The L^p -function over the product of the boundaries of the Hyperbolic spaces.

Fouzia El Wassouli

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 32M15, 32A45, 30E20, 33C60; Secondary 43A90, 32A36.

Keywords and phrases: Hypergeometric function, Hyperbolic spaces, hyperfunctions, Poisson transform and L^p -functions.

Abstract. Let $B(\mathbb{F}^n)$ be the hyperbolic space over \mathbb{F} (\mathbb{F} being the field of real \mathbb{R} , or complex \mathbb{C} or the quaternions \mathbb{H}) and $\partial B(\mathbb{F}^n)$ its boundary.

We give a necessary and sufficient conditions on the Poisson transform $P_{\lambda}f$ of an element $f \in A'(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$ for f to be in $L^p(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$, $2 \le p < \infty$, where $A'(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$ is the space of all hyperfunctions on $\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)$.

1 Introduction and statement of main result.

In classical harmonic function theory, it is well-known that the Poisson integral of complexvalued integrable function defined on the unit circle $S = \{z \in \mathbb{C}, |z| = 1\}$ of the complex plane \mathbb{C} determines an harmonic functions on the corresponding unit disk $D = \{z \in \mathbb{C}, |z| < 1\}$. Namely, if f(z) is a bounded harmonic function on D; then almost everywhere on the circle S it has radial boundary values

$$\lim_{n \to \infty} f(re^{i\alpha}) = \varphi(e^{i\alpha})$$

and the function f can be expressed in terms of φ with the help of the well-known Poisson transformation

$$f(re^{i\alpha}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - r^2}{1 - 2\cos(\alpha - \beta) + r^2} \varphi(e^{i\beta}) d\beta.$$

This transformation was generalized first to classical bounded domains and next to Riemannian symmetric spaces X = G/K, where G is a non-compact semi-simple Lie group, and K is its a maximal compact subgroup. Not only harmonic functions are considered, but also functions that are eigenfunctions of the algebra of G-invariant differential operators on X = G/K (see [3], [4], [5]).

Furthermore, in rank one symmetric spaces of non compact type, the Poisson transform appears naturally through the Fourier-Helgason transform in the L^2 -Plancherel formula of the Laplace-Beltrami operator on X = G/K.

It is of great interest to look an analogue concrete a description of the range of the Poisson transform of L^p -functions on $X \times X$, $1 , and moreover on the product <math>E \times E$ of line bundle E over X

Below we have to deal the particular case of the unit ball $B(\mathbb{F}^n)$. Mainly, the aim of this paper is \star to give the necessary and sufficient condition on the Poisson transform $P_{\lambda}f(\lambda \in \mathbb{R}^*)$ of an element f in the space $A'(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$ for f to be in $L^p(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$, $p \in [2, \infty[$. \star to extend in a unified manner the result in [2] to the classical hyperboplic spaces $B(\mathbb{F}^n)$.

The main result of this paper are the following theorems.

Theorem 1.1. Let $\lambda \in \mathbb{R}^*$. Then, (i) For every $F = P_{\lambda} f$ with $f \in L^2(\partial B(\mathbb{R}^n) \times \partial B(\mathbb{R}^n))$. we have

$$||F||_{\lambda,2}^{2} = \sup_{0 \le r_{1}, r_{2} < 1} (1 - r_{1}^{2})^{-\frac{\sigma}{2}} (1 - r_{2}^{2})^{-\frac{\sigma}{2}} \int_{\partial B(\mathbb{F}^{n})} \int_{\partial B(\mathbb{F}^{n})} \left| F(r_{1}\theta_{1}, r_{2}\theta_{2}) \right|^{2} d\theta_{1} d\theta_{2} < \infty,$$

where $\sigma = \frac{d}{2}(n+1) - 1$ and $d = \dim_{\mathbb{R}} \mathbb{F}$. (ii) Let $f \in A'(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$. such that $F = P_{\lambda}f$ satisfies $||F||_{\lambda,2} < \infty$. Then f belongs to $L^2(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$. Moreover, there exist positive constants γ_1 and $\gamma_2(\lambda)$ such that for every $f \in L^2(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$ we have the following estimates:

$$\gamma_1 |C(\lambda)|^2 |f||_{L^2} \le ||P_\lambda f||_{\lambda,2} \le \gamma_2(\lambda) ||f||_{L^2}, \tag{1.1}$$

where

$$C(\lambda) = \frac{2^{\sigma - i\lambda} \Gamma(i\lambda)}{\Gamma(\frac{i\lambda + \sigma}{2}) \Gamma(\frac{i\lambda + \sigma + 2 - d}{2})}$$
(1.2)

is the Harish-Chandra c-function associated to $B(\mathbb{F}^n)$. (iii) Let $F = P_{\lambda}f$ with $f \in L^2(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$. Then its L^2 -boundary value is given by following inversion formula

