The L^{p}-function over the product of the boundaries of the Hyperbolic spaces.

Fouzia El Wassouli
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 32M15, 32A45, 30E20, 33C60; Secondary 43A90, 32A36.
Keywords and phrases: Hypergeometric function, Hyperbolic spaces, hyperfunctions, Poisson transform and L^{p}-functions.

Abstract

Let $B\left(\mathbb{F}^{n}\right)$ be the hyperbolic space over $\mathbb{F}(\mathbb{F}$ being the field of real \mathbb{R}, or complex \mathbb{C} or the quaternions $\mathbb{H})$ and $\partial B\left(\mathbb{F}^{n}\right)$ its boundary. We give a necessary and sufficient conditions on the Poisson transform $P_{\lambda} f$ of an element $f \in$ $A^{\prime}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$ for f to be in $L^{p}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right), 2 \leq p<\infty$, where $A^{\prime}\left(\partial B\left(\mathbb{F}^{n}\right) \times\right.$ $\left.\partial B\left(\mathbb{F}^{n}\right)\right)$ is the space of all hyperfunctions on $\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)$.

1 Introduction and statement of main result.

In classical harmonic function theory, it is well-known that the Poisson integral of complexvalued integrable function defined on the unit circle $S=\{z \in \mathbb{C}, \quad|z|=1\}$ of the complex plane \mathbb{C} determines an harmonic functions on the corresponding unit disk $D=\{z \in \mathbb{C}, \quad|z|<$ 1\}. Namely, if $f(z)$ is a bounded harmonic function on D; then almost everywhere on the circle S it has radial boundary values

$$
\lim _{r \longrightarrow 1} f\left(r e^{i \alpha}\right)=\varphi\left(e^{i \alpha}\right)
$$

and the function f can be expressed in terms of φ with the help of the well-known Poisson transformation

$$
f\left(r e^{i \alpha}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-r^{2}}{1-2 \cos (\alpha-\beta)+r^{2}} \varphi\left(e^{i \beta}\right) d \beta
$$

This transformation was generalized first to classical bounded domains and next to Riemannian symmetric spaces $X=G / K$, where G is a non-compact semi-simple Lie group, and K is its a maximal compact subgroup. Not only harmonic functions are considered, but also functions that are eigenfunctions of the algebra of G-invariant differential operators on $X=G / K$ (see [3], [4], [5]).

Furthermore, in rank one symmetric spaces of non compact type, the Poisson transform appears naturally through the Fourier-Helgason transform in the L^{2}-Plancherel formula of the LaplaceBeltrami operator on $X=G / K$.
It is of great interest to look an analogue concrete a description of the range of the Poisson transform of L^{p}-functions on $X \times X, 1<p<\infty$, and moreover on the product $E \times E$ of line bundle E over X
Below we have to deal the particular case of the unit ball $B\left(\mathbb{F}^{n}\right)$. Mainly, the aim of this paper is \star to give the necessary and sufficient condition on the Poisson transform $P_{\lambda} f\left(\lambda \in \mathbb{R}^{*}\right)$ of an element f in the space $A^{\prime}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$ for f to be in $L^{p}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right), p \in[2, \infty[$. \star to extend in a unified manner the result in [2] to the classical hyperboplic spaces $B\left(\mathbb{F}^{n}\right)$.

The main result of this paper are the following theorems.
Theorem 1.1. Let $\lambda \in \mathbb{R}^{*}$. Then,
(i) For every $F=P_{\lambda} f$ with $f \in L^{2}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$, we have

$$
\|F\|_{\lambda, 2}^{2}=\sup _{0 \leq r_{1}, r_{2}<1}\left(1-r_{1}^{2}\right)^{-\frac{\sigma}{2}}\left(1-r_{2}^{2}\right)^{-\frac{\sigma}{2}} \int_{\partial B\left(\mathbb{F}^{n}\right)} \int_{\partial B\left(\mathbb{F}^{n}\right)}\left|F\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right)\right|^{2} d \theta_{1} d \theta_{2}<\infty,
$$

where $\sigma=\frac{d}{2}(n+1)-1$ and $d=\operatorname{dim}_{\mathbb{R}} \mathbb{F}$.
(ii) Let $f \in A^{\prime}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$. such that $F=P_{\lambda} f$ satisfies $\|F\|_{\lambda, 2}<\infty$. Then f belongs to $L^{2}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$.
Moreover, there exist positive constants γ_{1} and $\gamma_{2}(\lambda)$ such that for every $f \in L^{2}\left(\partial B\left(\mathbb{F}^{n}\right) \times\right.$ $\partial B\left(\mathbb{F}^{n}\right)$) we have the following estimates:

$$
\begin{equation*}
\gamma_{1}|C(\lambda)|^{2} \mid f\left\|_{L^{2}} \leq\right\| P_{\lambda} f\left\|_{\lambda, 2} \leq \gamma_{2}(\lambda)\right\| f \|_{L^{2}} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
C(\lambda)=\frac{2^{\sigma-i \lambda} \Gamma(i \lambda)}{\Gamma\left(\frac{i \lambda+\sigma}{2}\right) \Gamma\left(\frac{i \lambda+\sigma+2-d}{2}\right)} \tag{1.2}
\end{equation*}
$$

is the Harish-Chandra c-function associated to $B\left(\mathbb{F}^{n}\right)$.
(iii) Let $F=P_{\lambda} f$ with $f \in L^{2}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$. Then its L^{2}-boundary value is given by following inversion formula

$$
\begin{aligned}
f\left(w_{1}, w_{2}\right)= & |C(\lambda)|^{-4} \lim _{\substack{t_{1} \longrightarrow \infty \\
t_{2} \longrightarrow \infty}} \frac{1}{t_{1} t_{2}} \\
\times & \int_{0}^{t h t_{1}} \int_{0}^{t h t_{2}}\left(\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} F\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right) \overline{P_{\lambda}\left(\lambda, r_{1} w_{1}, \theta_{1}\right) P_{\lambda}\left(\lambda, r_{2} w_{2}, \theta_{2}\right)} d \theta_{1} d \theta_{2}\right) \\
& \left(1-r_{1}^{2}\right)^{-\sigma-1}\left(1-r_{2}^{2}\right)^{-\sigma-1}\left(r_{1} r_{2}\right)^{d n-1} d r_{1} d r_{2}, \quad \text { in } L^{2}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right) .
\end{aligned}
$$

