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Abstract In this paper we investigate some growth properties of entire functions on the basis

of generalized relative order (generalized relative lower order) as well as generalized relative

L∗-order (generalized relative L∗-lower order).

1 Introduction, De�nitions and Notations

Let f be an entire function de�ned in the open complex plane C. For entire f =
∞∑
n=0

anz
n

on |z| = r, the maximum modulus symbolized as Mf (r) is de�ned as max
|z|=r

|f (z) |. If f is non-

constant entire then Mf (r) is strictly increasing and continuous and therefore there exists its

inverse function M−1
f : (|f (0)| ,∞) → (0,∞) with lim

s→∞
M−1

f (s) = ∞.Moreover for another

entire function g,Mg (r) is too de�ned and the ratio
Mf (r)
Mg(r)

when r → ∞ is called the comparative

growth of f with respect to g in terms of their maximum moduli.

The order ρf of an entire function f which is classical in complex analysis is de�ned in

the following way:

ρf = lim sup
r→∞

log logMf (r)

log logMexp z (r)
= lim sup

r→∞

log[2] Mf (r)

log r
.

An entire function for which order and lower order are the same is said to be of regular

growth. Functions which are not of regular growth are said to be of irregular growth.

In this connection let us recall that Sato [4] de�ned the generalized order and general-

ized lower order of an entire function f , respectively, as follows:

ρ
[k]
f = lim sup

r→∞

log[k]Mf (r)

log r

(
respectively λ

[k]
f = lim inf

r→∞

log[k]Mf (r)

log r

)

where k is any positive integer and log[k] x = log
(
log[k−1] x

)
, k = 1, 2, 3, ... and log[0] x = x.

These de�nitions extended the order ρf and lower order λf of an entire function f since these

correspond to the particular cases ρ
[2]
f = ρf and λ

[2]
f = λf .

An entire function for which generalized order and generalized lower order are the

same is said to be of generalized regular growth. Functions which are not of generalized regular

growthh are said to be of generalized irregular growth.

Somasundaram and Thamizharasi [5] introduced the notions of L-order and L-lower

order for entire function where L ≡ L (r) is a positive continuous function increasing slowly

i.e.,L (ar) ∼ L (r) as r → ∞ for every positive constant `a'. The more generalized concept

for L-order and L-lower order for entire function are L∗-order and L∗-lower order respectively.

Their de�nitions are as follows:
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De�nition 1.1. [5] The L∗-order ρL
∗

f and the L∗-lower order λL∗

f of an entire function f are

de�ned as

ρL
∗

f = lim sup
r→∞

log[2] Mf (r)

log
[
reL(r)

] and λL∗

f = lim inf
r→∞

log[2]Mf (r)

log
[
reL(r)

] .
In the line of Sato [5] , Somasundaram and Thamizharasi [5] one can de�ne the gen-

eralized L∗-order ρ
[k]L∗

f and generalized L∗-lower orderλ
[k]L∗

f of an entire function f in the

following way:

De�nition 1.2. Let k be an integer ≥ 1. The generalized L∗-order ρ
[k]L∗

f and generalized L∗-

lower order λ
[k]L∗

f of an entire function f are de�ned as

ρ
[k]L∗

f = lim sup
r→∞

log[k] M (r, f)

log
[
reL(r)

] and λ
[k]L∗

f = lim inf
r→∞

log[k] M (r, f)

log
[
reL(r)

]
respectively.

An entire function for which generalized L∗ -order and generalized L∗ -lower order are

the same is said to be of generalized L∗ -regular growth. Functions which are not of generalized

L∗ -regular growth are said to be of generalized L∗-irregular growth.

For any two entire functions f and g, Bernal {[1], [2]} initiated the de�nition of relative

order ρg (f) of f with respect to g which keep away from comparing growth just with exp z to

�nd out order of entire functions as follows:

ρg (f) = inf {µ > 0 : Mf (r) < Mg (r
µ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1
g Mf (r)

log r
,

and of course this de�nition corresponds with the classical one [6] for g = exp z.
Analogously, one may de�ne the relative lower order of f with respect to g denoted by

λg (f) as

λg (f) = lim inf
r→∞

logM−1
g Mf (r)

log r
.

