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Abstract. Let B(Fn) be the hyperbolic space over F (F being the �eld of real R, or complex

C or the quaternions H) and ∂B(Fn) its boundary.
We give a necessary and suf�cient conditions on the Poisson transform Pλf of an element f ∈
A′(∂B(Fn)× ∂B(Fn)) for f to be in Lp(∂B(Fn)× ∂B(Fn)), 2 ≤ p <∞, where A′(∂B(Fn)×
∂B(Fn)) is the space of all hyperfunctions on ∂B(Fn)× ∂B(Fn).

1 Introduction and statement of main result.

In classical harmonic function theory, it is well-known that the Poisson integral of complex-

valued integrable function de�ned on the unit circle S = {z ∈ C, |z| = 1} of the complex

plane C determines an harmonic functions on the corresponding unit disk D = {z ∈ C, |z| <
1}. Namely, if f(z) is a bounded harmonic function on D; then almost everywhere on the circle

S it has radial boundary values

lim
r−→1

f(reiα) = φ(eiα)

and the function f can be expressed in terms of φ with the help of the well-known Poisson

transformation

f(reiα) =
1

2π

∫ 2π

0

1− r2

1− 2 cos(α− β) + r2
φ(eiβ)dβ.

This transformation was generalized �rst to classical bounded domains and next to Riemannian

symmetric spaces X = G/K, where G is a non-compact semi-simple Lie group, and K is its a

maximal compact subgroup. Not only harmonic functions are considered, but also functions that

are eigenfunctions of the algebra of G-invariant differential operators onX = G/K(see [3], [4],

[5]).

Furthermore, in rank one symmetric spaces of non compact type, the Poisson transform appears

naturally through the Fourier-Helgason transform in the L2-Plancherel formula of the Laplace-

Beltrami operator on X = G/K.

It is of great interest to look an analogue concrete a description of the range of the Poisson trans-

form of Lp-functions on X ×X, 1 < p <∞, and moreover on the product E ×E of line bundle

E over X
Below we have to deal the particular case of the unit ball B(Fn). Mainly, the aim of this paper is

⋆ to give the necessary and suf�cient condition on the Poisson transform Pλf(λ ∈ R∗) of an
element f in the space A′(∂B(Fn)× ∂B(Fn)) for f to be in Lp(∂B(Fn)×∂B(Fn)), p ∈ [2,∞[.
⋆to extend in a uni�ed manner the result in [2] to the classical hyperboplic spaces B(Fn) .

The main result of this paper are the following theorems.

Theorem 1.1. Let λ ∈ R∗ . Then,

(i) For every F = Pλf with f ∈ L2(∂B(Fn)× ∂B(Fn)), we have

||F ||2λ,2 = sup
0≤r1,r2<1

(1− r21)
−σ

2 (1− r22)
−σ

2

∫
∂B(Fn)

∫
∂B(Fn)

∣∣∣F (r1θ1, r2θ2)∣∣∣2dθ1dθ2 <∞,
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where σ = d
2
(n+ 1)− 1 and d = dimR F.

(ii) Let f ∈ A′(∂B(Fn)× ∂B(Fn)). such that F = Pλf satis�es ||F ||λ,2 < ∞. Then f belongs

to L2(∂B(Fn)× ∂B(Fn)).
Moreover, there exist positive constants γ1 and γ2(λ) such that for every f ∈ L2(∂B(Fn) ×
∂B(Fn)) we have the following estimates:

γ1|C(λ)|2|f ||L2 ≤ ||Pλf ||λ,2 ≤ γ2(λ)||f ||L2 , (1.1)

where

C(λ) =
2σ−iλ

G(iλ)

G( iλ+σ
2

)G( iλ+σ+2−d
2

)
(1.2)

is the Harish-Chandra c-function associated to B(Fn).
(iii) Let F = Pλf with f ∈ L2(∂B(Fn) × ∂B(Fn)). Then its L2-boundary value is given by

following inversion formula

f(w1, w2) = |C(λ)|−4 lim
t
1
−→∞

t2−→∞

1

t1t2

×
∫ tht1

0

∫ tht2

0

(∫
∂B(Fn)×∂B(Fn)

F (r1θ1, r2θ2)Pλ(λ, r1w1, θ1)Pλ(λ, r2w2, θ2)dθ1dθ2
)

(1− r21)
−σ−1(1− r22)

−σ−1(r1r2)
dn−1dr1dr2, in L2(∂B(Fn)× ∂B(Fn)).

