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Abstract. Let B(F") be the hyperbolic space over F (F being the field of real R, or complex
C or the quaternions H) and 9B(F") its boundary.
We give a necessary and sufficient conditions on the Poisson transform Pj f of an element f €
A'(OB(F") x B(F")) for f to be in LP(OB(F™) x dB(F™)), 2 < p < oo, where A’(OB(F") x
OB(F™)) is the space of all hyperfunctions on 9 B(F™) x 9 B(F™).

1 Introduction and statement of main result.

In classical harmonic function theory, it is well-known that the Poisson integral of complex-
valued integrable function defined on the unit circle S = {z € C, |z| = 1} of the complex
plane C determines an harmonic functions on the corresponding unit disk D = {z € C, |z| <
1}. Namely, if f(z) is a bounded harmonic function on D; then almost everywhere on the circle
S it has radial boundary values

lim1 f(re'®) = p(e')

r

and the function f can be expressed in terms of ¢ with the help of the well-known Poisson
transformation

iay _ 1 o -7 By
J(re®®) = E/O 1 —2cos(a—6)+r2<p(e )dp.
This transformation was generalized first to classical bounded domains and next to Riemannian
symmetric spaces X = G/K, where G is a non-compact semi-simple Lie group, and K is its a
maximal compact subgroup. Not only harmonic functions are considered, but also functions that
are eigenfunctions of the algebra of G-invariant differential operators on X = G /K (see [3], [4],

[5D.

Furthermore, in rank one symmetric spaces of non compact type, the Poisson transform appears
naturally through the Fourier-Helgason transform in the L>-Plancherel formula of the Laplace-
Beltrami operator on X = G/K.

It is of great interest to look an analogue concrete a description of the range of the Poisson trans-
form of LP-functions on X x X, 1 < p < oo, and moreover on the product £ x E of line bundle
E over X

Below we have to deal the particular case of the unit ball B(F™). Mainly, the aim of this paper is
* to give the necessary and sufficient condition on the Poisson transform Py f(A € R*) of an
element f in the space A’(OB(F") x 9B(F")) for f to be in LP?(OB(F™) x B(F™)),p € [2, 00].
*to extend in a unified manner the result in [2] to the classical hyperboplic spaces B(F™) .

The main result of this paper are the following theorems.

Theorem 1.1. Let A € R* . Then,
(i) Forevery F = Py\f with f € L>(0B(F") x 0B(F")), we have

IFIR, = sup <1—r%>—%<1—r%>—/ /
0<r,ra<1 oB(F) JoB(Fn)

ol

2
F(Tlelﬂ“zez) dbdb, < o0,
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where 0 = $(n+ 1) — 1 and d = dimg F.

(ii) Let f € A/(OB(F™) x OB(F™)). such that F' = Py f satisfies ||F||x2 < co. Then f belongs
to L*(0B(F™) x OB(F")).

Moreover, there exist positive constants v, and y2()\) such that for every f € L*(OB(F") x
OB(F"™)) we have the following estimates:

ICN)Pflz2 < [I1Pafllaz < n2(M)]If]

L2 (1.1

where AL(iN)
207 (GA
C(A) = iNto 1 og+2—
1—-( A;r )F( A+ 2+2 d)

(1.2)

is the Harish-Chandra c-function associated to B(F™).
(ili) Let ' = P\f with f € L*(0B(F™) x OB(F")). Then its L*-boundary value is given by
following inversion formula

. 1
flwr,wp) = [CN)|™* lim —
tl—ﬁoc tltz
1 —o0

tht; tht,
X / / (/ F(T191,7‘292)P)\()\,T1w1,ol)PA()\,Tzwz,@z)deldez)
0 0 OB(F")x0B(F™)
(1 =)= Y1 =)= (i)™ Ydridry,  in L*(OB(F") x 0B(F™)).

