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Abstract. Andrews investigated the function Cy_;(n) which counts the number of overpar-
titions of n in which no part is divisible by k and only parts = 45 (mod k) may be overlined.
Let Ay(n) denote the number of ¢-regular overpartitions of n. Very recently, Mahadeva Naika
and Gireesh discovered some congruences for Cs 1(n) modulo 2?37 for some values of i and j
and modulo 2* for As(n). Furthermore, they conjectured that C5 1(12n + 11) = 0 (mod 144).
In this paper, we confirm this conjecture. We also establish several congruences for As(n) and
Az (n), 7 > 2 modulo 2¢37 for few values of i and j.

1 Introduction

A partition of a positive integer n is a finite non-increasing sequence of positive integers A1, Ay, . ..

Ay such that >°7_; A\; = n. The ); are called the parts of the partition. We shall set p(0) = 1
and for n > 1, let p(n) denote the number of partitions of n. The generating function for p(n) is
given by

oo n_i
nzzop(n)q =

Here and throughout this paper, we assume that |¢| < 1 and for any positive integer k, f is
defined by

o0

fio=TT0 = ).

n=1

In 1919, Ramanujan [16] found nice congruence properties for p(n) moduli 5,7 and 11. Namely,
for any nonnegative integer n,

p(Sn +4) (mod 5),
p(7Tn+5) (mod 7),
p(1ln+6)=0 (mod 11).

=0
=0

Motivated by the above congruences, many mathematicians discovered many congruence prop-
erties for different partition functions such as singular overpartitions, ¢-regular partitions, bro-
ken k-diamond partitions and ¢-regular overpartitions. Among these, arithmetic properties of
{-regular overpartitons has received a great deal of attention. For a positive integer [ > 2, a
partition is called ¢-regular if none of its parts is divisible by ¢. An overpartition of n is a non-
increasing sequence of natural numbers whose sum is n in which the final occurrence of a part
may be overlined.
In [13], Lovejoy proved the following theorem in the theory of overpartitions.

Theorem 1.1. ([13]) If By(n) denote the number of overpartitions of n of the form y, +yt-+
Ys, where y; — yjo—1 > 1ifyjre—1 is overlined and y; — yj1o—1 > 2 otherwise. Let Ay(0) = 1
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and forn > 1, let Ay(n) denote number of overpartitions of n with no parts divisible by {. Then
Az (n) = Bg(n)

The generating function for A,(n) is given by [18]

- A n f[zfz
A = . 1.1
7?:0 «(n)q Ty (1.1)

Setting ¢ = 3 in (1.1), Shen [18] observed that A3(n) = Cs1(n), where Cy ;(n) counts the
number of overpartitions of n in which no part is divisible by & and only parts = +5 (mod k)
may be overlined. This function was introduced and investigated by Andrews in [3]. As noted
in [3], the generating function for Cj, ;(n) is given by

00 k. k o ge ok _k—j. Kk
S ()" = (4":4") oo ( qj(:;qgoo( ¢34 )00 (12)
n=0 > /o0

where £ > 3and 1 < i < {%J Using generating function dissection techniques, Shen [18] es-

tablished several interesting congruences modulo 2, 6,24 for A3(n) and modulo 3,24 for A4(n).
For example

Theorem 1.2. ([ 18])For all non-negative integer n,

A3;(9n+3)=0 (mod 6),

A3;(9n+6) =0 (mod 24),
As(12n4+8) =0 (mod 3),
A(12n+7)=0 (mod 24).

In the same paper, Shen gave a combinatorial interpretation of first two congruences in the
above theorem by introducing the rank of vector partitions. Very recently, Mahadeva Naika and
Gireesh [14] employed dissection formulas of certain quotients of theta functions to establish
several infinite families of congruences for Cj, ;(n) for different values of k and j. They also
considered the function As(n) and proved some congruences modulo 16. For example, they
proved the following theorems:

Theorem 1.3. ([14]) For all integers n > 0, we have
C518n+7)=0 (mod 12),
C51(8n+6) =0 (mod 24),
(51(24n+14) =0 (mod 72).

Theorem 1.4. ([/4]) Let p > 5 be prime and (’72) = —1.Then for all integers n > 0, a > 1
and1 < j <p-—1, we have

Ai(spMn +p 1 (3p + Sj)) =0 (mod 2%).