$$\begin{aligned} f(w_1, w_2) &= |C(\lambda)|^{-4} \lim_{\substack{t_1 \to \infty \\ t_2 \to \infty}} \frac{1}{t_1 t_2} \\ &\times \int_0^{tht_1} \int_0^{tht_2} \left(\int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} F(r_1 \theta_1, r_2 \theta_2) \overline{P_{\lambda}(\lambda, r_1 w_1, \theta_1) P_{\lambda}(\lambda, r_2 w_2, \theta_2)} d\theta_1 d\theta_2 \right) \\ &\quad (1 - r_1^2)^{-\sigma - 1} (1 - r_2^2)^{-\sigma - 1} (r_1 r_2)^{dn - 1} dr_1 dr_2, \quad in \ L^2(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)). \end{aligned}$$

Theorem 1.2. Let $\lambda \in \mathbb{R}^*$ and $p \in [2, \infty[$. Then,

(i) For every $F = P_{\lambda}f$ such that $f \in L^p(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$, we have

$$||F||_{\lambda,p}^{p} = \sup_{0 \le r_{1}, r_{2} < 1} (1 - r_{1}^{2})^{-\frac{\sigma}{2}} (1 - r_{2}^{2})^{-\frac{\sigma}{2}} \int_{\partial B(\mathbb{F}^{n})} \int_{\partial B(\mathbb{F}^{n})} \left| F(r_{1}\theta_{1}, r_{2}\theta_{2}) \right|^{p} d\theta_{1} d\theta_{2} < \infty,$$

where $\sigma = \frac{d}{2}(n+1) - 1$ and $d = \dim_{\mathbb{R}} \mathbb{F}$.

(ii) Let $f \in A'(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$ such that $F = P_{\lambda}f$ satisfies $||F||_{\lambda,p} < \infty$. Then f is belongs to $L^p(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$.

Moreover, there exist positive constants γ_1 and $\gamma_2(\lambda, p)$ such that for every $f \in L^p(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$ we have the following estimates:

$$\gamma_1 |C(\lambda)|^2 ||f||_{L^p} \le ||P_\lambda f||_{\lambda,p} \le \gamma_2(\lambda, p) ||f||_{L^p},$$
(1.3)

where $C(\lambda)$ is the Harish-Chandra c-function given by (1.2)

The article is organized as follows. In Section 2, we recall some classical results from harmonic analysis on hyperbolic spaces $B(\mathbb{F}^n)$. In Section 3, we give the precise action of P_{λ} on $L^2(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$. Section 4 is devoted to the proof of Theorems 1.1 and 1.2.

2 Preliminary results.

In this section, we recall some known results of harmonic analysis on the hyperbolic space $B(\mathbb{F}^n) = U(n, 1; \mathbb{F})/U(n, \mathbb{F} \times U(1, \mathbb{F}))$. We refer the reader to [1] for more details on the subject.

Let \mathbb{F} be one of the classical fields, $\mathbb{F} = \mathbb{R}, \mathbb{C}$ or the quaternions \mathbb{H} . On \mathbb{F}^{n+1} considered as a right vector space over \mathbb{F} , we consider the quadratic form

$$J(x_1, ..., x_{n+1}) = \sum_{j=1}^n |x_j|^2 - |x_{n+1}|^2,$$

where $|x|^2 = x\bar{x}$ and $x \longrightarrow \bar{x}$ is the standard involution of \mathbb{F} .

Let $G = U(n, 1; \mathbb{F})$ be the group of all \mathbb{F} -linear transformations g on \mathbb{F}^{n+1} leaving the quadratic form J invariant, with the additional property that det g = 1 if $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Then G is one of the

classical groups, SO(n, 1), SU(n, 1) or Sp(n, 1) accordingly to $\mathbb{F} = \mathbb{R}$, \mathbb{C} or \mathbb{H} . Moreover, the group G acts on the unit ball $B(\mathbb{F}^n) = \{x \in \mathbb{F}^n; |x| < 1\}$ by fractional transforms:

$$g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in G : x \longmapsto (Ax + B)(Cx + D)^{-1}$$

with $A \in \mathbb{F}^{n \times n}$, $B \in \mathbb{F}^{n \times 1}$, $C \in \mathbb{F}^{1 \times n}$ and $D \in \mathbb{F}$. This action of G on $B(\mathbb{F}^n)$ is transitive so that $B(\mathbb{F}^n)$ can be seen as homogeneous space $B(\mathbb{F}^n) = G/K$ where K is the stabilizer of $0 \in B(\mathbb{F}^n)$ in G.

The action of G mentioned above extends naturally to $\overline{B(\mathbb{F}^n)}$ and under this action, K acts transitively on the topological boundary $\partial B(\mathbb{F}^n) = \{w \in \mathbb{F}^n; |w| = 1\}$ of $B(\mathbb{F}^n)$. Moreover, for M being the stabilizer in K of e = (1, 0, ..., 0), we have $\partial B(\mathbb{F}^n) = K/M$.