Theorem 1.2. Let $\lambda \in \mathbb{R}^{*}$ and $p \in[2, \infty[$. Then,
(i) For every $F=P_{\lambda} f$ such that $f \in L^{p}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$, we have

$$
\|F\|_{\lambda, p}^{p}=\sup _{0 \leq r_{1}, r_{2}<1}\left(1-r_{1}^{2}\right)^{-\frac{\sigma}{2}}\left(1-r_{2}^{2}\right)^{-\frac{\sigma}{2}} \int_{\partial B\left(\mathbb{F}^{n}\right)} \int_{\partial B\left(\mathbb{F}^{n}\right)}\left|F\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right)\right|^{p} d \theta_{1} d \theta_{2}<\infty
$$

where $\sigma=\frac{d}{2}(n+1)-1$ and $d=\operatorname{dim}_{\mathbb{R}} \mathbb{F}$.
(ii) Let $f \in A^{\prime}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$ such that $F=P_{\lambda} f$ satisfies $\|F\|_{\lambda, p}<\infty$. Then f is belongs to $L^{p}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$.

Moreover, there exist positive constants γ_{1} and $\gamma_{2}(\lambda, p)$ such that for every $f \in L^{p}\left(\partial B\left(\mathbb{F}^{n}\right) \times\right.$ $\partial B\left(\mathbb{F}^{n}\right)$) we have the following estimates:

$$
\begin{equation*}
\gamma_{1}|C(\lambda)|^{2}\|f\|_{L^{p}} \leq\left\|P_{\lambda} f\right\|_{\lambda, p} \leq \gamma_{2}(\lambda, p)\|f\|_{L^{p}} \tag{1.3}
\end{equation*}
$$

where $C(\lambda)$ is the Harish-Chandra c-function given by (1.2)
The article is organized as follows. In Section 2, we recall some classical results from harmonic analysis on hyperbolic spaces $B\left(\mathbb{F}^{n}\right)$. In Section 3, we give the precise action of P_{λ} on $L^{2}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$. Section 4 is devoted to the proof of Theorems 1.1 and 1.2.

2 Preliminary results.

In this section, we recall some known results of harmonic analysis on the hyperbolic space $B\left(\mathbb{F}^{n}\right)=U(n, 1 ; \mathbb{F}) / U(n, \mathbb{F} \times U(1, \mathbb{F}))$. We refer the reader to [1] for more details on the subject.
Let \mathbb{F} be one of the classical fields, $\mathbb{F}=\mathbb{R}, \mathbb{C}$ or the quaternions \mathbb{H}. On \mathbb{F}^{n+1} considered as a right vector space over \mathbb{F}, we consider the quadratic form

$$
J\left(x_{1}, \ldots, x_{n+1}\right)=\sum_{j=1}^{n}\left|x_{j}\right|^{2}-\left|x_{n+1}\right|^{2}
$$

where $|x|^{2}=x \bar{x}$ and $x \longrightarrow \bar{x}$ is the standard involution of \mathbb{F}.
Let $G=U(n, 1 ; \mathbb{F})$ be the group of all \mathbb{F}-linear transformations g on \mathbb{F}^{n+1} leaving the quadratic form J invariant, with the additional property that $\operatorname{det} g=1$ if $\mathbb{F}=\mathbb{R}$ or \mathbb{C}. Then G is one of the
classical groups, $S O(n, 1), S U(n, 1)$ or $S p(n, 1)$ accordingly to $\mathbb{F}=\mathbb{R}, \mathbb{C}$ or \mathbb{H}. Moreover, the group G acts on the unit ball $B\left(\mathbb{F}^{n}\right)=\left\{x \in \mathbb{F}^{n} ; \quad|x|<1\right\}$ by fractional transforms:

$$
g=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in G: x \longmapsto(A x+B)(C x+D)^{-1}
$$