Theorem 1.2. Let λ ∈ R∗ and p ∈ [2,∞[. Then,
(i) For every F = Pλf such that f ∈ Lp(∂B(Fn)× ∂B(Fn)), we have

||F ||pλ,p = sup
0≤r1,r2<1

(1− r21)
−σ

2 (1− r22)
−σ

2

∫
∂B(Fn)

∫
∂B(Fn)

∣∣∣F (r1θ1, r2θ2)∣∣∣pdθ1dθ2 <∞,

where σ = d
2
(n+ 1)− 1 and d = dimR F.

(ii) Let f ∈ A′(∂B(Fn)× ∂B(Fn)) such that F = Pλf satis�es ||F ||λ,p <∞. Then f is belongs

to Lp(∂B(Fn)× ∂B(Fn)).

Moreover, there exist positive constants γ1 and γ2(λ, p) such that for every f ∈ Lp(∂B(Fn) ×
∂B(Fn)) we have the following estimates:

γ1|C(λ)|2||f ||Lp ≤ ||Pλf ||λ,p ≤ γ2(λ, p)||f ||Lp , (1.3)

where C(λ) is the Harish-Chandra c-function given by (1.2)

The article is organized as follows. In Section 2, we recall some classical results from har-

monic analysis on hyperbolic spaces B(Fn). In Section 3, we give the precise action of Pλ on

L2(∂B(Fn)× ∂B(Fn)). Section 4 is devoted to the proof of Theorems 1.1 and 1.2.

2 Preliminary results.

In this section, we recall some known results of harmonic analysis on the hyperbolic space

B(Fn) = U(n, 1;F)/U(n,F × U(1,F)). We refer the reader to [1] for more details on the

subject.

Let F be one of the classical �elds, F = R,C or the quaternions H. On Fn+1 considered as a

right vector space over F, we consider the quadratic form

J(x1, ...., xn+1) =
n∑

j=1

|xj |2 − |xn+1|2,

where |x|2 = xx̄ and x −→ x̄ is the standard involution of F.
Let G = U(n, 1;F) be the group of all F-linear transformations g on Fn+1 leaving the quadratic

form J invariant, with the additional property that det g = 1 if F = R or C. Then G is one of the
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classical groups, SO(n, 1), SU(n, 1) or Sp(n, 1) accordingly to F = R,C or H. Moreover, the

group G acts on the unit ball B(Fn) = {x ∈ Fn; |x| < 1} by fractional transforms:

g =

(
A B

C D

)
∈ G : x 7−→ (Ax+B)(Cx+D)−1

with A ∈ Fn×n, B ∈ Fn×1, C ∈ F1×n and D ∈ F. This action of G on B(Fn) is transitive
so that B(Fn) can be seen as homogeneous space B(Fn) = G/K where K is the stabilizer of

0 ∈ B(Fn) in G.

The action of G mentioned above extends naturally to B(Fn) and under this action, K acts

transitively on the topological boundary ∂B(Fn) = {w ∈ Fn; |w| = 1} of B(Fn). Moreover,

forM being the stabilizer in K of e = (1, 0, ..., 0), we have ∂B(Fn) = K/M .

Now, let L2(∂B(Fn)) be the space of all square integrable C-valued functions on ∂B(Fn), with
respect to the normalized super�cial measure of ∂B(Fn). Then the groupK acts on L2(∂B(Fn))
by composition f 7−→ f ◦ k; k ∈ K.
It is well known that under the action of K, the Peter-Weyl decomposition of L2(∂B(Fn)) is
given by L2(∂B(Fn)) = ⊕p,q∈ �K0

Vp,q, where Vp,q is the �nite linear span {φp,q ◦ k, k ∈ K}
and φp,q the zonal spherical functions.

The parametrized set �K0 consists of pairs (p,q) of integers satisfying:

i) p ≡ q (mod2),

ii) p ≥ 0 and 0 ≤ q ≤ 1 if F = R,
p ≥ |q| if F = C,
p ≥ q ≥ 0 if F = H.