Now, let $L^2(\partial B(\mathbb{F}^n))$ be the space of all square integrable \mathbb{C} -valued functions on $\partial B(\mathbb{F}^n)$, with respect to the normalized superficial measure of $\partial B(\mathbb{F}^n)$. Then the group K acts on $L^2(\partial B(\mathbb{F}^n))$ by composition $f \mapsto f \circ k$; $k \in K$.

It is well known that under the action of K, the Peter-Weyl decomposition of $L^2(\partial B(\mathbb{F}^n))$ is given by $L^2(\partial B(\mathbb{F}^n)) = \bigoplus_{p,q \in \hat{K}_0} V_{p,q}$, where $V_{p,q}$ is the finite linear span $\{\varphi_{p,q} \circ k, k \in K\}$ and $\varphi_{p,q}$ the zonal spherical functions.

The parametrized set \hat{K}_0 consists of pairs (p,q) of integers satisfying:

....

$$\begin{array}{ll} i) & p \equiv q \; (mod2), \\ ii) & p \geq 0 \; \text{and} \; 0 \leq q \leq 1 \; \text{if} \; \mathbb{F} = \mathbb{R}, \\ & p \geq |q| \; \text{if} \; \mathbb{F} = \mathbb{C}, \\ & p \geq q \geq 0 \; \text{if} \; \mathbb{F} = \mathbb{H}. \end{array}$$

3 The Poisson transform P_{λ} on $A'(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$.

In this section, we give an explicit form of the Poisson transform P_{λ} defined for fixed $\lambda \in \mathbb{C}$ on the space $A'(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$ of all hyperfunctions on $\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)$ by

$$(P_{\lambda}F)(x_1, x_2) = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} P_{\lambda}(\lambda, x_1, w_1) P_{\lambda}(\lambda, x_2, w_2) F(w_1, w_2) dw_1 dw_2$$

for every $(x_1, x_2) \in B(\mathbb{F}^n) \times B(\mathbb{F}^n)$, where

$$P_{\lambda}(\lambda, x_j, w_j) = \left[\frac{1 - |x_j|^2}{\left|1 - \left\langle x_j, w_j \right\rangle\right|^2}\right]^{\frac{i\lambda + \sigma}{2}},$$

with $\sigma = \frac{d}{2}(n+1) - 1$ and $d = \dim_{\mathbb{R}} \mathbb{F}$.

The following generalized spherical function associated to the hyperbolic space $B(\mathbb{F}^n)$ are defined by

$$\Phi_{\lambda,pq}(|x|) = \left(\frac{i\lambda+\sigma}{2}\right)_{\frac{p+q}{2}} \left(\frac{i\lambda+\sigma+2-d}{2}\right)_{\frac{p-q}{2}} \{(1)_{p+\frac{dn}{2}}\}^{-1} |x|^p (1-|x|^2)^{\frac{i\lambda+\sigma}{2}} \\ \times F\left(\frac{i\lambda+\sigma+p+q}{2}, \frac{i\lambda+\sigma+2-d+p-q}{2}, p+\frac{dn}{2}; |x|^2\right),$$

where $(a)_k = a(a+1)(a+2)...(a+k-1)$ is the Pochammer symbol and F(a, b, c; x) is the classical Gauss hypergeometric function. We assert the following

Proposition 3.1. Let $A'(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$ and $f(w_1, w_2) = \sum_{\substack{p_1, q_1 \in \hat{K}_0 \\ p_2, q_2 \in \hat{K}_0}} a_{p_1q_1, p_2q_2} f_{p_1q_1}(w_1) f_{p_2q_2}(w_2)$

its K-type decomposition. Then,

$$(P_{\lambda}f)(x_1, x_2) = \sum_{\substack{p_1, q_1 \in \hat{K}_0 \\ p_2, q_2 \in \hat{K}_0}} a_{p_1q_1, p_2q_2} \Phi_{\lambda, p_1q_1}(|x_1|) \Phi_{\lambda, p_2q_2}(|x_2|) f_{p_1q_1}(\frac{x_1}{|x_1|}) f_{p_2q_2}(\frac{x_2}{|x_2|}).$$

According to definition of P_{λ} and the K-type decomposition of f, we have Proof.

$$(P_{\lambda}f)(x_{1},x_{2}) = \int_{\partial B(\mathbb{F}^{n})\times\partial B(\mathbb{F}^{n})} P_{\lambda}(\lambda,x_{1},w_{1})P_{\lambda}(\lambda,x_{2},w_{2})f(w_{1},w_{2})dw_{1}dw_{2}$$

$$= \sum_{\substack{p_{1},q_{1}\in\tilde{K}_{0}\\p_{2},q_{2}\in\tilde{K}_{0}}} \int_{\partial B(\mathbb{F}^{n})\times\partial B(\mathbb{F}^{n})} a_{p_{1}q_{1},p_{2}q_{2}}P_{\lambda}(\lambda,x_{1},w_{1})P_{\lambda}(\lambda,x_{2},w_{2})f_{p_{1}q_{1}}(w_{1})f_{p_{2}q_{2}}(w_{2})dw_{1}dw_{2}.$$