with $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times 1}, C \in \mathbb{F}^{1 \times n}$ and $D \in \mathbb{F}$. This action of G on $B\left(\mathbb{F}^{n}\right)$ is transitive so that $B\left(\mathbb{F}^{n}\right)$ can be seen as homogeneous space $B\left(\mathbb{F}^{n}\right)=G / K$ where K is the stabilizer of $0 \in B\left(\mathbb{F}^{n}\right)$ in G.
The action of G mentioned above extends naturally to $\overline{B\left(\mathbb{F}^{n}\right)}$ and under this action, K acts transitively on the topological boundary $\partial B\left(\mathbb{F}^{n}\right)=\left\{w \in \mathbb{F}^{n} ; \quad|w|=1\right\}$ of $B\left(\mathbb{F}^{n}\right)$. Moreover, for M being the stabilizer in K of $e=(1,0, \ldots, 0)$, we have $\partial B\left(\mathbb{F}^{n}\right)=K / M$.
Now, let $L^{2}\left(\partial B\left(\mathbb{F}^{n}\right)\right)$ be the space of all square integrable \mathbb{C}-valued functions on $\partial B\left(\mathbb{F}^{n}\right)$, with respect to the normalized superficial measure of $\partial B\left(\mathbb{F}^{n}\right)$. Then the group K acts on $L^{2}\left(\partial B\left(\mathbb{F}^{n}\right)\right)$ by composition $f \longmapsto f \circ k ; k \in K$.
It is well known that under the action of K, the Peter-Weyl decomposition of $L^{2}\left(\partial B\left(\mathbb{F}^{n}\right)\right)$ is given by $L^{2}\left(\partial B\left(\mathbb{F}^{n}\right)\right)=\oplus_{p, q \in \hat{K}_{0}} V_{p, q}$, where $V_{p, q}$ is the finite linear span $\left\{\varphi_{p, q} \circ k, \quad k \in K\right\}$ and $\varphi_{p, q}$ the zonal spherical functions.
The parametrized set \hat{K}_{0} consists of pairs (p, q) of integers satisfying:

$$
\begin{aligned}
& \text { i) } p \equiv q(\bmod 2) \\
& \text { ii) } p \geq 0 \text { and } 0 \leq q \leq 1 \text { if } \mathbb{F}=\mathbb{R}, \\
& p \geq|q| \text { if } \mathbb{F}=\mathbb{C} \\
& p \geq q \geq 0 \text { if } \mathbb{F}=\mathbb{H} .
\end{aligned}
$$

3 The Poisson transform P_{λ} on $A^{\prime}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$.

In this section, we give an explicit form of the Poisson transform P_{λ} defined for fixed $\lambda \in \mathbb{C}$ on the space $A^{\prime}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$ of all hyperfunctions on $\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)$ by

$$
\left(P_{\lambda} F\right)\left(x_{1}, x_{2}\right)=\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} P_{\lambda}\left(\lambda, x_{1}, w_{1}\right) P_{\lambda}\left(\lambda, x_{2}, w_{2}\right) F\left(w_{1}, w_{2}\right) d w_{1} d w_{2}
$$

for every $\left(x_{1}, x_{2}\right) \in B\left(\mathbb{F}^{n}\right) \times B\left(\mathbb{F}^{n}\right)$, where

$$
P_{\lambda}\left(\lambda, x_{j}, w_{j}\right)=\left[\frac{1-\left|x_{j}\right|^{2}}{\left|1-\left\langle x_{j}, w_{j}\right\rangle\right|^{2}}\right]^{\frac{i \lambda+\sigma}{2}}
$$

with $\sigma=\frac{d}{2}(n+1)-1$ and $d=\operatorname{dim}_{\mathbb{R}} \mathbb{F}$.
The following generalized spherical function associated to the hyperbolic space $B\left(\mathbb{F}^{n}\right)$ are defined by

$$
\begin{aligned}
\Phi_{\lambda, p q}(|x|) & =\left(\frac{i \lambda+\sigma}{2}\right)_{\frac{p+q}{2}}\left(\frac{i \lambda+\sigma+2-d}{2}\right)_{\frac{p-q}{2}}\left\{(1)_{p+\frac{d n}{2}}\right\}^{-1}|x|^{p}\left(1-|x|^{2}\right)^{\frac{i \lambda+\sigma}{2}} \\
& \times F\left(\frac{i \lambda+\sigma+p+q}{2}, \frac{i \lambda+\sigma+2-d+p-q}{2}, p+\frac{d n}{2} ;|x|^{2}\right)
\end{aligned}
$$

where $(a)_{k}=a(a+1)(a+2) \ldots(a+k-1)$ is the Pochammer symbol and $F(a, b, c ; x)$ is the classical Gauss hypergeometric function.
We assert the following
Proposition 3.1. Let $A^{\prime}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$ and $f\left(w_{1}, w_{2}\right)=\sum_{\substack{p_{1}, q_{1} \in \hat{K}_{0} \\ p_{2}, q_{2} \in \hat{K}_{0}}} a_{p_{1} q_{1}, p_{2} q_{2}} f_{p_{1} q_{1}}\left(w_{1}\right) f_{p_{2} q_{2}}\left(w_{2}\right)$
its K-type decomposition. Then,

$$
\left(P_{\lambda} f\right)\left(x_{1}, x_{2}\right)=\sum_{\substack{p_{1}, q_{1} \in \hat{K}_{0} \\ p_{2}, q_{2} \in \hat{K}_{0}}} a_{p_{1} q_{1}, p_{2} q_{2}} \Phi_{\lambda, p_{1} q_{1}}\left(\left|x_{1}\right|\right) \Phi_{\lambda, p_{2} q_{2}}\left(\left|x_{2}\right|\right) f_{p_{1} q_{1}}\left(\frac{x_{1}}{\left|x_{1}\right|}\right) f_{p_{2} q_{2}}\left(\frac{x_{2}}{\left|x_{2}\right|}\right)
$$

Proof. According to definition of P_{λ} and the K-type decomposition of f, we have

$$
\begin{aligned}
& \left(P_{\lambda} f\right)\left(x_{1}, x_{2}\right)=\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} P_{\lambda}\left(\lambda, x_{1}, w_{1}\right) P_{\lambda}\left(\lambda, x_{2}, w_{2}\right) f\left(w_{1}, w_{2}\right) d w_{1} d w_{2} \\
= & \sum_{\substack{p_{1}, q_{1} \in \mathcal{K}_{0} \\
p_{2}, q_{2} \in \hat{K}_{0}}} \int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} a_{p_{1} q_{1}, p_{2} q_{2}} P_{\lambda}\left(\lambda, x_{1}, w_{1}\right) P_{\lambda}\left(\lambda, x_{2}, w_{2}\right) f_{p_{1} q_{1}}\left(w_{1}\right) f_{p_{2} q_{2}}\left(w_{2}\right) d w_{1} d w_{2} .
\end{aligned}
$$