In the same paper, they also proposed the following conjecture for Cs 1(n).
Conjecture 1.5. [14] For all integer n > 0,
C51(12n4+11) =0  (mod 144).

Alanazi, Munagi and Sellers [2] established several Ramanujan type congruences for /-
regular overpatitions. In particular, Alanazi et al. [2] discovered the following theorem.

Theorem 1.6. (/2]) For all n > 0, we have Ag(6n +5) = 0 (mod 3).
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The following theorem was proved by Alanazi et al. [2] using a congruence relation due to
Munagi and Sellers [15].

Theorem 1.7. (/2]) For all n > 0 and all j > 3, we have Az; (27n + 18) = 0 (mod 3).

The main aim of this paper is to show that Conjecture 1.5 is true and also to prove some new
congruences for As(n) and Az-(n). The paper is organized as follows: In Section 2, we recall
some notations, definitions and also we collect some lemmas and theorems which are useful to
prove our main results. In Section 3, we give a simple proof of Conjecture 1.5 and also establish
a p-dissection formula for ff /f3 which seems to be new. In Section 4, we derive some new
congruences modulo 8 and 16 for As(n). In Section 5, we discover several infinite families of
congruences modulo 6, 8 and 16 for Aq(n). We also deduce Theorem 1.6 as a special case of
one of our theorems. In Section 6, we prove infinite families of congruences for As-(n), r > 2
modulo 3, 4, 8 and 16. We also provide a short and simple proof of the Theorem 1.7.

2 Set of preliminary results

In this section, we present some identities which are useful to prove our main results.
Let p > 3 be a prime. The Legendre symbol (%) is defined by

1 if a is a quadratic residue modulo p and p 1 a,
a
<> := ¢ —1 if ais a quadratic nonresidue modulo p and p { a,
P 0 ifp]a.

For | ab |< 1, Ramanujan’s general theta function f(a,b) is defined by [1]
Z an(n+l)/2bn(n71)/2'
The following lemma is a consequence of Entry 25 of (i), (ii), (v) and (vi) in [1, pp. 35-36].

Lemma 2.1. The following 2-dissection formulas are true:

1 _ fés 2q f4f16
f12 f25f126+ fsz

2.1

and

14
! +4q f“fS. (2.2)

it f214f8 2’

The following 2-dissection formula for £ f was proved by Hirschhorn, Garvan and Borwein
[9] and also by Xia and Yao [19].

Lemma 2.2. The following 2-dissection formulas are true:

B_ABrR M
fi ffo +qf4

2.3)

and

f@ f4f6f12 +2 f4f6f8f24
f1 f2f8f24 f2f12 ’

For a proof of (2.4), see [5] and [19].
From [8], we recall the following lemma.

(2.4)

Lemma 2.3. The following 3-dissection formula holds:

fr _ fofs +2g R +4q 2f6f18.

B 1 1
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From [1, p.49], we recall the following p-dissection formula.

Lemma 2.4. For any prime p, we have

5 —
f; _ f2p2 + ;DZ q f p(p— 27‘ p+2r))

Theorem 2.5, (/7, Theorem 2.1]) For any odd prime p,

r=1

p—3

o ) 5 2
f22 mZim p2+(2m+1)p p‘—(Z:nJrl)p p2—1 f2p2
7=§q2fq2 g +q87f~
1 m=0 P

2 2_ —
Furthermore, ™5™ # 221 (mod p) for 0 <m < 22

For all integers n, k > 0, let t(n) (respectively r(n)) denote the number of representations

of n as sum of k triangular (respectively square) numbers.

Theorem 2.6. For 1 < k <7, we have

rk(8n+k) - 2k_1{2+ (i) } tk(n)

In [12], Hirschhorn and Sellers proved the following arithmetic identity for az(n).

Theorem 2.7. Let p = 2 (mod 3). For all integers n > 0, we have

204_1
a3<p20‘n+p 3 >:a3(n),

where az(n) denote the number of 3-core partitions of n.

3 Proof of Conjecture 1.5 and a p-dissection formula

In this section, we give a simple proof of Conjecture 1.5 and also establish a p-dissection formula

for f?/f3 which will be used to prove congruence properties for As(n) and Ag(n).

Theorem 3.1. Conjecture 1.5 is true.