Now, using the fact that [3]

$$\int_{\partial B(\mathbb{F}^n)} \left[\frac{1-|x|^2}{\left|1-\left\langle x,w\right\rangle\right|^2} \right]^{\frac{i\lambda+\sigma}{2}} \psi(w)dw = \Phi_{\lambda,pq}(|x|)\psi(\frac{x}{|x|}); \quad x \in B(\mathbb{F}^n).$$

For every $\psi \in V_{pq}$, it follows

$$\begin{aligned} (P_{\lambda}f)(x_{1},x_{2}) &= \sum_{\substack{p_{1},q_{1}\in\hat{\kappa}_{0}\\p_{2},q_{2}\in\hat{K}_{0}}} \int_{\partial B(\mathbb{F}^{n})} a_{p_{1}q_{1},p_{2}q_{2}} \Phi_{\lambda,p_{1}q_{1}}(|x_{1}|) f_{p_{1}q_{1}}(\frac{x_{1}}{|x_{1}|}) P_{\lambda}(\lambda,x_{2},w_{2}) f_{p_{2}q_{2}}(w_{2}) dw_{2} \\ &= \sum_{\substack{p_{1},q_{1}\in\hat{\kappa}_{0}\\p_{2},q_{2}\in\hat{K}_{0}}} a_{p_{1}q_{1},p_{2}q_{2}} \Phi_{\lambda,p_{1}q_{1}}(|x_{1}|) \Phi_{\lambda,p_{2}q_{2}}(|x_{2}|) f_{p_{1}q_{1}}(\frac{x_{1}}{|x_{1}|}) f_{p_{2}q_{2}}(\frac{x_{2}}{|x_{2}|}). \end{aligned}$$

4 **Proof of Theorem 1.1 and Theorem 1.2**

For prove our main results Theorems 1.1 and 1.2, we are need to the following technical lemmas:

Lemma 4.1. [1] Let λ be a non zero real number. Then

$$\sup_{p,q\in\hat{K}_0} |\Phi_{\lambda,pq}(r)| \le \gamma(\lambda)(1-r^2)^{\frac{\sigma}{2}}$$

for some numerical positive constant γ .

[1] Let λ be a non zero real number. Then there exists a positive constant $\gamma > 0$ Lemma 4.2. such that we have:

$$\lim_{t \to \infty} \frac{1}{t} \int_{B(0,t)} |\Phi_{\lambda,pq}(|x|)|^2 (1-|x|^2)^{-\sigma-1} dm(x) = \gamma |C(\lambda)|^2,$$

for every $p,q \in \hat{K}_0$. Here B(0,t) is the ball of radius t centered at 0 with respect to the $U(n, 1; \mathbb{F})$ -invariant metric on $B(\mathbb{F}^n)$.

Lemma 4.3. [1] Let λ be a non zero real number and $p \in]1, \infty[$. Then, there exist a constant $A(\lambda, p) > 0$ such that

$$\sup_{0 \le r < 1} ||Q_r(\lambda)||_p \le A(\lambda, p),$$

where $||||_p$ stands for the L^p -operatorial norm.

4.1 **Proof of Theorem 1.1**

The necessary condition: Assure that $F = P_{\lambda}f, f \in L^2(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$ and let $f(w_1, w_2) =$

 $\sum_{p_1,q_1\in K_0} a_{p_1q_1,p_2q_2} f_{p_1q_1}(w_1) f_{p_2q_2}(w_2) \text{ be its } K\text{-type decomposition. Then making use of Proposi$ $p_2, q_2 \in \hat{K}_0$

tion 3.2, we get

$$F(r_1\theta_1, r_2\theta_2) = \sum_{\substack{p_1, q_1 \in K_0 \\ p_2, q_2 \in \hat{K}_0}} a_{p_1q_1, p_2q_2} \Phi_{\lambda, p_1q_1}(r_1) \Phi_{\lambda, p_2q_2}(r_2) f_{p_1q_1}(\theta_1) f_{p_2q_2}(\theta_2), \quad in \ C^{\infty} \Big([0, 1[\times \partial B(\mathbb{F}^n)] \Big)^2 \Big)$$

Therefore

$$\int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} |F(r_1\theta_1, r_2\theta_2)|^2 d\theta_1 d\theta_2 = \sum_{\substack{p_1, q_1 \in \hat{K}_0 \\ p_2, q_2 \in \hat{K}_0}} |a_{p_1q_1, p_2q_2}|^2 |\Phi_{\lambda, p_1q_1}(r_1)|^2 |\Phi_{\lambda, p_2q_2}(r_2)|^2$$