Now, using the fact that [3]

$$
\int_{\partial B\left(\mathbb{F}^{n}\right)}\left[\frac{1-|x|^{2}}{|1-\langle x, w\rangle|^{2}}\right]^{\frac{i \lambda+\sigma}{2}} \psi(w) d w=\Phi_{\lambda, p q}(|x|) \psi\left(\frac{x}{|x|}\right) ; \quad x \in B\left(\mathbb{F}^{n}\right) .
$$

For every $\psi \in V_{p q}$, it follows

$$
\begin{aligned}
\left(P_{\lambda} f\right)\left(x_{1}, x_{2}\right) & =\sum_{\substack{p_{1}, q_{1} \in \hat{K}_{0} \\
p_{2}, q_{2} \in \hat{K}_{0}}} \int_{\partial B\left(\mathbb{F}^{n}\right)} a_{p_{1} q_{1}, p_{2} q_{2}} \Phi_{\lambda, p_{1} q_{1}}\left(\left|x_{1}\right|\right) f_{p_{1} q_{1}}\left(\frac{x_{1}}{\left|x_{1}\right|}\right) P_{\lambda}\left(\lambda, x_{2}, w_{2}\right) f_{p_{2} q_{2}}\left(w_{2}\right) d w_{2} \\
& =\sum_{\substack{p_{1}, q_{1} \in \hat{K}_{0} \\
p_{2}, q_{2} \in \hat{K}_{0}}} a_{p_{1} q_{1}, p_{2} q_{2}} \Phi_{\lambda, p_{1} q_{1}}\left(\left|x_{1}\right|\right) \Phi_{\lambda, p_{2} q_{2}}\left(\left|x_{2}\right|\right) f_{p_{1} q_{1}}\left(\frac{x_{1}}{\left|x_{1}\right|}\right) f_{p_{2} q_{2}}\left(\frac{x_{2}}{\left|x_{2}\right|}\right) .
\end{aligned}
$$

4 Proof of Theorem 1.1 and Theorem 1.2

For prove our main results Theorems 1.1 and 1.2, we are need to the following technical lemmas:
Lemma 4.1. [1] Let λ be a non zero real number. Then

$$
\sup _{p, q \in \hat{K}_{0}}\left|\Phi_{\lambda, p q}(r)\right| \leq \gamma(\lambda)\left(1-r^{2}\right)^{\frac{\sigma}{2}}
$$

for some numerical positive constant γ.
Lemma 4.2. [1] Let λ be a non zero real number. Then there exists a positive constant $\gamma>0$ such that we have:

$$
\lim _{t \longrightarrow \infty} \frac{1}{t} \int_{B(0, t)}\left|\Phi_{\lambda, p q}(|x|)\right|^{2}\left(1-|x|^{2}\right)^{-\sigma-1} d m(x)=\gamma|C(\lambda)|^{2},
$$

for every $p, q \in \hat{K}_{0}$. Here $B(0, t)$ is the ball of radius t centered at 0 with respect to the $U(n, 1 ; \mathbb{F})$-invariant metric on $B\left(\mathbb{F}^{n}\right)$.

Lemma 4.3. [1] Let λ be a non zero real number and $p \in] 1, \infty[$. Then, there exist a constant $A(\lambda, p)>0$ such that

$$
\sup _{0 \leq r<1}\left\|Q_{r}(\lambda)\right\|_{p} \leq A(\lambda, p)
$$

where $\left\|\left\|\|_{p}\right.\right.$ stands for the L^{p}-operatorial norm.

4.1 Proof of Theorem 1.1

The necessary condition: Assure that $F=P_{\lambda} f, f \in L^{2}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$ and let $f\left(w_{1}, w_{2}\right)=$ $\sum_{\hat{K}_{0}} a_{p_{1} q_{1}, p_{2} q_{2}} f_{p_{1} q_{1}}\left(w_{1}\right) f_{p_{2} q_{2}}\left(w_{2}\right)$ be its K-type decomposition. Then making use of Proposi$p_{1}, q_{1} \in \hat{K}_{0}$ $p_{2}, q_{2} \in K_{0}$ tion 3.2, we get

$$
F\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right)=\sum_{\substack{p_{1}, q_{1} \in \hat{K}_{0} \\ p_{2}, q_{2} \in K_{0}}} a_{p_{1}, q_{1}, p_{2} q_{2}} \Phi_{\lambda, p_{1} q_{1}}\left(r_{1}\right) \Phi_{\lambda, p_{2} q_{2}}\left(r_{2}\right) f_{p_{1} q_{1}}\left(\theta_{1}\right) f_{p_{2} q_{2}}\left(\theta_{2}\right), \quad \text { in } C^{\infty}\left(\left[0,1\left[\times \partial B\left(\mathbb{F}^{n}\right)\right)^{2} .\right.\right.
$$

Therefore

$$
\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)}\left|F\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right)\right|^{2} d \theta_{1} d \theta_{2}=\sum_{\substack{p_{1}, q_{1} \in \mathcal{K}_{0} \\ p_{2}, q_{2} \in K_{0}}}\left|a_{p_{1} q_{1}, p_{2} q_{2}}\right|^{2}\left|\Phi_{\lambda, p_{1} q_{1}}\left(r_{1}\right)\right|^{2}\left|\Phi_{\lambda, p_{2} q_{2}}\left(r_{2}\right)\right|^{2} .
$$