3 The Poisson transform Pλ on A′(∂B(Fn) × ∂B(Fn)).

In this section, we give an explicit form of the Poisson transform Pλ de�ned for �xed λ ∈ C on

the space A′(∂B(Fn)× ∂B(Fn)) of all hyperfunctions on ∂B(Fn)× ∂B(Fn) by

(PλF )(x1, x2) =

∫
∂B(Fn)×∂B(Fn)

Pλ(λ, x1, w1)Pλ(λ, x2, w2)F (w1, w2)dw1dw2

for every (x1, x2) ∈ B(Fn)×B(Fn), where

Pλ(λ, xj , wj) =

 1− |xj |2∣∣∣1− ⟨xj , wj

⟩∣∣∣2


iλ+σ
2

,

with σ = d
2
(n+ 1)− 1 and d = dimR F.

The following generalized spherical function associated to the hyperbolic space B(Fn) are de-
�ned by

Fλ,pq(|x|) =
( iλ+ σ

2

)
p+q
2

( iλ+ σ + 2− d

2

)
p−q

2

{(1)p+ dn
2

}−1|x|p(1− |x|2) iλ+σ
2

× F
( iλ+ σ + p+ q

2
,
iλ+ σ + 2− d+ p− q

2
, p+

dn

2
; |x|2

)
,

where (a)k = a(a + 1)(a + 2)...(a + k − 1) is the Pochammer symbol and F (a, b, c;x) is the
classical Gauss hypergeometric function.

We assert the following

Proposition 3.1. LetA′(∂B(Fn)×∂B(Fn)) and f(w1, w2) =
∑

p
1
,q

1
∈ �K

0

p2,q2∈ �K0

ap1q1,p2q2fp1q1(w1)fp2q2(w2)

its K-type decomposition. Then,

(Pλf)(x1, x2) =
∑

p
1
,q

1
∈ �K

0

p2,q2∈ �K0

ap1q1,p2q2Fλ,p1q1(|x1|)Fλ,p2q2(|x2|)fp1q1(
x1
|x1|

)fp2q2(
x2
|x2|

).
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Proof. According to de�nition of Pλ and the K-type decomposition of f , we have

(Pλf)(x1, x2) =

∫
∂B(Fn)×∂B(Fn)

Pλ(λ, x1, w1)Pλ(λ, x2, w2)f(w1, w2)dw1dw2

=
∑

p
1
,q

1
∈ �K

0

p2,q2∈ �K0

∫
∂B(Fn)×∂B(Fn)

ap1q1,p2q2Pλ(λ, x1, w1)Pλ(λ, x2, w2)fp1q1(w1)fp2q2(w2)dw1dw2.

Now, using the fact that [3]

∫
∂B(Fn)

 1− |x|2∣∣∣1− ⟨x,w⟩∣∣∣2


iλ+σ
2

ψ(w)dw = Fλ,pq(|x|)ψ(
x

|x|
); x ∈ B(Fn).

For every ψ ∈ Vpq, it follows

(Pλf)(x1, x2) =
∑

p
1
,q

1
∈ �K

0

p2,q2∈ �K0

∫
∂B(Fn)

ap1q1,p2q2Fλ,p1q1(|x1|)fp1q1(
x1
|x1|

)Pλ(λ, x2, w2)fp2q2(w2)dw2

=
∑

p
1
,q

1
∈ �K

0

p2,q2∈ �K0

ap1q1,p2q2Fλ,p1q1(|x1|)Fλ,p2q2(|x2|)fp1q1(
x1
|x1|

)fp2q2(
x2
|x2|

).

4 Proof of Theorem 1.1 and Theorem 1.2

For prove our main results Theorems 1.1 and 1.2, we are need to the following technical lemmas:

Lemma 4.1. [1] Let λ be a non zero real number. Then

sup
p,q∈ �K0

|Fλ,pq(r)| ≤ γ(λ)(1− r2)
σ
2

for some numerical positive constant γ.

Lemma 4.2. [1] Let λ be a non zero real number. Then there exists a positive constant γ > 0

such that we have:

lim
t−→∞

1

t

∫
B(0,t)

|Fλ,pq(|x|)|2(1− |x|2)−σ−1dm(x) = γ|C(λ)|2,

for every p, q ∈ �K0. Here B(0, t) is the ball of radius t centered at 0 with respect to the

U(n, 1;F)-invariant metric on B(Fn).