Proof. On using Lemma 2.3, Yao [20] proved that

0 2 £3 r4
> Cia(6n+35)q" = 16f2f39f4 .
n=0 fl

By the binomial theorem, it is easy to check that, for all positive integers k and m,

”5m fzm (mod 3)’
o= f3m (mod 3%).

In view of congruence (3.3), we have

3 C31(6n+5)¢" =16 31 =16f3f; (mod 144).
C fz}czgféx D 4

n=0 1
Now, comparing the odd powers of ¢ in (3.4), we obtain the required congruence.

Theorem 3.2, Let p > 5 be a prime. Then

p—1

15 < 3k2+k > pn( 1pn+6k+1) pz—l f;z
i Z q Z(6pn—|—6k+l) +pg = o
2 k:_PTfl n=—00 2p?

bt 2=

Furthermore, if — %1 <k< ’%1, k # h:;l, we have 3E *k % p 71 (mod p).

3.1

(3.2)
(3.3)

(3.4)
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Proof. From [6, Corollary 1.3.21], we recall that

oo

5
f—lzz Z (6n+ 1)g nM.

f2 n=-—00

Dissecting the right side into p terms, we find that

S T

k=—P=1 lnffoo

p—1
R B . pn(3pn+6k+1)
= > @ Y (G ok g
k:_pT_l n=—oo
32k > pn(3pn+6k+1) pP—1 s (*n +n)
Z qg 7 Z (6pn+6k+1)g 2 tq¢ = Z (6n+1)q
k—fi n=—oo n=—oo
kit 21
p—1
2. 3624k 0 pn(3pn+6k+1) p2—1 52
= Z q 2 Z(6pn—|—6k+1)q 2 +pg T -
DT T
ket ip(:l

If w = % (mod p), which implies that (6k + 1)> = 0 (mod p). This implies that k& =

%ﬁl for some integer m. Since —% <k< ’%1, we have m = +1. Thus k = % which is
a contradiction. O

4 Congruences for As(n) modulo powers of 2

In this section, we prove infinite families of congruences modulo 2% and 2* for As(n).

Theorem 4.1. If p > 5 is a prime such that (%) = —land 1 < j < p— 1, then for all
non-negative integers n and o, we have

Ts(4p2a+2n +4p* i+ p2a+2> =0 (mod 2%), “.1)

a5 (4 59ty 413 5a) =0 (mod 2%, 4.2)

Ai(4 S50%1, 417 5@) —0 (mod 23). 4.3)

Proof. In [14], Mahadeva Naika and Gireesh showed that

ZAS 2n+1 qf10f4fs +2f10f14. 4.4)
£ 3 s

Extracting the even powers of ¢ in (4.4), we obtain

N 4 fs
> As(dn+1)g" =2 211f4' 4.5)
n=0 1 J4
By the binomial theorem, for any positive integers m and k, we have
m=ff™ (mod 2), (4.6)

dm = 2m (mod 22). 4.7
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From (4.5) and (4.7), we find that

ni;AS(cm +1)g" = 2@% (mod 2%). (4.8)
Define
ni:oa(n)q" = gé (4.9)
Then, in view of (4.8) and (4.9), we have
As(4n+1) = 2a(n) (mod 2°). (4.10)

Using Lemma 3.2, we can rewrite (4.9) as

= - 3245 = . pn(3pn+65+1) p2— fS
Za(n)qn: [ Z q Z (6pn+6]+1)inqul p2‘|

2
n=0 jz_L—l n=—oo f2P2
2
jzEe=t
p—1
2 53m2+m e 5 n(3pntomtl) 5p2—1 f55pz
x| >0 PN (6pntem+ 1) T Epg m | (4
m=7D:1 n=—o0o 10p?
miizgll
Let p > 5 be a prime with (’75) = —1. For —pT_l < jm < pgl, consider the following

congruence equation

3245 _3m? 2
‘72+J+5 m2+mEp4 (mod p), (4.12)

which is equivalent to
(65 +1)>+56m+1)>=0 (mod p).