Next, using the Lemma 4.1 we get the right hand side of the estimate (1.1) in Theorem 1.1

$$
\left\|P_{\lambda} f\right\|_{\lambda, 2} \leq \gamma^{2}(\lambda)\|f\|_{L^{2}} .
$$

For the sufficiency condition: Assume that $F=P_{\lambda} f$ for some, $f \in A^{\prime}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$. By writting K-type decomposition of f

$$
f\left(w_{1}, w_{2}\right)=\sum_{\substack{p_{1}, q_{1} \in \in_{0} \\ p_{2}, q_{2} \in K_{0}}} a_{p_{1} q_{1}, p_{2} q_{2}} f_{p_{1} q_{1}}\left(w_{1}\right) f_{p_{2} q_{2}}\left(w_{2}\right)
$$

and next using Proposition 3.1, we get

$$
F\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right)=\sum_{\substack{p_{1}, q_{1} \in K_{0} \\ p_{2}, q_{2} \in K_{0}}} a_{p_{1} q_{1}, p_{2} q_{2}} \Phi_{\lambda, p_{1} q_{1}}\left(r_{1}\right) \Phi_{\lambda, p_{2} q_{2}}\left(r_{2}\right) f_{p_{1} q_{1}}\left(\theta_{1}\right) f_{p_{2} q_{2}}\left(\theta_{2}\right), \quad \text { in } C^{\infty}\left(\left[0,1\left[\times \partial B\left(\mathbb{F}^{n}\right)\right)^{2} .\right.\right.
$$

The growth condition on F, that is $\|F\|_{\lambda, 2}<\infty$, implies

$$
\begin{array}{cl}
\sum_{\substack{p_{1}, q_{1} \in \hat{K}_{0} \\
p_{2}, \hat{K}_{2}}} \frac{1}{\hat{K}_{1} t_{1}} \int_{2} \int_{0}^{t h_{1}} \int_{0}^{t h_{2}}\left|a_{p_{1} q_{1}, p_{2} q_{2}}\right|^{2} & \left|\Phi_{\lambda, p_{1} q_{1}}\left(r_{1}\right)\right|^{2} \mid \\
\left.\Phi_{\lambda, p_{2} q_{2}}\left(r_{2}\right)\right|^{2}\left(1-r_{1}^{2}\right)^{-\sigma-1}\left(1-r_{2}^{2}\right)^{-\sigma-1}\left(r_{1} r_{2}\right)^{d n-1} d r_{1} d r \\
\leq & c\|F\|_{\lambda, 2}^{2}<\infty,
\end{array}
$$

for every $t_{1}, t_{2}>0$. Next, by means of Lemma 4.2 giving the uniform asymptotic behaviour of the function $\Phi_{\lambda, p q}$, we obtain:

$$
\gamma^{4}|C(\lambda)|^{4} \sum_{\substack{p_{1}, q_{1} \in \hat{K}_{0} \\ p_{2}, q_{2} \in K_{0}}}\left|a_{p_{1} q_{1}, p_{2} q_{2}}\right|^{2}<c\|F\|_{\lambda, 2}^{2}<\infty .
$$

This gives use to the left hand side of the estimate $(1,1)$ in Theorem 1.1.
Now, to establish the L^{2}-inversion formula, let $F=P_{\lambda} f$ with $f \in L^{2}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$. Application of Proposition 3.1 to f expanded into its K-type series, $f\left(w_{1}, w_{2}\right)=\sum_{\substack{p_{1}, q_{1} \in \hat{K}_{0} \\ p_{2}, q_{2} \in \hat{K}_{0}}} a_{p_{1} q_{1}, p_{2} q_{2}} f_{p_{1} q_{1}}\left(w_{1}\right) f_{p_{2} q_{2}}(u$ gives use to

$$
F\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right)=\sum_{\substack{p_{1}, q_{1} \in \mathcal{K}_{0} \\ p_{2}, q_{2} \in K_{0}}} a_{p_{1} q_{1}, p_{2} q_{2}} \Phi_{\lambda, p_{1} q_{1}}\left(r_{1}\right) \Phi_{\lambda, p_{2} q_{2}}\left(r_{2}\right) f_{p_{1} q_{1}}\left(\theta_{1}\right) f_{p_{2} q_{2}}\left(\theta_{2}\right), \quad \text { in } C^{\infty}\left(\left[0,1\left[\times \partial B\left(\mathbb{F}^{n}\right)\right)^{2} .\right.\right.
$$

Therefore, the \mathbb{C}-valued function on $\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)$ given by

$$
\begin{aligned}
g_{t_{1}, t_{2}}\left(w_{1}, w_{2}\right)= & |C(\lambda)|^{-4} \frac{1}{t_{1} t_{2}} \\
\times & \int_{0}^{t h t_{1}} \int_{0}^{t h t_{2}}\left(\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} F\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right) \overline{P_{\lambda}\left(\lambda, r_{1} w_{1}, \theta_{1}\right) P_{\lambda}\left(\lambda, r_{2} w_{2}, \theta_{2}\right)} d \theta_{1} d \theta_{2}\right) \\
& \left(1-r_{1}^{2}\right)^{-\sigma-1}\left(1-r_{2}^{2}\right)^{-\sigma-1}\left(r_{1} r_{2}\right)^{d n-1} d r_{1} d r_{2}, \quad \text { in } L^{2}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right) .
\end{aligned}
$$