Next, using the Lemma 4.1 we get the right hand side of the estimate (1.1) in Theorem 1.1

$$||P_{\lambda}f||_{\lambda,2} \le \gamma^2(\lambda)||f||_{L^2}.$$

For the sufficiency condition: Assume that $F = P_{\lambda} f$ for some, $f \in A'(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$. By writting K-type decomposition of f

$$f(w_1, w_2) = \sum_{\substack{p_1, q_1 \in \dot{K}_0 \ p_2, q_2 \in \dot{K}_0}} a_{p_1 q_1, p_2 q_2} f_{p_1 q_1}(w_1) f_{p_2 q_2}(w_2)$$

and next using Proposition 3.1, we get

$$F(r_1\theta_1, r_2\theta_2) = \sum_{\substack{p_1, q_1 \in \hat{K}_0 \\ p_2, q_2 \in \hat{K}_0}} a_{p_1q_1, p_2q_2} \Phi_{\lambda, p_1q_1}(r_1) \Phi_{\lambda, p_2q_2}(r_2) f_{p_1q_1}(\theta_1) f_{p_2q_2}(\theta_2), \quad in \ C^{\infty} \Big([0, 1[\times \partial B(\mathbb{F}^n)] \Big)^2.$$

The growth condition on F, that is $||F||_{\lambda,2} < \infty$, implies

$$\leq c||F||_{\lambda,2}^2 < \infty$$

for every $t_1, t_2 > 0$. Next, by means of Lemma 4.2 giving the uniform asymptotic behaviour of the function $\Phi_{\lambda,pq}$, we obtain:

$$\gamma^4 |C(\lambda)|^4 \sum_{p_1, q_1 \in \hat{K}_0 \ p_2, q_2 \in \hat{K}_0} |a_{p_1q_1, p_2q_2}|^2 < c ||F||^2_{\lambda, 2} < \infty.$$

This gives use to the left hand side of the estimate (1,1) in Theorem 1.1. Now, to establish the L^2 -inversion formula, let $F = P_{\lambda}f$ with $f \in L^2(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$. Application of Proposition 3.1 to f expanded into its K-type series, $f(w_1, w_2) = \sum_{\substack{p_1, q_1 \in K_0 \\ p_2, q_2 \in K_0}} a_{p_1q_1, p_2q_2} f_{p_1q_1}(w_1) f_{p_2q_2}(w_1) f_{p_2q_2}(w_1) f_{p_2q_2}(w_2)$

gives use to

$$F(r_1\theta_1, r_2\theta_2) = \sum_{\substack{p_1, q_1 \in \hat{K}_0 \\ p_2, q_2 \in \hat{K}_0}} a_{p_1q_1, p_2q_2} \Phi_{\lambda, p_1q_1}(r_1) \Phi_{\lambda, p_2q_2}(r_2) f_{p_1q_1}(\theta_1) f_{p_2q_2}(\theta_2), \quad in \ C^{\infty} \Big([0, 1[\times \partial B(\mathbb{F}^n)] \Big)^2.$$

Therefore, the \mathbb{C} -valued function on $\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)$ given by

$$g_{t_{1},t_{2}}(w_{1},w_{2}) = |C(\lambda)|^{-4} \frac{1}{t_{1}t_{2}} \\ \times \int_{0}^{tht_{1}} \int_{0}^{tht_{2}} \left(\int_{\partial B(\mathbb{F}^{n}) \times \partial B(\mathbb{F}^{n})} F(r_{1}\theta_{1},r_{2}\theta_{2}) \overline{P_{\lambda}(\lambda,r_{1}w_{1},\theta_{1})P_{\lambda}(\lambda,r_{2}w_{2},\theta_{2})} d\theta_{1} d\theta_{2} \right) \\ (1-r_{1}^{2})^{-\sigma-1} (1-r_{2}^{2})^{-\sigma-1} (r_{1}r_{2})^{dn-1} dr_{1} dr_{2}, \quad in \ L^{2}(\partial B(\mathbb{F}^{n}) \times \partial B(\mathbb{F}^{n})).$$

Then, replacing F by its above series expansion, the function g_{t_1,t_2} can be rewritten as:

$$g_{t_{1},t_{2}}(w_{1},w_{2}) = |C(\lambda)|^{-4} \frac{1}{t_{1}t_{2}} \sum_{\substack{p_{1},q_{1} \in \tilde{K}_{0} \\ p_{2},q_{2} \in \tilde{K}_{0}}} a_{p_{1}q_{1},p_{2}q_{2}} \int_{0}^{tht_{1}} \int_{0}^{tht_{2}} \Phi_{\lambda,p_{1}q_{1}}(r_{1}) \Phi_{\lambda,p_{2}q_{2}}(r_{2})$$