Since (_75) = —1, the above congruence holds if and only if j = m = %. So. in (4.11),

2_
extracting the terms involving qp"““pTl and then replacing ¢P by ¢ in the resulting congruence,
we obtain

00 ) 5 5
D —1 n tp—1 z.fp fsp
a(pn+ "= (-1)" p 2.
nZ=0 4 ) f22pf120p

This implies that, for 1 <¢ <p—1,

a(p(pn+t)n+p _1) =0 (4.13)

and

& 2 5 £5
2 p-—1\ , NV L
a(pn + "= (1" p
2%( 4 ) 13 fio

From the above identity and (4.9), we find that
2

—1 tp—1
a(p2n+p ) )z(—l) 7 p’a(n),
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and by induction on o« > 0, we deduce

2o _ ] tp1

a(pzo‘n + pT) = (=1)"5 *p**a(n).

Replacing n by p>n + pt + p (1 <t < p— 1) in the above identity and then invoking (4.13),
we deduce that for o > 0 and n >0,

2a+1 _

i
a(p e+ ) = 0. (4.14)

Replacing n by p>**+2n 4 p?oF1t + pza?_l in (4.10) and then using (4.14), we obtain (4.1).
From [1, pp.82], we recall that

f(=¢" —qlo)_qu( 7, —)
f(=¢*°,—¢°) f(=q%,—q')

In view of (4.8), (4.15) and by induction, we find that for all non-negative integers n and «

f1=fos f25 — qfos. (4.15)

S As4-5% 45" = 2(~1)%fifs (mod 2°).
n=0

Substituting (4.15) into the above congruence and then equating the coefficients of ¢°"+3

and
¢ in the resulting congruence, we obtain the remaining two congruences of the above theo-

rem. O

Theorem 4.2. Let p be an odd prime and N be a positive integer with p t N such that pN = 3
(mod 2%). Let o > 0 be an integer.

()If p= — 1 (mod 2%), then As(p***™*N) =0 (mod 2*),
(2)If p= 3,11 (mod 2*), then As(p'**T15N) =0 (mod 2%),
3)If p= 9 (mod 2%), then As(p*2*t3IN) =0 (mod 2%),

(4)If p= 7 (mod 2%), then As(p**T'N)=0 (mod 2*),
(5)If p= 13 (mod 2%), then As(p****SN)=0 (mod 2*).

Proof. Hirschhorn and Sellers [11] obtained the following 2—dissection formula:

s _ fsfio +q f4f10f40

= (4.16)
fi fife fzfsfzo
From (2.1), (4.4) and (4.16), we find that
S As(4n +3)g" = i3 + 8¢ fi frofso (mod 2). (4.17)
= 13 fao f3 fs 0
Extracting the even powers of ¢ in (4.17) and then using (4.6), we find that
ZAS 8n +3)¢" = 8 = 82753 ¢" (mod 2%).
n=0 n=
Equating the coefficients of ¢™ on both sides of the above congruence, we obtain
As(8n +3) = 8t3(n) (mod 2%).
Setting k = 3 in Theorem 2.6, we obtain r3(8n + 3) = 8¢3(n). Hence
As(8n+3) =r3(8n+3) (mod 2%). (4.18)

Hirschhorn and Sellers [10] proved that if p > 3 is a prime and n is a positive integer, then

a+1_1 -1 a_
r3<p2“n>=<pp_1—(p)p _1> rs(n) —p L nsn/p), @20 @19)
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Here (5) is the Legendre symbol and we take r3(n/p?) = 0 if p* { n.
Replacing n by pN (pt N) in (4.19), we get

pa+1 -1

2a+1
N) =
r3(p ) ( Py

) r3(pN). (4.20)
By (4.20), if p= —1 (mod 2*), then

0 (mod 16 if o is odd,
7,3(p2a+1 ){ ( )

r3(pN) (mod 16) if oviseven.

The above congruence implies that r3(p***3N) = 0 (mod 2*). Setting n = pmi# in (4.18),
we obtain

As(p* P N) =r3(p** P N) =0 (mod 2°).

This completes the proof of (1).
Let p=3,11 (mod 16). Replacing a by 8« + 7 in (4.20) and using the fact that

p8a+8 —1
T l+p+--+p***7=0 (mod 2%,
we obtain
r3(pf% B N) =0 (mod 2%). 4.21)
Putting n = % in (4.18) and then using the above congruence, we get (2). The other
statements follow in a similar way. O

Theorem 4.3. Let p > 3 be a prime and N, > 1 are integers.