Then, replacing F by its above series expansion, the function $g_{t_{1}, t_{2}}$ can be rewritten as:

$$
\begin{aligned}
& g_{t_{1}, t_{2}}\left(w_{1}, w_{2}\right)=|C(\lambda)|^{-4} \frac{1}{t_{1} t_{2}} \sum_{\substack{p_{1}, q_{1} \in \hat{K}_{0} \\
p_{2}, q_{2} \in \hat{K}_{0}}} a_{p_{1} q_{1}, p_{2} q_{2}} \int_{0}^{t h t_{1}} \int_{0}^{t h t_{2}} \Phi_{\lambda, p_{1} q_{1}}\left(r_{1}\right) \Phi_{\lambda, p_{2} q_{2}}\left(r_{2}\right) \\
\times & \left(\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} f_{p_{1} q_{1}}\left(\theta_{1}\right) f_{p_{2} q_{2}}\left(\theta_{2}\right) \overline{P_{\lambda}\left(\lambda, r_{1} w_{1}, \theta_{1}\right) P_{\lambda}\left(\lambda, r_{2} w_{2}, \theta_{2}\right)} d \theta_{1} d \theta_{2}\right) \\
& \left(1-r_{1}^{2}\right)^{-\sigma-1}\left(1-r_{2}^{2}\right)^{-\sigma-1}\left(r_{1} r_{2}\right)^{d n-1} d r_{1} d r_{2} \\
= & |C(\lambda)|^{-4} \frac{1}{t_{1} t_{2}} \sum_{\substack{p_{1}, q_{1} \in \hat{K}_{0} \\
p_{2}, q_{2} \in \hat{K}_{0}}}\left[a_{p_{1} q_{1}, p_{2} q_{2}}\right. \\
& \left.\int_{0}^{t h t_{1}} \int_{0}^{t h t_{2}}\left|\Phi_{\lambda, p_{1} q_{1}}\left(r_{1}\right)\right|^{2}\left|\Phi_{\lambda, p_{2} q_{2}}\left(r_{2}\right)\right|^{2}\left(1-r_{1}^{2}\right)^{-\sigma-1}\left(1-r_{2}^{2}\right)^{-\sigma-1}\left(r_{1} r_{2}\right)^{d n-1} d r_{1} d r_{2}\right] f_{p_{1} q_{1}}\left(w_{1}\right) f_{p_{2} q_{2}}\left(w_{2}\right.
\end{aligned}
$$

Hence the $L^{2}\left(\partial B\left(\mathbb{F}^{n}\right)\right)$-norm of the function $g_{t_{1}, t_{2}}$ is given by:

$$
\begin{aligned}
& \left\|g_{t_{1}, t_{2}}\right\|_{L^{2}}^{2}=\left||C(\lambda)|^{-4} \frac{1}{t_{1} t_{2}}\right|^{2} \\
& \sum_{\substack{p_{1}, q_{1} \in \hat{K}_{0} \\
p_{2}, q_{2} \in \hat{K}_{0}}}\left[a_{p_{1} q_{1}, p_{2} q_{2}} \int_{0}^{t h t_{1}} \int_{0}^{t h t_{2}}\left|\Phi_{\lambda, p_{1} q_{1}}\left(r_{1}\right)\right|^{2}\left|\Phi_{\lambda, p_{2} q_{2}}\left(r_{2}\right)\right|^{2}\left(1-r_{1}^{2}\right)^{-\sigma-1}\left(1-r_{2}^{2}\right)^{-\sigma-1}\left(r_{1} r_{2}\right)^{d n-1} d r_{1} d r_{2}\right]^{2} .
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
\left\|g_{t_{1}, t_{2}}-f\right\|_{L^{2}}^{2} & =\sum_{\substack{p_{1}, q_{1} \in \hat{K}_{0} \\
p_{2}, q_{2} \in \hat{K}_{0}}}\left[\frac{|C(\lambda)|^{-4}}{t_{1} t_{2}} \int_{0}^{t h t_{1}} \int_{0}^{t h t_{2}}\left|\Phi_{\lambda, p_{1} q_{1}}\left(r_{1}\right)\right|^{2}\left|\Phi_{\lambda, p_{2} q_{2}}\left(r_{2}\right)\right|^{2}\left(1-r_{1}^{2}\right)^{-\sigma-1}\right. \\
& \left.\times\left(1-r_{2}^{2}\right)^{-\sigma-1}\left(r_{1} r_{2}\right)^{d n-1} d r_{1} d r_{2}-1\right]^{2}\left|a_{p_{1} q_{1}, p_{2} q_{2}}\right|^{2}
\end{aligned}
$$

Finally using the asymptotic behaviour of the generalized spherical function $\Phi_{\lambda, p q}$ given Lemma 4.2 we see that

$$
\lim _{\substack{t_{1} \longrightarrow \infty \\ t_{2} \longrightarrow \infty}}\left|g_{t_{1}, t_{2}}-f\right|_{L^{2}}^{2}=0
$$

which gives the desired result.