Theorem 1.2. Let A € R* and p € [2,00|. Then,
(i) Forevery F = P\ f suchthat f € LP(OB(F™) x dB(F™)), we have

||, = sup (1—&)*?(17@*%/ /
0<ry,m<1 dB(Fn) JOB(Fn)

where 0 = $(n+ 1) — 1 and d = dimg F.
(ii) Ler f € A/(0B(F™) x 0B(F™)) such that F = P\ f satisfies || F||x, < co. Then f is belongs
to LP(OB(F™) x OB(F™)).

p
F(Tlol,Tzoz) dbdb, < o0,

Moreover, there exist positive constants 1 and v2(\,p) such that for every f € LP(OB(F™) x
OB(F™)) we have the following estimates:

ICNPIfle < NPAflIap < 2N ) Fllze, (1.3)

where C(X) is the Harish-Chandra c-function given by (1.2)

The article is organized as follows. In Section 2, we recall some classical results from har-
monic analysis on hyperbolic spaces B(F™). In Section 3, we give the precise action of Py on
L*(0B(F™) x OB(F™)). Section 4 is devoted to the proof of Theorems 1.1 and 1.2.

2 Preliminary results.

In this section, we recall some known results of harmonic analysis on the hyperbolic space
B(F") = U(n,1,F)/U(n,F x U(1,F)). We refer the reader to [1] for more details on the
subject.

Let IF be one of the classical fields, F = R, C or the quaternions H. On F"*! considered as a
right vector space over IF, we consider the quadratic form

n
J(@1, oo Tpp1) = Z |$j\2 — |zl
7j=1

where |z|?> = 2% and  — 7 is the standard involution of FF.
Let G = U(n, 1;F) be the group of all F-linear transformations g on F**! leaving the quadratic
form J invariant, with the additional property that detg = 1 if F = R or C. Then G is one of the
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classical groups, SO(n,1),SU(n,1) or Sp(n, 1) accordingly to F = R, C or H. Moreover, the
group G acts on the unit ball B(F") = {z € F™; |z| < 1} by fractional transforms:

A B . -1
g= ( o D > €G:x+— (Az+ B)(Cz+ D)
with A € F»** B € F**! C € F'*" and D € F. This action of G on B(F") is transitive
so that B(IF) can be seen as homogeneous space B(F™") = G/K where K is the stabilizer of
0 € B(F™)in G.

The action of G' mentioned above extends naturally to B(F") and under this action, K acts
transitively on the topological boundary 0B(F") = {w € F"; |w| = 1} of B(F™). Moreover,
for M being the stabilizer in K of e = (1,0, ...,0), we have 9B(F") = K/M.

Now, let L?(0B(FF™)) be the space of all square integrable C-valued functions on B(F"), with
respect to the normalized superficial measure of 9 B(F™). Then the group K acts on L?(0B(F"))
by composition f — fok; k€ K.

It is well known that under the action of K, the Peter-Weyl decomposition of L?(0B(F™)) is
given by L*(0B(F")) = @, ,c i, Vp.q» Where V,, ; is the finite linear span {¢, , 0k, k€ K}
and ¢, 4 the zonal sphencal functions.

The parametrized set K consists of pairs (p,q) of integers satisfying:

i) p = q (mod2),
i1) p>0and 0 < g < 1if F =R,
p>|qlif F=C,

p>q>0if F=H.

3 The Poisson transform P, on A’(0B(F") x 0B(F")).

In this section, we give an explicit form of the Poisson transform P defined for fixed A € C on
the space A’(0B(F"™) x B(F™)) of all hyperfunctions on dB(F™) x dB(F™) by

(P)\F) (l‘l, JZQ) = P)\(/\, Z1, w1>P>\()\, Ty, wg)F(wl, wz)dwlde

/aB(Fn)xaB(JFn)
for every (x1,x2) € B(F™) x B(F"), where
irte

1— |z;]?