(1)If p=7 (mod 2*%), then As(p®*(8N + 3)) = A5(8N + 3) (mod 2*%),
(2)If p=1,5,9 (mod 2*), then As(p*>*(8N + 3)) = As(8N + 3) (mod 2*),
(3)If p=—1 (mod 2%), then As(p**(8N + 3)) = A5(8N + 3) (mod 2*4),
(4)If p=3,11 (mod 2*), then As(p'®*(8N +3)) = As5(8N + 3) (mod 24),
(5)If p=13 (mod 2%), then As(p***(8N + 3)) = As(8N + 3) (mod 2*).

Proof. We give a proof of (1).The proof of other congruences follows similarly. Replacing n by
p*(8N + 3) and a by 4a + 3 in (4.19), we obtain

o 5 pBats _ pSetT
r3(p° TP (8N +3)) = r3(p° (8N +3))

e (a>0). (4.22)

If p=7 (mod 16), then we have

p8a+8_1
p— =1+p+--+p**7 =0 (mod2*)
and
p8a+771
PP = =1 (med 22)

Using above two congruences in (4.22), we get
r3 (P28 (8N +3)) = r3(8N +3)  (mod 24). (4.23)

Putting n = %‘NH)_? in (4.18) and then using (4.23) and (4.18), we get the required

result. =
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Theorem 4.4. If p > 3 is a prime with (_710) = —1, then for all non-negative integers n and «,
/Ts(pmsn + 7p2a) =833 (mod2%). (4.24)
Moreover, for 1 <r <p-—1,
E(p2a+2(8n FT) 4 sza“r) =0 (mod 2%).

Proof. Extracting the terms involving ¢>**! in (4.17) and then using (4.6), we deduce that

> As(8n+7)q" =8f5f3 (mod 2%). (4.25)
n=0

Thus (4.24) is true for « = 0. In view of Theorem 2.5 and (4.7), we have

= 24m 24 (2m 2_(2m p2—
= qu; f(qp +(2+1)p’qp (2 +1>p) +q Slf; (mod 22). (4,26)

Assume that (4.24) holds for o = j. With the aid of (4.26), we can rewrite (4.24) with « = j as

321

n=0
% [ qsk ;k f (qsp +(2k+1)p : qsp —(2k+1)p> 3 2‘| (mod 24)
k=0
(4.27)
Now consider the congruence equation,
K+ k 21
m*+m+5- tE_4.2 (mod p).
2 8
where 0 < m,k < %‘3 and p is a prime such that (’710) = —1. We can rewrite the above
congruence as follows:
(4m +2)* +10(2k +1)> =0 (mod p).
Since (_710) = —1, it implies that
4dm+2=2k+1=0 (mod p).
Thus m =k = 25~ 1 Using the above fact in (4.27), extracting the terms involving qf”"”i1 and
then rep]acmg q° by q, we obtain
Z s (8p2]+1n + 7p2J+2) =83 3, (mod 2. (4.28)

Again Extracting the terms involving ¢P in the above congruence, we see that (4.24) is true for
«a = j + 1. Hence the proof of (4.24).
Next, comparing the coefficients of ¢?"*" for 1 < r < p — 1 in (4.28), we obtain

Ai(spzf“(pn Fr) 4 7p2j+2) =0 (mod 2%).
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Theorem 4.5. For all integers n, o > 0, j € {642,842} and k € {242,3242}, we have
AT(SM (103n + j) - 35) =0 (mod 2% 4.29)
and
/T5<52@ (5 103 + k) - 35) = 0 (mod 2% (4.30)

Proof. Setting p = 5 in (4.26), we obtain

£ =Fdd) + af (. ¢°) + @ f35  (mod 22). (4.31)
Let b(n) be defined by
> b(n)g" = £ 13 (4.32)
n=0

Then from (4.25), we have

As5(8n+7) = 8b(n) (mod 2%). (4.33)

In view of (4.31) and (4.32), we see that

> b(n)g" = F(@, ) + (a0 ¢) 5 + ¢° 2 (mod 27).
n=0

Equating the coefficients of ¢°"*3, ¢"** and ¢°**! in the above congruence, we find that

b(5n+3)=b(5n+4)= 0 (mod 2?), (4.34)