4.2 Proof of Theorem 1.2

Proof of (i): Let f in $L^{p}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$. Then, we have

$$
\begin{aligned}
\left(P_{\lambda} f\right)\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right) & =\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} P_{\lambda}\left(\lambda, r_{1} \theta_{1}, w_{1}\right) P_{\lambda}\left(\lambda, r_{2} \theta_{2}, w_{2}\right) f\left(w_{1}, w_{2}\right) d w_{1} d w_{2} \\
& =\left(1-r_{1}^{2}\right)^{\frac{i \lambda+\sigma}{2}} \int_{\partial B\left(\mathbb{F}^{n}\right)} P_{\lambda}\left(\lambda, r_{2} \theta_{2}, w_{2}\right)\left[Q_{r_{1}}(\lambda) f_{w_{1}}\right]\left(\theta_{1}\right) d w_{2}
\end{aligned}
$$

with $f_{w_{2}}\left(w_{1}\right)=f\left(w_{1}, w_{2}\right)$. Putting $g\left(w_{2}\right)=\left[Q_{r_{1}}(\lambda) f_{w_{2}}\right]\left(\theta_{2}\right)$. Then

$$
\left.P_{\lambda} f\right)\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right)=\left(1-r_{1}^{2}\right)^{\frac{i \lambda+\sigma}{2}}\left(1-r_{2}^{2}\right)^{\frac{i \lambda+\sigma}{2}}\left[Q_{r_{2}}(\lambda) g\right]\left(\theta_{2}\right)
$$

Thus, from Lemma 4.3, we get

$$
\begin{aligned}
\left\|P_{\lambda} f\right\|_{\lambda, p}= & \sup _{0 \leq r_{1}, r_{2}<1}\left(1-r_{1}^{2}\right)^{-\frac{\sigma}{2}}\left(1-r_{2}^{2}\right)^{-\frac{\sigma}{2}}\left[\int_{\partial B\left(\mathbb{F}^{n}\right)} \int_{\partial B\left(\mathbb{F}^{n}\right)}\left|P_{\lambda} f\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right)\right|^{p} d \theta_{1} d \theta_{2}\right]^{\frac{1}{p}} \\
= & \sup _{0 \leq r_{1}, r_{2}<1}\left[\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)}\left|\left[Q_{r_{1}}(\lambda)\left[Q_{r_{2}}(\lambda)(g)\right] \theta_{2}\right] \theta_{1}\right|^{p} d \theta_{1} d \theta_{2}\right]^{\frac{1}{p}} \\
& \leq A(\lambda, p)\left\|Q_{r_{2}}(\lambda)(g)\left(\theta_{2}\right)\right\|_{L^{p}} \leq A^{2}(\lambda, p)\|f\|_{L^{p}} .
\end{aligned}
$$

This end the proof of (i).
Proof of (ii): \quad Let F be a \mathbb{C} valued function on $\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)$ such that $\|F\|_{\lambda, p}<$ ∞. Using the fact that $\|F\|_{\lambda, 2} \leq\|F\|_{\lambda, p}$ for every $p \in[2, \infty[$, there exists from Theorem 1.1 a function $g_{t_{1}, t_{2}} \in L^{2}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$ such that $P_{\lambda} f=F$ and $f\left(w_{1}, w_{2}\right)=$ $\lim _{\substack{t_{1} \longrightarrow \infty \\ t_{2} \longrightarrow \infty}} g_{t_{1}, t_{2}}\left(w_{1}, w_{2}\right), \quad$ in $L^{2}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$. where More precisely, we have

$$
\begin{aligned}
g_{t_{1}, t_{2}}\left(w_{1}, w_{2}\right)= & \frac{|C(\lambda)|^{-4}}{t_{1} t_{2}} \\
\times & \int_{0}^{t h t_{1}} \int_{0}^{t h t_{2}}\left(\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} F\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right) \overline{P_{\lambda}\left(\lambda, r_{1} w_{1}, \theta_{1}\right) P_{\lambda}\left(\lambda, r_{2} w_{2}, \theta_{2}\right)} d \theta_{1} d \theta_{2}\right) \\
& \left(1-r_{1}^{2}\right)^{-\sigma-1}\left(1-r_{2}^{2}\right)^{-\sigma-1}\left(r_{1} r_{2}\right)^{d n-1} d r_{1} d r_{2} .
\end{aligned}
$$

Let $\Phi_{i}, i \in\{1,2\}$ be continuous functions on $\partial B\left(\mathbb{F}^{n}\right)$. Then we have
$\lim _{\substack{t_{1} \rightarrow \infty \\ t_{2} \longrightarrow \infty}} \int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} g_{t_{1}, t_{2}}\left(w_{1}, w_{2}\right) \overline{\Phi_{1}\left(w_{1}\right) \Phi_{2}\left(w_{2}\right)} d w_{1} d w_{2}=\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} f\left(w_{1}, w_{2}\right) \overline{\Phi_{1}\left(w_{1}\right) \Phi_{2}\left(w_{2}\right)} d w_{1} d u$
However,

$$
\begin{aligned}
& \int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} g_{t_{1}, t_{2}}\left(w_{1}, w_{2}\right) \overline{\Phi_{1}\left(w_{1}\right) \Phi_{2}\left(w_{2}\right)} d w_{1} d w_{2}=\frac{|C(\lambda)|^{-4}}{t_{1} t_{2}} \int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)}[\\
& \int_{0}^{t h t_{1}} \int_{0}^{t h t_{2}}\left(\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} F\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right) \overline{P_{\lambda}\left(\lambda, r_{1} w_{1}, \theta_{1}\right) P_{\lambda}\left(\lambda, r_{2} w_{2}, \theta_{2}\right)} d \theta_{1} d \theta_{2}\right) \\
& \left.\left(1-r_{1}^{2}\right)^{-\sigma-1}\left(1-r_{2}^{2}\right)^{-\sigma-1}\left(r_{1} r_{2}\right)^{d n-1} d r_{1} d r_{2}\right] \overline{\Phi_{1}\left(w_{1}\right) \Phi_{2}\left(w_{2}\right)} d w_{1} d w_{2} . \\
= & \frac{|C(\lambda)|^{-4}}{t_{1} t_{2}} \int_{0}^{t h t_{1}} \int_{0}^{t h t_{2}}\left(\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} F\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right) \overline{P_{\lambda} \Phi_{1}\left(r_{1} \theta_{1}\right) P_{\lambda} \Phi_{2}\left(r_{2} \theta_{2}\right)} d \theta_{1} d \theta_{2}\right) \\
& \left(1-r_{1}^{2}\right)^{-\sigma-1}\left(1-r_{2}^{2}\right)^{-\sigma-1}\left(r_{1} r_{2}\right)^{d n-1} d r_{1} d r_{2} .
\end{aligned}
$$