2
1= (o)
witho = ¢(n+1) — land d = dimg F.
The following generalized spherical function associated to the hyperbolic space B(F") are de-
fined by

P)\(/\,l‘j,wj) =

)

Z)\—FU Z)\+U—|—2—d _ idto

Papallel) = (F57) e () D} P = laP) ™
iN‘+o+p+qg iIN+o+2—-d+p—¢q dn .
x F( 2 ’ 2 ’p+7’|x‘)’

where (a)r, = a(a+ 1)(a + 2)...(a + k — 1) is the Pochammer symbol and F(a,b, c; z) is the
classical Gauss hypergeometric function.
We assert the following
Proposition 3.1. Let A'(OB(F™)xdB(F™)) and f(wi,w2) = > pig.p0an Sorgr (W1) [prgo (W2)
p1,a1 €K
leyq;éf((:)
its K-type decomposition. Then,

(Prf)(@1,22) = Z Apq, pzqquAp1q1(|$1|)cb>\pﬂqz(|x2‘>fp1q1(| |)fpbqb(

P1,41 EKO
P2,92€ Ko

)-

$2|



340 Fouzia El Wassouli

Proof. According to definition of Py and the K -type decomposition of f, we have

(Prf)(z1,22) I/ Py(\, z1,w1) Py(X, 22, wa) f (wy, wr)dwy dwy
OB(Fn)x dB(Fn)

p1,q1 €K
P2, EKY

/ gy AN 1, 01) P (A, 22, w2) f g, (W1) fp g (w2 ) dwy duw.
OB(F")x dB(F)

Now, using the fact that [3]

1-— |(E|2 T n
|| e = @yl ) @ e BE)
P |1 = o) '
For every ¢ € V,, it follows
T
(PAj.)(xl?xZ) = Z /03(15‘ )a’plqupzqzq)/\,mm(|x1|)fPIQ1(m)P)\(>" ‘r2vw2)fp2¢h(w2)dw2
py,a; €K
paeko
X1 H i)
= Z apyar,p20:Pxpray (L1 P pags ([22]) foran () Fman (1)
: E |2
P1,a1€Ky
2,2 €Ky

4 Proof of Theorem 1.1 and Theorem 1.2
For prove our main results Theorems 1.1 and 1.2, we are need to the following technical lemmas:

Lemmad4.1. [1] Let )\ be a non zero real number. Then

ol

sup [P g (1) < v(M)(1 = 7"2)

P,q€Ky
for some numerical positive constant .

Lemma 4.2. [I] Let )\ be a non zero real number. Then there exists a positive constant v > 0
such that we have:

1 Y
M1LWJ¢MN$WU—$W Ldm(z) = 1|C(V),

for every p,q € Ky. Here B(0,t) is the ball of radius t centered at 0 with respect to the
U(n, 1;F)-invariant metric on B(F™).

Lemma 4.3. [I] Let X be a non zero real number and p €1, cc[. Then, there exist a constant
A(X,p) > 0 such that

sup [|Q-(N)[lp < A(A,p),

0<r<1

where ||||,, stands for the LP-operatorial norm.

4.1 Proof of Theorem 1.1

The necessary condition: Assure that F = Py f, f € L?>(OB(F™) x 9B(F™)) and let f (w1, w;) =

> pigipea forg (W1) fpag, (w2) be its K-type decomposition. Then making use of Proposi-
p1,q1 €K
P_z,qzef(o
tion 3.2, we get
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2
(7‘191, 7‘292 Z Apyqy, P“q“qD)\ P11 (rl)qDA P2q2 (TZ)fplfh (91)fp2q2 (02) in C% ([07 l[xaB(IF”)) :

P1s qleffo
P2,32€ Ko
Therefore
/ |F(r161,7202)Pd61dfs = > |apigy oo [P prgs (1) P[P g (r2) -
dB(Fn)x dB(Fn) .
1"1»‘115150
P2,2€ Ko

Next, using the Lemma 4.1 we get the right hand side of the estimate (1.1) in Theorem 1.1

1P flla2 < (V)
For the sufficiency condition: Assume that F = P, f for some, f € A’(0B(F") x B(F")).
By writting K-type decomposition of f

flwr,we) = Z Wp1q1,p202 fprar (W1) fpoga (w2)