$$\times \left(\int_{\partial B(\mathbb{F}^{n}) \times \partial B(\mathbb{F}^{n})} f_{p_{1}q_{1}}(\theta_{1}) f_{p_{2}q_{2}}(\theta_{2}) \overline{P_{\lambda}(\lambda,r_{1}w_{1},\theta_{1})P_{\lambda}(\lambda,r_{2}w_{2},\theta_{2})} d\theta_{1} d\theta_{2} \right)$$

$$(1 - r_{1}^{2})^{-\sigma - 1} (1 - r_{2}^{2})^{-\sigma - 1} (r_{1}r_{2})^{dn - 1} dr_{1} dr_{2}$$

$$= |C(\lambda)|^{-4} \frac{1}{t_{1}t_{2}} \sum_{\substack{p_{1},q_{1} \in \tilde{K}_{0} \\ p_{2},q_{2} \in \tilde{K}_{0}}} \left[a_{p_{1}q_{1},p_{2}q_{2}} \int_{0}^{tht_{1}} \int_{0}^{tht_{1}} \int_{0}^{tht_{2}} |\Phi_{\lambda,p_{1}q_{1}}(r_{1})|^{2} |\Phi_{\lambda,p_{2}q_{2}}(r_{2})|^{2} (1 - r_{1}^{2})^{-\sigma - 1} (1 - r_{2}^{2})^{-\sigma - 1} (r_{1}r_{2})^{dn - 1} dr_{1} dr_{2} \right] f_{p_{1}q_{1}}(w_{1}) f_{p_{2}q_{2}}(w_{2})$$

Hence the $L^2(\partial B(\mathbb{F}^n))$ -norm of the function g_{t_1,t_2} is given by:

$$\begin{aligned} ||g_{t_1,t_2}||_{L^2}^2 &= \left||C(\lambda)|^{-4} \frac{1}{t_1 t_2}\right|^2 \\ &\sum_{\substack{p_1,q_1 \in \hat{K}_0 \\ p_2,q_2 \in \hat{K}_0}} \left[a_{p_1q_1,p_2q_2} \int_0^{tht_1} \int_0^{tht_2} |\Phi_{\lambda,p_1q_1}(r_1)|^2 |\Phi_{\lambda,p_2q_2}(r_2)|^2 (1-r_1^2)^{-\sigma-1} (1-r_2^2)^{-\sigma-1} (r_1r_2)^{dn-1} dr_1 dr_2\right]^2 \end{aligned}$$

Furthermore, we have

$$\begin{aligned} ||g_{t_1,t_2} - f||_{L^2}^2 &= \sum_{\substack{p_1,q_1 \in K_0 \\ p_2,q_2 \in \hat{K}_0}} \left[\frac{|C(\lambda)|^{-4}}{t_1 t_2} \int_0^{tht_1} \int_0^{tht_2} |\Phi_{\lambda,p_1q_1}(r_1)|^2 |\Phi_{\lambda,p_2q_2}(r_2)|^2 (1 - r_1^2)^{-\sigma - 1} \right] \\ &\times (1 - r_2^2)^{-\sigma - 1} (r_1 r_2)^{dn - 1} dr_1 dr_2 - 1 \Big]^2 |a_{p_1q_1,p_2q_2}|^2. \end{aligned}$$

Finally using the asymptotic behaviour of the generalized spherical function $\Phi_{\lambda,pq}$ given Lemma 4.2 we see that

$$\lim_{\substack{t_1 \to \infty \\ t_2 \to \infty}} \left| g_{t_1, t_2} - f \right|_{L^2}^2 = 0$$

which gives the desired result.

4.2 Proof of Theorem 1.2

Proof of (i): Let f in $L^p(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$. Then, we have

$$(P_{\lambda}f)(r_{1}\theta_{1}, r_{2}\theta_{2}) = \int_{\partial B(\mathbb{F}^{n})\times\partial B(\mathbb{F}^{n})} P_{\lambda}(\lambda, r_{1}\theta_{1}, w_{1})P_{\lambda}(\lambda, r_{2}\theta_{2}, w_{2})f(w_{1}, w_{2})dw_{1}dw_{2}$$
$$= (1 - r_{1}^{2})^{\frac{i\lambda+\sigma}{2}} \int_{\partial B(\mathbb{F}^{n})} P_{\lambda}(\lambda, r_{2}\theta_{2}, w_{2})[Q_{r_{1}}(\lambda)f_{w_{1}}](\theta_{1})dw_{2}$$

with $f_{w_2}(w_1) = f(w_1, w_2)$. Putting $g(w_2) = [Q_{r_1}(\lambda)f_{w_2}](\theta_2)$. Then

$$P_{\lambda}f)(r_{1}\theta_{1}, r_{2}\theta_{2}) = (1 - r_{1}^{2})^{\frac{i\lambda + \sigma}{2}} (1 - r_{2}^{2})^{\frac{i\lambda + \sigma}{2}} [Q_{r_{2}}(\lambda)g](\theta_{2}).$$