In the line of Somasundaram and Thamizharasi [5] and Bernal {[1], [2]}, one can de�ne

the relative L∗-order and relative L∗-lower order of an entire function in the following way :

De�nition 1.3. The relative L∗-order and relative L∗- lower order of an entire function f with

respect to another entire function g , denoted respectively by ρL
∗

g (f) and λL∗

g (f) are de�ned in

the following way

ρL
∗

g (f) = lim sup
r→∞

logM−1
g Mf (r)

log
[
reL(r)

] and λL∗

g (f) = lim inf
r→∞

logM−1
g Mf (r)

log
[
reL(r)

] .

Lahiri and Banerjee [3] gave a more generalized concept of relative order in the follow-

ing way:

De�nition 1.4. [3] If k ≥ 1 is a positive integer, then the k- th generalized relative order of f

with respect to g, denoted by ρ
[k]
g (f) is de�ned by

ρ[k]g (f) = inf
{
µ > 0 : Mf (r) < Mg

(
exp[k−1] rµ

)
for all r > r0 (µ) > 0

}
= lim sup

r→∞

log[k] M−1
g Mf (r)

log r
.

Clearly ρ1g (f) = ρg (f) and ρ1exp z (f) = ρf .
Likewise one can de�ne the generalized relative lower order of f with respect to g denoted

by λ
[k]
g (f) as

λ[k]
g (f) = lim inf

r→∞

log[k]M−1
g Mf (r)

log r
.



324 Sanjib Kumar Datta and Tanmay Biswas

An entire function for which generalized relative order and generalized relative lower

order are the same is said to be of generalized relative regular growth. Functions which are not

of generalized relative regular growth are said to be of generalized relative irregular growth.

Similarly in the line of Somasundaram and Thamizharasi [5], Lahiri and Banerjee [3],

one can de�ne the generalized relative L∗-order and generalized relative L∗-lower order of an

entire function in the following way :

De�nition 1.5. Let k be an integer ≥ 1. The generalized relative L∗-order and generalized

relative L∗- lower order of an entire function f with respect to another entire function g , denoted

respectively by ρ
[k]L∗

g (f) and λ
[k]L∗

g (f) are de�ned in the following way

ρ[k]L
∗

g (f) = lim sup
r→∞

log[k] M−1
g Mf (r)

log
[
reL(r)

] and λ[k]L∗

g (f) = lim inf
r→∞

log[k] M−1
g Mf (r)

log
[
reL(r)

] .

An entire function for which generalized relative L∗ -order and generalized relative L∗

-lower order are the same is said to be of generalized relative L∗ -regular growth. Functions

which are not of generalized relative L∗ -regular growth are said to be of generalized relative

L∗-irregular growth.

In this paper we have established some comparative growth properties of entire functions

on the basis of generalized relative order (generalized relative lower order) as well as general-

ized relative L∗- order (generalized relative L∗-lower order). We do not explain the standard

de�nitions and notations in the theory of entire function as those are available in [7].

2 Main Results

In this section we present the main results of the paper.

Theorem 2.1. Let f , g and h be any three entire functions such that 0 ≤ λ
[k]L∗

h (f) ≤ ρ
[k]L∗

h (f) <

∞ and 0 ≤ λ
[k]
h (g) ≤ ρ

[k]
h (g) < ∞ where k is an integer ≥ 1. Then

λ
[k]L∗

h (f)

ρ
[k]
h (g)

≤ λL∗

g (f) ≤ min

{
λ
[k]L∗

h (f)

λ
[k]
h (g)

,
ρ
[k]L∗

h (f)

ρ
[k]
h (g)

}

≤ max

{
λ
[k]L∗

h (f)

λ
[k]
h (g)

,
ρ
[k]L∗

h (f)

ρ
[k]
h (g)

}
≤ ρL

∗

g (f) ≤
ρ
[k]L∗

h (f)

λ
[k]
h (g)

.