> b(5n+ )" = qfifiy (mod 22).
n=0

Employing (4.31) in the above congruence and then equating the coefficients of ¢°*, ¢°"* and
¢4, we obtain
b(25n+ 1) =b(25n +16) = 0 (mod 2%), (4.35)
> b(25n+21)¢" = f3f3 (mod 2%). (4.36)
n=0
In view of (4.32), (4.36) and by mathematical induction, we find that for a;,n > 0
5% 1
b(52a+2n 21 ) = b(n) (mod 22). 4.37)
Replacing n by 5n 4 3 and 5n + 4 in (4.37) and then using (4.34), we obtain
200 200 _
b(52a+2(5n +3) 4212 1) = b(52a+2(5n +4) 4212 1) =0 (mod 22).
4 4
(4.38)

From (4.33) and (4.38), we deduce that
E(52a(103n +642) — 35) = £(52a(103n +842) — 35) =0 (mod 2%).

This completes the proof of (4.29). In a similar way, remaining one follows from (4.33), (4.35)
and (4.37). O
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5 Congruences modulo powers of 2 and 6 for Ay(n)

In this section, we prove several infinite families of congruences for Ay(n) modulo 22,6,2% and
2*. The following lemma gives the generating functions for Ag(4n + 1) and Ag(4n + 3).

Lemma 5.1. We have

o0 2 r14
> Ay(dn+ 1)g" = 2;32% (5.1)
n=0

and

> Ag(4n+3)g" = f3 j:z i : (5.2)
n=0 1
Proof. Setting I =9 in (1.1), we have
—— \n_ J3h
A = . 53
7;) 9(n)q f12f18 (5.3)

Xia and Yao [19] found the following 2-dissection formula for %:

fo _ Jilis , fifefs (5.4)

fi fifsfs 13 2

In view of (5.4), we have

f2 f9 _ f2 < f12f18 + fff6f36> f18f12 +2 f12f4 + 2f4f6f36 (5‘5)

T2 Fs\ Blefe  © fifn B £ sl

Combining (5.5) and (5.3) and then extracting the terms involving ¢>"*!

we obtain

in the resulting identity,

72

> A2+ 1)g" =2

(5.6)
n=0 ff
With the help of (2.2), we can rewrite the above identity as follows:
00 14
> A(2n+1)g" = fﬁf“fs 1o fls T (5.7)

n=0 f2 f212 f8

Extracting the even powers of ¢ and the odd powers of ¢ in (5.7), we arrive at (5.1) and (5.2)
respectively.

Theorem 5.2. If p > 5 is a prime with (_72) =—land1 < j < p— 1, then for all non-negative
integers n and o, we have

/Tg(pz‘”z(Sn +3) + 8p20‘+1j) =0 (mod 2%).
Proof. Substituting (2.1) and (2.4) into (5.2), we get

i/Tgmn +3)¢" = 8f72f737 _ glilslinlst (mod 2%). (5.8)

n=0 f4 fl fl f218f24f16
Employing (4.6), we deduce that

DALY 58

d 2).
e =P (med2)
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Extracting the even powers of ¢ in (5.8) and then using the above congruence, we find that

i%(snm)q 8f3j:32 (mod 2%). (5.9
n=0

Using Lemma 3.2 and (4.26), we can rewrite the above congruence as

> n(3pn+obk+ pz— fS
Ay(8n +3)q" [ Z i Z (6pn + 6k + 1)¢>" S :I:pqglzpz]
fh=—25t n=—o00 f6p2
.

p—3
=

= mi4m 2p2+(2m+1)p 2;,27(2"”1);3 P21 3 4
X Z q f(q 2 yd 2 ) +q f2p2 (mod 2 ) (5.10)

m=0
Let p > 5 be prime with (_—2> =—1.For0<m< pT and — pT <k< ”T we consider the
P
congruence equation
32+ k |
m? +m+3 2+ =3. 2 (modp). 5.11)

We can rewrite the above congruence as follows:
22m+1)* 4 (6k+1)>*=0 (mod p).
Since (*72) = —1, it implies that
2m+1=6k+1=0 (mod p).