P1:q1 EKO
p2,02€E K

and next using Proposition 3.1, we get

2
F(ri01,m202) = 3"ty s ®rpia ()P sas (12) 00 (0) s (82, im € ([0, 1[xOB(E™)) .
P1s qlélfo

P2,2€ Ky

The growth condition on F, that is || F|| 2 < oo, implies

th
Z t1t2 / / |aP1fI1 szIz‘ [P P11 <T1)|2| ¢Aypzqz(r2)|2<1 - T%)7071(1 - T%)igil(rlTZ)dnildrl(h

Pl qleKo
P2, 0 €K,

< clIF|IX 2 < oo,

for every t1,t, > 0. Next, by means of Lemma 4.2 giving the uniform asymptotic behaviour of
the function ®, ,,, we obtain:

’74|C()‘)|4 Z |aP1Q1aP2Q2|2 < CHFH%\J < 0.

Plyqleko
P2,2 €Ky

This gives use to the left hand side of the estimate (1,1) in Theorem 1.1.

Now, to establish the L>-inversion formula, let F' = Py f with f € L*(0B(F") x B(F")). Ap-

plication of Proposition 3.1 to f expanded into its K-type series, f(w1,w2) = D> apiqr.p000 o1 (W1) oo (U
Py, a1 €K
rae Ry

gives use to

2

(7’191, T292 Z Apyqy, P“q“q))\ P141 (Tl)qDA P2q2 (TZ)fplfh (91)fp2q2 (02) in C% ([07 l[xaB(IF”)) :
P1s q]EK(
P27q2€f()o

Therefore, the C-valued function on 9B(F™) x B(FF™) given by

1
gtlatz(w17w2) = | ( )| 4tt
102

tht; tht,
/ F(r101,r202) Px(X, r1wi, 01) PA(A, raws, 92)d91d92)
OB(Fn)x OB(F)

(1 =)= —13) =7 (rirp) ™ Ydridry, in L*(OB(F™) x B(F™)).
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Then, replacing F' by its above series expansion, the function g;, , can be rewritten as:

t1tn

p1,a1 €Ky

. ] thty thty
gthtz(wlﬂwz) = ‘C()‘)|_ T Z aplQ],quz/o o P piar (rl)q))upzqz(rz)

P2,mEK

X (/ fplql(91)fpzqz(92)PA(/\’7‘1w1a91)PA(/\7T2w2792)d91d92)
OB(F")x dB(F")

(1- r%)*"*l(l — r%)f"fl(rlrg)dnfldrldrz

s 1
= ‘C()‘)‘ 4@ Z {ammmzth

p1,a1 €Ky
P2, €Ky

tht, tht,
/O /O 1D prq, (1) PP gy (r2) (1 = r3) 7771 (1 = T%)fafl(rﬂz)d”*ldrldm} Foras (W1) fppqr (w2

Hence the L?(0B(F"))-norm of the function g;, ,, is given by:
2 1P
gl = lEMI™ |
12

tht, tht, 2
> {aplql,pzqz/o /O 1@ prg (71 PIPA pags (r2) (1= 77) 77 (1 = 73) =7 (rama) ™ iy

p1,q1 €K
P2, €K

Furthermore, we have

2 [C)| 4 e e 2 2 2 1
o= £ = 3 [ [ [ @ 0P @) P11
p1,a1 €Ky tltz 0 0
p2.a2€K

2
x (1=73)"7 " (riry) ™ drydry — 1] [

Finally using the asymptotic behaviour of the generalized spherical function ®) ,, given Lemma
4.2 we see that )
=0

lim
t]—ro0 L2

Gty,t, — f

to— 00

which gives the desired result.

4.2 Proof of Theorem 1.2
Proof of (i): Let f in LP(0B(F™) x 0B(F")). Then, we have

(Prf)(r101,1m20,) = / Py(A\, 7101, w1) Py (X, 7202, w)) f (w1, w2 ) dw; dws
OB(Fn)x B(Fn)
= = [ POt )@ (W) )0 dus
dB(Fn)
with fw2 (wl) = f(wl, wz). Putting g(wz) = [er (/\)fwz](ez) Then
iAto idto

Pyf)(m0,ma02) = (1 —r1) 72 (1 = 13) 777 [Qr, (A\)g)(62).