Thus, from Lemma 4.3, we get

$$\begin{aligned} ||P_{\lambda}f||_{\lambda,p} &= \sup_{0 \le r_1, r_2 < 1} (1 - r_1^2)^{-\frac{\sigma}{2}} (1 - r_2^2)^{-\frac{\sigma}{2}} \Big[\int_{\partial B(\mathbb{F}^n)} \int_{\partial B(\mathbb{F}^n)} \Big| P_{\lambda}f(r_1\theta_1, r_2\theta_2) \Big|^p d\theta_1 d\theta_2 \Big]^{\frac{1}{p}} \\ &= \sup_{0 \le r_1, r_2 < 1} \Big[\int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} \Big| [Q_{r_1}(\lambda) [Q_{r_2}(\lambda)(g)] \theta_2] \theta_1 \Big|^p d\theta_1 d\theta_2 \Big]^{\frac{1}{p}} \\ &\le A(\lambda, p) ||Q_{r_2}(\lambda)(g)(\theta_2)||_{L^p} \le A^2(\lambda, p) ||f||_{L^p}. \end{aligned}$$

This end the proof of (i).

 $\begin{array}{ll} \displaystyle \underbrace{ \textbf{Proof of (ii):}}_{\infty. \quad \text{Using the fact that } ||F||_{\lambda,p} \leq u \in \mathbb{C} \text{ valued function on } \partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n) \text{ such that } ||F||_{\lambda,p} < \infty \\ \hline \infty. \quad \text{Using the fact that } ||F||_{\lambda,2} \leq ||F||_{\lambda,p} \text{ for every } p \in [2,\infty[, \text{ there exists from Theorem 1.1 a function } g_{t_1,t_2} \in L^2(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)) \text{ such that } P_{\lambda}f = F \text{ and } f(w_1,w_2) = \lim_{\substack{t_1 \to \infty \\ t_2 \to \infty}} g_{t_1,t_2}(w_1,w_2), \quad in \ L^2(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)). \text{ where More precisely, we have} \end{array}$

$$g_{t_1,t_2}(w_1,w_2) = \frac{|C(\lambda)|^{-4}}{t_1t_2} \\ \times \int_0^{tht_1} \int_0^{tht_2} \left(\int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} F(r_1\theta_1, r_2\theta_2) \overline{P_{\lambda}(\lambda, r_1w_1, \theta_1)P_{\lambda}(\lambda, r_2w_2, \theta_2)} d\theta_1 d\theta_2 \right) \\ (1-r_1^2)^{-\sigma-1} (1-r_2^2)^{-\sigma-1} (r_1r_2)^{dn-1} dr_1 dr_2.$$

Let Φ_i , $i \in \{1, 2\}$ be continuous functions on $\partial B(\mathbb{F}^n)$. Then we have

$$\lim_{\substack{t_1 \to \infty \\ t_2 \to \infty}} \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} g_{t_1, t_2}(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1)\Phi_2(w_2)} dw_1 dw_2 = \int_{\partial B(\mathbb{F$$

However,

$$\begin{split} &\int_{\partial B(\mathbb{F}^{n})\times\partial B(\mathbb{F}^{n})} g_{t_{1},t_{2}}(w_{1},w_{2})\overline{\Phi_{1}(w_{1})\Phi_{2}(w_{2})}dw_{1}dw_{2} = \frac{|C(\lambda)|^{-4}}{t_{1}t_{2}}\int_{\partial B(\mathbb{F}^{n})\times\partial B(\mathbb{F}^{n})} \left[\int_{0}^{tht_{1}} \int_{0}^{tht_{2}} \left(\int_{\partial B(\mathbb{F}^{n})\times\partial B(\mathbb{F}^{n})} F(r_{1}\theta_{1},r_{2}\theta_{2})\overline{P_{\lambda}(\lambda,r_{1}w_{1},\theta_{1})P_{\lambda}(\lambda,r_{2}w_{2},\theta_{2})}d\theta_{1}d\theta_{2} \right) \\ &(1-r_{1}^{2})^{-\sigma-1}(1-r_{2}^{2})^{-\sigma-1}(r_{1}r_{2})^{dn-1}dr_{1}dr_{2} \right]\overline{\Phi_{1}(w_{1})\Phi_{2}(w_{2})}dw_{1}dw_{2}. \\ &= \frac{|C(\lambda)|^{-4}}{t_{1}t_{2}}\int_{0}^{tht_{1}} \int_{0}^{tht_{2}} \left(\int_{\partial B(\mathbb{F}^{n})\times\partial B(\mathbb{F}^{n})} F(r_{1}\theta_{1},r_{2}\theta_{2})\overline{P_{\lambda}\Phi_{1}(r_{1}\theta_{1})P_{\lambda}\Phi_{2}(r_{2}\theta_{2})}d\theta_{1}d\theta_{2} \right) \\ &(1-r_{1}^{2})^{-\sigma-1}(1-r_{2}^{2})^{-\sigma-1}(r_{1}r_{2})^{dn-1}dr_{1}dr_{2}. \end{split}$$

