{n}] = (S^{m}A] \cap (A \cup (AS^{n}])$$

$$= ((S^{m}A] \cap A) \cup ((S^{m}A] \cap (AS^{n}])$$

$$\subseteq A \cup A$$

$$= A$$

By Theorem 2.6, we have that A has the ordered (m, n) intersection property. Similarly, we can prove that B has the ordered (m, n) intersection property.

Proposition 2.8. Let S be an ordered semigroup and Q an ordered (m, n) quasi-ideal of S. If $S^mQ \subseteq QS^n$ or $QS^n \subseteq S^mQ$, then Q has the ordered (m, n) intersection property.

Proof. Assume that $S^mQ\subseteq QS^n$. Then $(S^mQ]\subseteq (QS^n]$. Since Q is an ordered (m,n) quasideal of S, we have $S^mQ\subseteq (S^mQ]=(S^mQ]\cap (QS^n]\subseteq Q$. Thus Q is an ordered m left ideal of S. By Lemma 2.7, we have that Q has the ordered (m,n) intersection property. Similarly, we can prove that Q has the ordered (m,n) intersection property. \Box

3 Ordered (m, n) Quasi-Ideals in Regular Ordered Semigroups

We have investigated in the previous section that every ordered m left ideal and ordered n right ideal of an ordered semigroup have the ordered (m,n) intersection property, but not for ordered (m,n) quasi-ideals in ordered semigroups. In this section, we will prove that every ordered (m,n) quasi-ideal of a regular ordered semigroup has the ordered (m,n) intersection property.

Definition 3.1. An ordered semigroup S is called *regular* if for any $x \in S$ there exists $y \in S$ such that $x \leq xyx$.

Lemma 3.2. Let S be a regular ordered semigroup and A a nonempty subset of S. Then the following statements hold.

- (i) $A \subseteq (S^m A]$ for all positive integer m.
- (ii) $A \subseteq (AS^n]$ for all positive integer n.

Proof. (i) Let $x \in A$. Since S is regular, there exists $y \in S$ such that $x \leq xyx$. Since $xy \in S$, we have $x \leq xyx = (xy)x \in SA$ and so $A \subseteq (SA]$. Let m be a positive integer such that $A \subseteq (S^mA]$. Then $SA \subseteq S(S^mA] = (S](S^mA] \subseteq (S(S^mA)] = (S^{m+1}A]$. Therefore, $A \subseteq (S^mA)$ for all positive integer m.

(ii) In a similar way, we can prove that $A \subseteq (AS^n]$ for all positive integer n.

Theorem 3.3. Every ordered (m, n) quasi-ideal of a regular ordered semigroup has the ordered (m, n) intersection property.

Proof. Let Q be an ordered (m,n) quasi-ideal of a regular ordered semigroup S. By Lemma 3.2, we have $Q \subseteq (QS^n]$ and so $(Q \cup QS^n] = Q \cup (QS^n] = (QS^n]$. Thus $(S^mQ] \cap (Q \cup QS^n] = (S^mQ] \cap (QS^n] \subseteq Q$. By Theorem 2.6, we have that Q has the ordered (m,n) intersection property.

Theorem 3.4. Let S be a regular ordered semigroup and A a nonempty subset of S. Then A is an ordered (m, n) quasi-ideal of S if and only if $A = (S^m A] \cap (AS^n]$.

Proof. Assume that A is an ordered (m,n) quasi-ideal of S. Then $(S^mA] \cap (AS^n] \subseteq A$. By Lemma 3.2, we have $A \subseteq (S^mA]$ and $A \subseteq (AS^n]$ and so $A \subseteq (S^mA] \cap (AS^n]$. Therefore, $A = (S^mA] \cap (AS^n]$.

Conversely, assume that $A = (S^m A] \cap (AS^n]$. By Lemma 2.2, we have $(S^m A]$ is an ordered m left ideal and $(AS^n]$ an ordered n right ideal of S. By Theorem 2.4, we have that A is an ordered (m, n) quasi-ideal of S.