Lemma 4.3. [1] Let λ be a non zero real number and p ∈]1,∞[. Then, there exist a constant

A(λ, p) > 0 such that

sup
0≤r<1

||Qr(λ)||p ≤ A(λ, p),

where ||||p stands for the Lp-operatorial norm.

4.1 Proof of Theorem 1.1

The necessary condition: Assure that F = Pλf, f ∈ L2(∂B(Fn)×∂B(Fn)) and let f(w1, w2) =∑
p
1
,q

1
∈ �K

0

p2,q2∈ �K0

ap1q1,p2q2fp1q1(w1)fp2q2(w2) be its K-type decomposition. Then making use of Proposi-

tion 3.2, we get
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F (r1θ1, r2θ2) =
∑

p
1
,q

1
∈ �K

0

p2,q2∈ �K0

ap1q1,p2q2Fλ,p1q1(r1)Fλ,p2q2(r2)fp1q1(θ1)fp2q2(θ2), in C∞
(
[0, 1[×∂B(Fn)

)2
.

Therefore∫
∂B(Fn)×∂B(Fn)

|F (r1θ1, r2θ2)|2dθ1dθ2 =
∑

p
1
,q

1
∈ �K

0

p2,q2∈ �K0

|ap1q1,p2q2 |2|Fλ,p1q1(r1)|2|Fλ,p2q2(r2)|2.

Next, using the Lemma 4.1 we get the right hand side of the estimate (1.1) in Theorem 1.1

||Pλf ||λ,2 ≤ γ2(λ)||f ||L2 .

For the suf�ciency condition: Assume that F = Pλf for some, f ∈ A′(∂B(Fn)× ∂B(Fn)).
By writting K-type decomposition of f

f(w1, w2) =
∑

p
1
,q

1
∈ �K

0

p2,q2∈ �K0

ap1q1,p2q2fp1q1(w1)fp2q2(w2)

and next using Proposition 3.1, we get

F (r1θ1, r2θ2) =
∑

p
1
,q

1
∈ �K

0

p2,q2∈ �K0

ap1q1,p2q2Fλ,p1q1(r1)Fλ,p2q2(r2)fp1q1(θ1)fp2q2(θ2), in C∞
(
[0, 1[×∂B(Fn)

)2
.

The growth condition on F , that is ||F ||λ,2 <∞, implies∑
p
1
,q

1
∈ �K

0

p2,q2∈ �K0

1

t1t2

∫ th1

0

∫ th2

0

|ap1q1,p2q2 |2 |Fλ,p1q1(r1)|2| Fλ,p2q2(r2)|2(1− r21)
−σ−1(1− r22)

−σ−1(r1r2)
dn−1dr1dr2

≤ c||F ||2λ,2 <∞,

for every t1, t2 > 0. Next, by means of Lemma 4.2 giving the uniform asymptotic behaviour of

the function Fλ,pq, we obtain:

γ4|C(λ)|4
∑

p
1
,q

1
∈ �K

0

p2,q2∈ �K0

|ap1q1,p2q2 |2 < c||F ||2λ,2 <∞.

This gives use to the left hand side of the estimate (1,1) in Theorem 1.1.

Now, to establish the L2-inversion formula, let F = Pλf with f ∈ L2(∂B(Fn)× ∂B(Fn)). Ap-
plication of Proposition 3.1 to f expanded into itsK-type series, f(w1, w2) =

∑
p
1
,q

1
∈ �K

0

p2,q2∈ �K0

ap1q1,p2q2fp1q1(w1)fp2q2(w2),

gives use to

F (r1θ1, r2θ2) =
∑

p
1
,q

1
∈ �K

0

p2,q2∈ �K0

ap1q1,p2q2Fλ,p1q1(r1)Fλ,p2q2(r2)fp1q1(θ1)fp2q2(θ2), in C∞
(
[0, 1[×∂B(Fn)

)2
.