Thus by means of Holder inequality, we obtain

$$\begin{split} & \left| \int_{\partial B(\mathbb{F}^{n}) \times \partial B(\mathbb{F}^{n})} F(r_{1}\theta_{1}, r_{2}\theta_{2}) \overline{P_{\lambda}\Phi_{1}(r_{1}\theta_{1})P_{\lambda}\Phi_{2}(r_{2}\theta_{2})} d\theta_{1} d\theta_{2} \right| \\ \leq & \left(\int_{\partial B(\mathbb{F}^{n})} |P_{\lambda}\Phi_{1}(r_{1}\theta_{1})|^{q} d\theta_{1} \right)^{\frac{1}{q}} \int_{\partial B(\mathbb{F}^{n})} |P_{\lambda}\Phi_{2}(r_{2}\theta_{2})| \Big[\int_{\partial B(\mathbb{F}^{n})} |F(r_{1}\theta_{1}, r_{2}\theta_{2})|^{p} d\theta_{1} \Big]^{\frac{1}{p}} d\theta_{2} \\ \leq & \left(\int_{\partial B(\mathbb{F}^{n})} |P_{\lambda}\Phi_{1}(r_{1}\theta_{1})|^{q} d\theta_{1} \right)^{\frac{1}{q}} \Big(\int_{\partial B(\mathbb{F}^{n})} |P_{\lambda}\Phi_{2}(r_{2}\theta_{2})|^{q} d\theta_{2} \Big)^{\frac{1}{q}} | \Big[\int_{\partial B(\mathbb{F}^{n}) \times \partial B(\mathbb{F}^{n})} |F(r_{1}\theta_{1}, r_{2}\theta_{2})|^{p} d\theta_{1} d\theta_{2} \end{split}$$

where q is such that $\frac{1}{p} + \frac{1}{q} = 1$. Next, Lemma 4.3 shows that, for every q > 1, the following estimate

$$\left[\int_{\partial B(\mathbb{F}^n)} |P_{\lambda}\Phi_i(r_i\theta_i)|^q d\theta_i\right]^{\frac{1}{q}} \le (1-r_i^2)^{\frac{\sigma}{2}}, A(\lambda,q) ||\Phi_i||_{L^q} \quad i \in \{1,2\},$$

holds. Hence,

$$\left| \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} g_{t_1, t_2}(w_1, w_2) \overline{\Phi_1(w_1) \Phi_2(w_2)} dw_1 dw_2 \right| \\ \leq |C(\lambda)|^{-4} A^2(\lambda, q) ||\Phi_1||_{L^q} ||\Phi_2||_{L^q} ||F||_{\lambda, p}.$$

Thus

$$\left| \int_{\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n)} f(w_1, w_2) \overline{\Phi_1(w_1) \Phi_2(w_2)} dw_1 dw_2 \right| \le |C(\lambda)|^{-4} A^2(\lambda, q) ||\Phi_1||_{L^q} ||\Phi_2||_{L^q} ||F||_{\lambda, p}.$$

Taking the supremum over all continuous functions Φ_i , $i \in \{1,2\}$ with $||\Phi_i||_{L^q} \leq 1$, we deduce that $f \in L^p(\partial B(\mathbb{F}^n) \times \partial B(\mathbb{F}^n))$ with $|C(\lambda)|^2 ||f||_{L^p} \leq A^2(\lambda, p) ||F||_{\lambda, p}$. This finishes the proof of Theorem 1.2.

References

- [1] Boussejra, A. and Sami, H., 2002, Characterization of the L^p -Range of the Poisson transform in hyperbolic spaces $B(\mathbb{F}^n)$. J. Journal of Lie Theory, 12, 1-14.
- [2] El Wassouli, F. and Fahlaoui, S., 2010, The L^2 -function over the product of two circles $S^1 \times S^1$. Integral Transforms and Special functions, vol. 12, 925-933.
- [3] Helgason, S., 1974, Eigenspaces of the laplacian, integral representation and irreducibility. J. Funct. Anal, 17, 328-353.
- [4] Kashiwara, M., Kowata, A., Minemura, K., Okamoto, K., Oshima, T. and Tanaka, M., 1978, Eigenspaces of invariant differential operators on a symmetric space. Ann. of Math, 107, 1-39.
- [5] Lewis, J., 1978 Eigenfunctions on symmetric spaces with distribution-valued boundary forms. J. Funct. Anal, 29, 287-307.

Author information

Fouzia El Wassouli, Department of Mathematics, Faculty of Sciences- Ain Chock, University Hassan II, Casablanca, Morocco. E-mail: elwassouli@gmail.com

Received: July 16, 2016.

Accepted: April 13, 2017