Thus, the congruence (5.11) holds if and only if m = 5= Land k = e Usmg the above fact in

(5.10), extracting the terms involvin qp2”+3%_1 and then replacin, qp by ¢, we obtain
g g P g y

Z,Tg(spzn 4 3p2) n =g ? (mod 2%). (5.12)
n=0 6

From (5.9), (5.12) and by mathematical induction, we find that for « > 0 andn > 0

ng(spmn + 3p2°')q” =8f ;32 (mod 24). (5.13)
n=0

Again employing Lemma 3.2 and (4.26) into (5.13), extracting the terms involving qp””%f] in
the resulting congruence and then replacing ¢” by ¢, we obtain

o L p2 -1 fs
S A s (pn n 3T) +3p% |q" = 8/ 52 (mod 24).
n=0 f6p
Equating the coefficients of ¢P"*J for 1 < j < p — 1, we obtain the required congruence. O
Remark 5.3. Equating the coefficients of odd powers of ¢ in (5.8), we see that for n > 0
Ay(8n+7)= 0 (mod 2%).

Theorem 5.4. If p > 5 is a prime with (‘71) = —land1 < j <p—1, then for all non-negative

integers n and «,

Tg(pza+2(8n +5)+ 8p20‘+1j) =0 (mod 2%).
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Proof. In view of (2.1), (2.4) and (5.1), modulo 4, we find that

f32 214 = 2 <f4f6f12f f()zf826f24 >+ f6f122f824 (5.14)

= +
fi2fs B falte [P Fifufle [0 foafid
Combining (5.1) and (5.14), extracting the odd powers of ¢ and then using (4.6), we deduce

5
33 3/

Z/Tg(S?l—kS) "=4f]5 +4fi~5 (mod 2%). (5.15)
n=0 f6 f24
Now, we consider the following two congruences:
2 2
33 2“ 4 om? 4 2m=5L (mod p), (5.16)
2 m2+m p2 -1
185° 4+ 65 + 5 =5 3 (mod p). (5.17)
where 0 < m < 53, 2=l < i < P=lagndp > 51is a prime such that (’71) = —1. We can
rewrite above congruences as follows.
(65 + 1)+ (4m+2)*=0 (mod p),

0
(12§ +2)*+ (2m+1)>=0 (mod p).
Since (’71) = —1, above two congruence implies that
6j+1=2m+1=0 (mod p).

Thus, the congruences (5.16) and (5.17) holds if and only if m = 5= L and Jj="r= L . Substituting
Lemma 3.2 and (4.26) into (5.15), using the above fact in the resultlng congruence and then

extracting the terms involving ¢ "n+5%5  we obtain
o0 5
Z/TQ(SpZanz) 4f2f* +4fff—122 (mod 23). (5.18)
=0 & o

From (5.15), (5.18) and by mathematical induction, we see that fora > 0andn >0

5
3f12

i~ (mod 2%). (5.19)
f2a

> Ao (852 n+ 55" )q" = 4] 5 yar
n=0

4f6

2
Again employing Lemma 3.2 and (4.26) into (5.19), extracting the terms involving ¢P"*3 "5 in
the resulting congruence and then replacing ¢” by ¢, we obtain

ZAQ <8p2a(pn+5> +5 2@) "= 4f4pf‘P +4f;f12P (mod 2%).

n=0 f6p f24p

Equating the coefficients of ¢P?"*/ for 1 < j < p — 1 in the above congruence, we obtain the
required result. O

Theorem 5.5. If p > 5 is a prime with (%) =—land1 < j <p—1, then for all non-negative

integers n and «,

Tg(pza+2(8n + 1) + gprot! j) =0 (mod 2%).
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Proof. Combining (5.1) and (5.14), extracting the even powers of ¢ and then using (4.7), we see

that
> Ay(Bn+ 1)g" = 2328 (mod 2°). (5.20)
n=0 f6 f12
Using Lemma 2.4 with ¢ replaced by —¢ and Lemma 3.2 in (5.20), we have
p—1
© 24 24 N 33k 4k i 3pn(Bpni6kil) p2—1 f;z
ZAg(p38n+p3)q”52 Z ¢ Z (6pn + 6k + 1)¢ 2 tpg T
n=0 = —p=1 n=—o00 fzpz
k= j:pz—l
J 2!
[f@n + Z r 67" f p(p— 27‘)7 _q6p(p+2r))‘| (mod 2'3)
12p2 —1
(5.21)
Let p > 5 be a prime with (‘72) = —1. For — pT <k< ”T and 1 <r < p— 1, consider the
congruence equation
3k 4+ k 21
3 2+ +r2 =T (mod p), (5.22)

which is equivalent to

(6k+1)*+2(2r)>=0 (mod p).