Therefore, the C-valued function on ∂B(Fn)× ∂B(Fn) given by

gt1,t2(w1, w2) = |C(λ)|−4
1

t1t2

×
∫ tht1

0

∫ tht2

0

(∫
∂B(Fn)×∂B(Fn)

F (r1θ1, r2θ2)Pλ(λ, r1w1, θ1)Pλ(λ, r2w2, θ2)dθ1dθ2
)

(1− r21)
−σ−1(1− r22)

−σ−1(r1r2)
dn−1dr1dr2, in L2(∂B(Fn)× ∂B(Fn)).
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Then, replacing F by its above series expansion, the function gt1,t2 can be rewritten as:

gt1,t2(w1, w2) = |C(λ)|−4
1

t1t2

∑
p
1
,q

1
∈ �K

0

p2,q2∈ �K0

ap1q1,p2q2

∫ tht1

0

∫ tht2

0

Fλ,p1q1(r1)Fλ,p2q2(r2)

×
(∫

∂B(Fn)×∂B(Fn)

fp1q1(θ1)fp2q2(θ2)Pλ(λ, r1w1, θ1)Pλ(λ, r2w2, θ2)dθ1dθ2
)

(1− r21)
−σ−1(1− r22)

−σ−1(r1r2)
dn−1dr1dr2

= |C(λ)|−4
1

t1t2

∑
p
1
,q

1
∈ �K

0

p2,q2∈ �K0

[
ap1q1,p2q2

∫ tht1

0

∫ tht2

0

|Fλ,p1q1(r1)|2|Fλ,p2q2(r2)|2(1− r21)
−σ−1(1− r22)

−σ−1(r1r2)
dn−1dr1dr2

]
fp1q1(w1)fp2q2(w2).

Hence the L2(∂B(Fn))-norm of the function gt1,t2 is given by:

||gt1,t2 ||2L2 =
∣∣∣|C(λ)|−4

1

t1t2

∣∣∣2
∑

p
1
,q

1
∈ �K

0

p2,q2∈ �K0

[
ap1q1,p2q2

∫ tht1

0

∫ tht2

0

|Fλ,p1q1(r1)|2|Fλ,p2q2(r2)|2(1− r21)
−σ−1(1− r22)

−σ−1(r1r2)
dn−1dr1dr2

]2
.

Furthermore, we have

||gt1,t2 − f ||2L2 =
∑

p
1
,q

1
∈ �K

0

p2,q2∈ �K0

[ |C(λ)|−4

t1t2

∫ tht1

0

∫ tht2

0

|Fλ,p1q1(r1)|2|Fλ,p2q2(r2)|2(1− r21)
−σ−1

× (1− r22)
−σ−1(r1r2)

dn−1dr1dr2 − 1
]2
|ap1q1,p2q2 |2.

Finally using the asymptotic behaviour of the generalized spherical functionFλ,pq given Lemma

4.2 we see that

lim
t
1
−→∞

t2−→∞

∣∣∣gt1,t2 − f
∣∣∣2
L2

= 0

which gives the desired result.

4.2 Proof of Theorem 1.2

Proof of (i): Let f in Lp(∂B(Fn)× ∂B(Fn)). Then, we have

(Pλf)(r1θ1, r2θ2) =

∫
∂B(Fn)×∂B(Fn)

Pλ(λ, r1θ1, w1)Pλ(λ, r2θ2, w2)f(w1, w2)dw1dw2

= (1− r21)
iλ+σ

2

∫
∂B(Fn)

Pλ(λ, r2θ2, w2)[Qr1(λ)fw1
](θ1)dw2

with fw2
(w1) = f(w1, w2). Putting g(w2) = [Qr1(λ)fw2

](θ2). Then

Pλf)(r1θ1, r2θ2) = (1− r21)
iλ+σ

2 (1− r22)
iλ+σ

2 [Qr2(λ)g](θ2).

Thus, from Lemma 4.3, we get

||Pλf ||λ,p = sup
0≤r1,r2<1

(1− r21)
−σ

2 (1− r22)
−σ

2

[ ∫
∂B(Fn)

∫
∂B(Fn)

∣∣∣Pλf(r1θ1, r2θ2)
∣∣∣pdθ1dθ2] 1

p

= sup
0≤r1,r2<1

[ ∫
∂B(Fn)×∂B(Fn)

∣∣∣[Qr1(λ)[Qr2(λ)(g)]θ2]θ1

∣∣∣pdθ1dθ2] 1

p

≤ A(λ, p)||Qr2(λ)(g)(θ2)||Lp ≤ A2(λ, p)||f ||Lp .
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This end the proof of (i).