Proof. From the de�nitions of ρ
[k]L∗

h (f) and λ
[k]L∗

h (f) , we have for all suf�ciently large values

of r that

Mf (r) ≤ Mh

[
exp[k]

{(
ρ
[k]L∗

h (f) + ε
)
log
[
reL(r)

]}]
, (2.1)

Mf (r) ≥ Mh

[
exp[k]

{(
λ
[k]L∗

h (f)− ε
)
log
[
reL(r)

]}]
(2.2)

and also for a sequence of values of r tending to in�nity, we get that

Mf (r) ≥ Mh

[
exp[k]

{(
ρ
[k]L∗

h (f)− ε
)
log
[
reL(r)

]}]
, (2.3)

Mf (r) ≤ Mh

[
exp[k]

{(
λ
[k]L∗

h (f) + ε
)
log
[
reL(r)

]}]
. (2.4)

Similarly from the de�nitions of ρ
[k]
h (g) and λ

[k]
h (g) , it follows for all suf�ciently large values

of r that

M−1
h Mg (r) ≤ exp[k]

{(
ρ
[k]
h (g) + ε

)
log r

}
i.e., Mg (r) ≤ Mh

[
exp[k]

{(
ρ
[k]
h (g) + ε

)
log r

}]
i.e., Mh (r) ≥ Mg

exp
 log[k] r(

ρ
[k]
h (g) + ε

)
 , (2.5)
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M−1
h Mg (r) ≥ exp[k]

{(
λ
[k]
h (g)− ε

)
log r

}
i.e., Mh (r) ≤ Mg

exp
 log[k] r(

λ
[k]
h (g)− ε

)
 (2.6)

and for a sequence of values of r tending to in�nity, we obtain that

M−1
h Mg (r) ≥ exp[k]

{(
ρ
[k]
h (g)− ε

)
log r

}
i.e. Mh (r) ≤ Mg

exp
 log[k] r(

ρ
[k]
h (g)− ε

)
 , (2.7)

M−1
h Mg (r) ≤ exp[k]

{(
λ
[k]
h (g) + ε

)
log r

}
i.e., Mh (r) ≥ Mg

exp
 log[k] r(

λ
[k]
h (g) + ε

)
 . (2.8)

Now from (2.3) and in view of (2.5) , we get for a sequence of values of r tending to in�nity that

M−1
g Mf (r) ≥ M−1

g Mh

[
exp[k]

{(
ρ
[k]L∗

h (f)− ε
)
log
[
reL(r)

]}]

i.e., M−1
g Mf (r) ≥ M−1

g Mg

exp
 log[k] exp[k]

{(
ρ
[k]L∗

h (f)− ε
)
log
[
reL(r)

]}(
ρ
[k]
h (g) + ε

)


i.e., logM−1
g Mf (r) ≥

(
ρ
[k]L∗

h (f)− ε
)

(
ρ
[k]
h (g) + ε

) log r

i.e.,
logM−1

g Mf (r)

log r
≥

(
ρ
[k]L∗

h (f)− ε
)

(
ρ
[k]
h (g) + ε

) .

As ε > 0 is arbitrary, it follows that

ρL
∗

g (f) ≥
ρ
[k]L∗

h (f)

ρ
[k]
h (g)

. (2.9)

Analogously from (2.2) and in view of (2.8) , it follows for a sequence of values of r tending to

in�nity that

M−1
g Mf (r) ≥ M−1

g Mh

[
exp[k]

{(
λ
[k]L∗

h (f)− ε
)
log
[
reL(r)

]}]

i.e., M−1
g Mf (r) ≥ M−1

g Mg

exp
 log[k] exp[k]

{(
λ
[k]L∗

h (f)− ε
)
log
[
reL(r)