Thus by means of Holder inequality, we obtain

$$
\begin{aligned}
& \left|\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} F\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right) \overline{P_{\lambda} \Phi_{1}\left(r_{1} \theta_{1}\right) P_{\lambda} \Phi_{2}\left(r_{2} \theta_{2}\right)} d \theta_{1} d \theta_{2}\right| \\
\leq & \left(\int_{\partial B\left(\mathbb{F}^{n}\right)}\left|P_{\lambda} \Phi_{1}\left(r_{1} \theta_{1}\right)\right|^{q} d \theta_{1}\right)^{\frac{1}{q}} \int_{\partial B\left(\mathbb{F}^{n}\right)}\left|P_{\lambda} \Phi_{2}\left(r_{2} \theta_{2}\right)\right|\left[\int_{\partial B\left(\mathbb{F}^{n}\right)}\left|F\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right)\right|^{p} d \theta_{1}\right]^{\frac{1}{p}} d \theta_{2} \\
\leq & \left.\left(\int_{\partial B\left(\mathbb{F}^{n}\right)}\left|P_{\lambda} \Phi_{1}\left(r_{1} \theta_{1}\right)\right|^{q} d \theta_{1}\right)^{\frac{1}{q}}\left(\int_{\partial B\left(\mathbb{F}^{n}\right)}\left|P_{\lambda} \Phi_{2}\left(r_{2} \theta_{2}\right)\right|^{q} d \theta_{2}\right)^{\frac{1}{q}} \right\rvert\,\left[\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)}\left|F\left(r_{1} \theta_{1}, r_{2} \theta_{2}\right)\right|^{p} d \theta_{1} d \theta_{2}\right]
\end{aligned}
$$

where q is such that $\frac{1}{p}+\frac{1}{q}=1$. Next, Lemma 4.3 shows that, for every $q>1$, the following estimate

$$
\left[\int_{\partial B\left(\mathbb{F}^{n}\right)}\left|P_{\lambda} \Phi_{i}\left(r_{i} \theta_{i}\right)\right|^{q} d \theta_{i}\right]^{\frac{1}{q}} \leq\left(1-r_{i}^{2}\right)^{\frac{\sigma}{2}}, A(\lambda, q)\left\|\Phi_{i}\right\|_{L^{q}} \quad i \in\{1,2\}
$$

holds. Hence,

$$
\begin{aligned}
& \left|\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} g_{t_{1}, t_{2}}\left(w_{1}, w_{2}\right) \overline{\Phi_{1}\left(w_{1}\right) \Phi_{2}\left(w_{2}\right)} d w_{1} d w_{2}\right| \\
\leq & |C(\lambda)|^{-4} A^{2}(\lambda, q)\left\|\Phi_{1}\right\|_{L^{q}}| | \Phi_{2}\left\|_{L^{q}}\right\| F \|_{\lambda, p} .
\end{aligned}
$$

Thus
$\left|\int_{\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)} f\left(w_{1}, w_{2}\right) \overline{\Phi_{1}\left(w_{1}\right) \Phi_{2}\left(w_{2}\right)} d w_{1} d w_{2}\right| \leq|C(\lambda)|^{-4} A^{2}(\lambda, q)\left\|\Phi_{1}\right\|_{L^{q}}\left\|\Phi_{2}\right\|_{L^{q}}\|F\|_{\lambda, p}$.

Taking the supremum over all continuous functions $\Phi_{i}, \quad i \in\{1,2\}$ with $\left\|\Phi_{i}\right\|_{L^{q}} \leq 1$, we deduce that $f \in L^{p}\left(\partial B\left(\mathbb{F}^{n}\right) \times \partial B\left(\mathbb{F}^{n}\right)\right)$ with $|C(\lambda)|^{2}\|f\|_{L^{p}} \leq A^{2}(\lambda, p)\|F\|_{\lambda, p}$. This finishes the proof of Theorem 1.2.

References

[1] Boussejra, A. and Sami, H., 2002, Characterization of the L^{p}-Range of the Poisson transform in hyperbolic spaces $B\left(\mathbb{F}^{n}\right)$. J. Journal of Lie Theory, 12, 1-14.
[2] El Wassouli, F. and Fahlaoui, S., 2010, The L^{2}-function over the product of two circles $S^{1} \times S^{1}$. Integral Transforms and Special functions, vol. 12, 925-933.
[3] Helgason, S., 1974, Eigenspaces of the laplacian, integral representation and irreducibility. J. Funct. Anal, 17, 328-353.
[4] Kashiwara, M., Kowata, A., Minemura, K., Okamoto, K., Oshima,T. and Tanaka,M., 1978, Eigenspaces of invariant differential operators on a symmetric space. Ann. of Math, 107, 1-39.
[5] Lewis, J., 1978 Eigenfunctions on symmetric spaces with distribution-valued boundary forms. J. Funct. Anal, 29, 287-307.

Author information

Fouzia El Wassouli, Department of Mathematics, Faculty of Sciences- Ain Chock, University Hassan II, Casablanca, Morocco.
E-mail: elwassouli@gmail.com
Received: July 16, 2016.
Accepted: April 13, 2017