Proof of (ii): Let F be a C valued function on ∂B(Fn) × ∂B(Fn) such that ||F ||λ,p <
∞. Using the fact that ||F ||λ,2 ≤ ||F ||λ,p for every p ∈ [2,∞[, there exists from Theo-

rem 1.1 a function gt1,t2 ∈ L2(∂B(Fn) × ∂B(Fn)) such that Pλf = F and f(w1, w2) =
lim

t
1
−→∞

t2−→∞

gt1,t2(w1, w2), in L2(∂B(Fn)× ∂B(Fn)). where More precisely, we have

gt1,t2(w1, w2) =
|C(λ)|−4

t1t2

×
∫ tht1

0

∫ tht2

0

(∫
∂B(Fn)×∂B(Fn)

F (r1θ1, r2θ2)Pλ(λ, r1w1, θ1)Pλ(λ, r2w2, θ2)dθ1dθ2
)

(1− r21)
−σ−1(1− r22)

−σ−1(r1r2)
dn−1dr1dr2.

Let Fi, i ∈ {1, 2} be continuous functions on ∂B(Fn). Then we have

lim
t
1
−→∞

t2−→∞

∫
∂B(Fn)×∂B(Fn)

gt1,t2(w1, w2)F1(w1)F2(w2)dw1dw2 =

∫
∂B(Fn)×∂B(Fn)

f(w1, w2)F1(w1)F2(w2)dw1dw2.

However,∫
∂B(Fn)×∂B(Fn)

gt1,t2(w1, w2)F1(w1)F2(w2)dw1dw2 =
|C(λ)|−4

t1t2

∫
∂B(Fn)×∂B(Fn)

[
∫ tht1

0

∫ tht2

0

(∫
∂B(Fn)×∂B(Fn)

F (r1θ1, r2θ2)Pλ(λ, r1w1, θ1)Pλ(λ, r2w2, θ2)dθ1dθ2
)

(1− r21)
−σ−1(1− r22)

−σ−1(r1r2)
dn−1dr1dr2

]
F1(w1)F2(w2)dw1dw2.

=
|C(λ)|−4

t1t2

∫ tht1

0

∫ tht2

0

(∫
∂B(Fn)×∂B(Fn)

F (r1θ1, r2θ2)PλF1(r1θ1)PλF2(r2θ2)dθ1dθ2
)

(1− r21)
−σ−1(1− r22)

−σ−1(r1r2)
dn−1dr1dr2.

Thus by means of Holder inequality, we obtain∣∣∣ ∫
∂B(Fn)×∂B(Fn)

F (r1θ1, r2θ2)PλF1(r1θ1)PλF2(r2θ2)dθ1dθ2

∣∣∣
≤

(∫
∂B(Fn)

|PλF1(r1θ1)|qdθ1
) 1

q

∫
∂B(Fn)

|PλF2(r2θ2)|
[ ∫

∂B(Fn)

|F (r1θ1, r2θ2)|pdθ1
] 1

p

dθ2

≤
(∫

∂B(Fn)

|PλF1(r1θ1)|qdθ1
) 1

q
(∫

∂B(Fn)

|PλF2(r2θ2)|qdθ2
) 1

q

|
[ ∫

∂B(Fn)×∂B(Fn)

|F (r1θ1, r2θ2)|pdθ1dθ2
] 1

p

,

where q is such that 1

p + 1

q = 1. Next, Lemma 4.3 shows that, for every q > 1, the following

estimate [ ∫
∂B(Fn)

|PλFi(riθi)|qdθi
] 1

q

≤ (1− r2i )
σ
2 , A(λ, q)||Fi||Lq i ∈ {1, 2},

holds. Hence, ∣∣∣ ∫
∂B(Fn)×∂B(Fn)

gt1,t2(w1, w2)F1(w1)F2(w2)dw1dw2

∣∣∣
≤ |C(λ)|−4A2(λ, q)||F1||Lq ||F2||Lq ||F ||λ,p.

Thus∣∣∣ ∫
∂B(Fn)×∂B(Fn)

f(w1, w2)F1(w1)F2(w2)dw1dw2

∣∣∣ ≤ |C(λ)|−4A2(λ, q)||F1||Lq ||F2||Lq ||F ||λ,p.
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Taking the supremum over all continuous functions Fi, i ∈ {1, 2} with ||Fi||Lq ≤ 1, we
deduce that f ∈ Lp(∂B(Fn) × ∂B(Fn)) with |C(λ)|2||f ||Lp ≤ A2(λ, p)||F ||λ,p. This �nishes
the proof of Theorem 1.2.
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