]}(
λ
[k]
h (g) + ε

)


i.e., logM−1
g Mf (r) ≥

(
λ
[k]L∗

h (f)− ε
)

(
λ
[k]
h (g) + ε

) log r

i.e.,
logM−1

g Mf (r)

log r
≥

(
λ
[k]L∗

h (f)− ε
)

(
λ
[k]
h (g) + ε

) .
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Since ε (> 0) is arbitrary, we get from above that

ρL
∗

g (f) ≥
λ
[k]L∗

h (f)

λ
[k]
h (g)

. (2.10)

Again in view of (2.6) , we have from (2.1) for all suf�ciently large values of r that

M−1
g Mf (r) ≤ M−1

g Mh

[
exp[k]

{(
ρ
[k]L∗

h (f) + ε
)
log
[
reL(r)

]}]

i.e., M−1
g Mf (r) ≤ M−1

g Mg

exp
 log[k] exp[k]

{(
ρ
[k]L∗

h (f) + ε
)
log
[
reL(r)

]}(
λ
[k]
h (g)− ε

)


i.e., logM−1
g Mf (r) ≤

(
ρ
[k]L∗

h (f) + ε
)

(
λ
[k]
h (g)− ε

) log r

i.e.,
logM−1

g Mf (r)

log r
≤

(
ρ
[k]L∗

h (f) + ε
)

(
λ
[k]
h (g)− ε

) .

Since ε (> 0) is arbitrary, we obtain that

ρL
∗

g (f) ≤
ρ
[k]L∗

h (f)

λ
[k]
h (g)

. (2.11)

Again from (2.2) and in view of (2.5) , it follows for all suf�ciently large values of r that

M−1
g Mf (r) ≥ M−1

g Mh

[
exp[k]

{(
λ
[k]L∗

h (f)− ε
)
log
[
reL(r)

]}]

i.e., M−1
g Mf (r) ≥ M−1

g Mg

exp
 log[k] exp[k]

{(
λ
[k]L∗

h (f)− ε
)
log
[
reL(r)

]}(
ρ
[k]
h (g) + ε

)


i.e., logM−1
g Mf (r) ≥

(
λ
[k]L∗

h (f)− ε
)

(
ρ
[k]
h (g) + ε

) log r

i.e.,
logM−1

g Mf (r)

log r
≥

(
λ
[k]L∗

h (f)− ε
)

(
ρ
[k]
h (g) + ε

) .

Since ε (> 0) is arbitrary, we get from above that

λL∗

g (f) ≥
λ
[k]L∗

h (f)

ρ
[k]
h (g)

. (2.12)

Also in view of (2.7) , we get from (2.1) for a sequence of values of r tending to in�nity that

M−1
g Mf (r) ≤ M−1

g Mh

[
exp[k]

{(
ρ
[k]L∗

h (f) + ε
)
log
[
reL(r)

]}]

i.e., M−1
g Mf (r) ≤ M−1

g Mg

exp
 log[k] exp[k]

{(
ρ
[k]L∗

h (f) + ε
)
log
[
reL(r)

]}(
ρ
[k]
h (g)− ε

)


i.e., logM−1
g Mf (r) ≤

(
ρ
[k]L∗

h + ε
)

(
ρ
[k]
h (g)− ε

) log r
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i.e.,
logM−1

g Mf (r)

log r
≤

(
ρ
[k]L∗

h + ε
)

(
ρ
[k]
h (g)− ε

) .

Since ε (> 0) is arbitrary, we get from above that

λL∗

g (f) ≤
ρ
[k]L∗

h

ρ
[k]
h (g)

. (2.13)

Similarly from (2.4) and in view of (2.6) , it follows for a sequence of values of r tending to

in�nity that

M−1
g Mf (r) ≤ M−1

g Mh

[
exp[k]

{(
λ
[k]L∗

h (f) + ε
)
log
[
reL(r)

]}]

i.e., M−1
g Mf (r) ≤ M−1

g Mg

exp
 log[k] exp[k]

{(
λ
[k]L∗

h (f) + ε
)
log
[
reL(r)

]}(
λ
[k]
h (g)− ε

)


i.e., logM−1
g Mf (r) ≤

(
λ
[k]L∗

h + ε
)

(
λ
[k]
h (g)− ε

) log r

i.e.,
logM−1

g Mf (r)

log r
≤

(
λ
[k]L∗

h + ε
)

(
λ
[k]
h (g)− ε

) .