References

- [1] N. G. Alimov, On ordered semigroups, Izv. Akad. Nauk SSSR. Ser. Mat. 14, 569–576 (1950).
- [2] M. A. Ansari, M. R. Khan, and J. P. Kaushik, A note on (*m*, *n*) quasi-ideals in semigroups, *Int. J. Math. Anal.* 3, 1853–1858 (2009).
- [3] Y. Cao, Characterizations of regular ordered semigroups by quasi-ideals, *Vietnam J. Math.* **30**, 239–250 (2002).
- [4] T. Changphas, On 0-minimal (m, n)-ideals in an ordered semigroup, *Int. J. Pure Appl. Math.* 89, 71–78 (2013).
- [5] C. G. Chehata, On an ordered semigroup, J. Lond. Math. Soc. 28, 353–356 (1953).
- [6] A. Iampan, Minimality and maximality of ordered quasi-ideals in ordered semigroups, *Asian-Eur. J. Math.* 1, 85–92 (2008).
- [7] N. Kehayopulu, A note on strongly regular ordered semigroups, Sci. Math. 1, 33–36 (1998).
- [8] N. Kehayopulu, On completely regular ordered semigroups, Sci. Math. 1, 27–32 (1998).
- [9] N. Kehayopulu, J. S. Ponizovskii, and M. Tsingelis, Bi-ideals in ordered semigroups and ordered groups, J. Math. Sci., New York 112, 4353–4354 (2002).
- [10] N. Kehayopulu, J. S. Ponizovskii, and M. Tsingelis, A note on maximal ideals in ordered semigroups, Algebra Discrete Math. 2, 32–35 (2003).
- [11] N. Kehayopulu and M. Tsingelis, On left regular ordered semigroups, *Southeast Asian Bull. Math.* 25, 609–615 (2002).
- [12] A. Khan, M. Khan, and S. Hussain, Intuitionistic fuzzy ideals in ordered semigroups, *J. Appl. Math. Inform.* **28**, 311–324 (2010).
- [13] A. Khan, N. H. Sarmin, F. M. Khan, and Faizullah, Semiprime (∈, ∈ ∨q_k)-fuzzy quasi-ideals in ordered semigroups, World Appl. Sci. J. 16, 1688–1698 (2012).
- [14] K. H. Kim, Intuitionistic fuzzy semiprime ideals of ordered semigroups, J. Chungcheong Math. Soc. 22, 235–243 (2009).
- [15] D. M. Lee and S. K. Lee, On intra-regular ordered semigroups, Kangweon-Kyungki Math. J. 14, 95–100 (2006).
- [16] G. Mohanraj, D. Krisnaswamy, and R. Hema, On $(\in, \in \lor q)$ anti fuzzy bi-ideals of ordered semigroup, *J. Hyperstruct.* 1, 31–45 (2012).
- [17] T. Saitô, Regular elements in an ordered semigroup, Pac. J. Math. 13, 263–295 (1963).
- [18] O. Steinfeld, Über die quasiideale von halbgruppen, Publ. Math. Debrecen 4, 262–275 (1956).
- [19] O. Steinfeld, Über die quasiideale von ringen, Acta Sci. Math. 17, 170–180 (1956).
- [20] J. Tang and X. Xie, On fuzzy quasi-ideals of ordered semigroups, J. Math. Res. Appl. 32, 589–598 (2012).
- [21] J. Tang and X. Y. Xie, On radicals of ideals of ordered semigroups, J. Math. Res. Expo. 30, 1048–1054 (2010).
- [22] A. A. Vinogradov, On the theory of ordered semigroups, *Ivanov. Gos. Ped. Inst. Uč. Zap. Fiz.-Mat. Nauki* **4**, 19–21 (1953).

- [23] X. Y. Xie and J. Tang, Regular ordered semigroups and intra-regular ordered semigroups in terms of fuzzy subsets, *Iran. J. Fuzzy Syst.* 7, 121–140 (2010).
- [24] A. Zeb and A. Khan, A study of anti-fuzzy quasi-ideals in ordered semigroups, *Quasigroups Relat. Syst.* 19, 359–368 (2011).

Author information

Suthin Thongrak and Aiyared Iampan, Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand.

E-mail: aiyared.ia@up.ac.th (Corresponding author)

Received: July 16, 2016.
Accepted: April 3, 2017