Thus, from Lemma 4.3, we get

o= s (e EegE[ [
0<ry,m<1 dB(Fn) JoB(Fn)

Q@ (NI (W (@)esJer | dordes ]

P 0
| Pxf] PAf(7“191,7“292)‘ d91d92}

= su |:/
0<ry,ra<1 - JOB(F™)xdB(F™)
< AXD)1Qr (N (9)(02)l]2e < A (X, p)I| 1] 2s-
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This end the proof of (i).

Proof of (ii): Let F' be a C valued function on dB(F™) x 0B(F") such that ||F|[x, <

oo. Using the fact that ||F|[x, < ||F||x, for every p € [2,00][, there exists from Theo-

rem 1.1 a function g;, 4, € L*(OB(F") x 0B(F")) such that P\f = F and f(wi,w) =
lim g, 4, (w1, w2), in L*(OB(F™) x OB(F")). where More precisely, we have

t] — 00

tr— 00

e~
t1tn

tht, tht,
/ / / F(r101,r202)Px(X, r1wi, 01) PA(\, raws, 92)d91d92)
0 0 OB(F7)x OB(F)

(1 — 7‘%)7071(1 — T%)igil(rlrz)dnildﬁdrz.

gtl,tz(wla wz) =

Let ®;, i € {1,2} be continuous functions on dB(F™). Then we have

o 9o, (wr, 02) @1 (w1) @3 (wn) duwndury = / Flwr,w2) Py ()P (w3)duwy e
v OB EB ) OB(Fn)xdB(F")
2
However,
7 N+ C(\ —4
/ Gt (W1, w2) Py (w1)Po (w2)dwr dwy = |()|/ [
opOn e tit2 Jop(En)xoB(En)

tht, ptht,
/ / (/ F(T1917T292)P)\()\,T‘1’w1,91)P)\(/\,T2w2,92)d91d92>
0 OB(F")x0B(F™)

(1 — 7’%)_0_1(1 — T%)_U_I(Tsz)dn_ldTlde] D, (wl)QDZ(wg)dwldwz.

|C tht, tht,
= n / / / (T16‘1,T26‘2)P)\¢'1(7’191)P)ﬁb2(7“292)d€1d02)
1tz OB(F™)x B (F")

(1—r3)"7" 11 = 3) =7 Y ryr) " Ydrdr.

Thus by means of Holder inequality, we obtain

’ / F(Tlel, T292)P)\q)1 (7“161)P,\CI32(7"292)d91d92‘
OB(F")x0B(F™)

(/ |P)\CD1 (Tlel)‘qdﬁ) ! / |P,\q32(7“292)| [/ |F(7‘191, T202)|pd91} pd@z
OB(F™) OB(Fn™) OB(F™)

1

1
(/ |P)\CI>1 (7’191)‘%191) ! (/ |P)\CI>2(7“292)|qd92) ! ‘ {/ |F(7“191, T292)|pd91d92}
OB(F™) OB(F™) OB(F")x0B(F")

where ¢ is such that % + é = 1. Next, Lemma 4.3 shows that, for every ¢ > 1, the following
estimate

IN

IN

|:/ |P)\q3i(7'i9i)‘qd9i:|a S (] _Tg)%7A(>\;Q)|‘(Di||LQ z’e{l,2},
dB(Fn)
holds. Hence,
‘ / Gty 1> (w1, w2 )P (w1 ) P2 (w))dwi dw,
OB(Fn)xdB(Fn)

< O (N, Q@1 ||| Do | a || F ][ -
Thus

‘/ Fwi, wa) Py (w1) P (wa)dwidws| < |C(A)[T*A* (N, q)||P1 | Lal P2 | Lo || F |2 p-
OB(F™)xdB(F)
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Taking the supremum over all continuous functions ®;, i € {1,2} with ||[D;||« < 1, we
deduce that f € LP(OB(F") x 0B(F")) with [C(\)[?||fllz» < A%(A\,p)||F||»p- This finishes
the proof of Theorem 1.2.
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