As ε (> 0) is arbitrary, we obtain from above that

λL∗

g (f) ≤
λ
[k]L∗

h

λ
[k]
h (g)

. (2.14)

The theorem follows from (2.9) , (2.10) , (2.11) , (2.12) , (2.13) and (2.14) .

In view of Theorem 2.1, one can easily deduce the following corollaries:

Corollary 2.2. Let f , g and h be any three entire functions such that 0 ≤ λ
[k]L∗

h (f) = ρ
[k]L∗

h (f) <

∞ and 0 ≤ λ
[k]
h (g) ≤ ρ

[k]
h (g) < ∞ where k is an integer ≥ 1. Then

λL∗

g (f) =
ρ
[k]L∗

h (f)

ρ
[k]
h (g)

and ρL
∗

g (f) =
ρ
[k]L∗

h (f)

λ
[k]
h (g)

.

Corollary 2.3. Let f , g and h be any three entire functions such that 0 ≤ λ
[k]L∗

h (f) ≤ ρ
[k]L∗

h (f) <

∞ and 0 ≤ λ
[k]
h (g) = ρ

[k]
h (g) < ∞ where k is an integer ≥ 1. Then

λL∗

g (f) =
λ
[k]L∗

h (f)

ρ
[k]
h (g)

and ρL
∗

g (f) =
ρ
[k]L∗

h (f)

ρ
[k]
h (g)

.

Corollary 2.4. Let f , g and h be any three entire functions such that 0 ≤ λ
[k]L∗

h (f) = ρ
[k]L∗

h (f) <

∞ and 0 ≤ λ
[k]
h (g) = ρ

[k]
h (g) < ∞ where k is an integer ≥ 1. Then

λL∗

g (f) = ρL
∗

g (f) =
ρ
[k]L∗

h (f)

ρ
[k]
h (g)

.
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Corollary 2.5. Let f , g and h be any three entire functions such that 0 ≤ λ
[k]L∗

h (f) = ρ
[k]L∗

h (f) <

∞ and 0 ≤ λ
[k]
h (g) = ρ

[k]
h (g) < ∞ where k is an integer ≥ 1.Also suppose that ρ

[k]L∗

h (f) =

ρ
[k]
h (g). Then

λL∗

g (f) = ρL
∗

g (f) = 1 .

Corollary 2.6. Let f and h be any two entire functions such that 0 ≤ λ
[k]L∗

h (f) ≤ ρ
[k]L∗

h (f) <
∞. Then for any entire function g,

(i) λL∗

g (f) = ∞ when ρ
[k]
h (g) = 0 ,

(ii) ρL
∗

g (f) = ∞ when λ
[k]
h (g) = 0 ,

(iii) λL∗

g (f) = 0 when ρ
[k]
h (g) = ∞

and

(iv) ρL
∗

g (f) = ∞ when λ
[k]
h (g) = ∞,

where k is an integer ≥ 1.

Corollary 2.7. Let g and h be any two entire functions such that 0 ≤ λ
[k]
h (g) ≤ ρ

[k]
h (g) < ∞.

Then for any entire function f,

(i) ρL
∗

g (f) = 0 when ρ
[k]L∗

h (f) = 0 ,

(ii) λL∗

g (f) = 0 when λ
[k]L∗

h (f) = 0 ,

(iii) ρL
∗

g (f) = ∞ when ρ
[k]L∗

h (f) = ∞

and

(iv) λL∗

g (f) = ∞ when λ
[k]L∗

h (f) = ∞ ,

where k is an integer ≥ 1.
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