Land r = 0. Using

Since (%) = —1, the only solution of the congruence (5.22) is k = ESI

the above fact in (5.21), extracting the terms involving g "+ and then replacing v by g, we
obtain

B
f6 f12

From (5.20), (5.23) and by induction, we find that for n > 0 and o > 0,

ifg(spzn + pz) n=42pI3 6 (mod 2%). (5.23)
n=0

oo o £5 42
;)Ag(sspmn+p2a)q"zz(ip) ;}flﬁz (mod 2%). (5.24)

Substituting Lemma 2.4 with ¢ replaced by —q and Lemma 3.2 into (5.24), extracting the terms

. . P21 . .
invloving ¢?"*“% in the resulting congruence, we deduce that

;%(Sph (pn + pZT—l) +p2a>qn _ (ip)aﬂj”ézﬁ (mod 2%). (5.25)

Equating the coefficients of ¢P**7 for 1 < j < p — 1 in (5.25), we obtain
Tg(p2“+18(pn +4)+ p2“+2) =0 (mod 2).
Hence the proof. O

Theorem 5.6. If p is a odd prime such that (73) =—land1 <k <p—1, then for all integers
n>0and a>0

Ig(zpza+2n +2pPetlg 4 p2°‘+2) =0 (mod 6), (5.26)
E(3“(2n + )) =7As(2n+1) (mod 6), (5.27)

Aj(3a(6n + 5)) =0 (mod 6). (5.28)
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Proof. Tt follows from (3.2) and (5.6) that

o~ n_ Afs 3
> A(2n+1)g" = 277 (mod 6). (5.29)
n=0 3 /1

Let p be odd prime such that (%) =—landfor0 < m,j < %, the following relation

m2 +m j2+j_p2—1
Sy T E

(mod p)

holds if and only if m = j = prl. From Theorem 2.5, (5.29) and by induction «, we find that
for all integer n > 0

el

7 (mod 6).

ZIQ(Q';DZan +p2(x)qn =2
n=0

Now, substituting Theorem 2.5 into the above congruence and then extracting the terms involving

p—1
g?" 2, we deduce

00 2 2 r2
Z/Tg(sza (pn—i— P 3 1) —i—pza)q” = Z;Z% (mod 6).
n=0 -

Equating the coefficients of Ptk for 1 < k < p—1in the above congruence, we arrive at (5.26).
Form [1, pp.49], we recall that

fi _ (36 s

= f(¢’,¢") + a7~ (5.30)
fi fo

In view of (5.30), (5.29) and by induction, we arrive at (5.27) and (5.28). O

Remark 5.7. Setting o = 0 in (5.28), we obtain Theorem 1.6.

6 Congruences modulo powers of 2 and 3 for A;-(n)

In this section, by employing (2.3) and Lemma 2.3, we find several congruences modulo 2%, 23,
2% and 3 for A3 (n), r > 2.

Lemma 6.1. We have

A3 (9n +3) = 8az(n) (mod 2%), 6.1
Az (6n +2) = 4a3(n) (mod 2°), (6.2)
A3 (3n+1) =2a3(n) (mod 2%), (6.3)

where az(n) denote the number of 3—cores of n.

Proof. Setting [ = 3" (r > 2) in (1.1) and then employing Lemma 2.3, we find that

pr faar 313 fosr f] foar f3
Extracting the terms involving ¢°", ¢***! and ¢*"*? in (6.4), we obtain
— w B fS
S A (Bn)gt =22 (6.5)
n—=0 faar—1f1 1

= B SR
Az»Bn+1)¢" =2=2——=+ 6.6
2 A Bnt et =277 ©0
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and
ZAy (3n +2)¢" 4f3’" lf2f6. (6.7)
n=0 f237 lfl
In view of Lemma 2.3, modulo 16, we find that
f32’”*1f36 fi — ffiz’"*lff? f6f9 +2 f6f9 +4 2f6f18
f2‘3r—1f63 ff J02~3T—1f63 fsflg f3 fz
— f:;zr—lfé3 9 +8 f:;zr—lféz 921 +8 2 f’;r lf (6,8)

=0 9725
f36f2'3r_1f1182 3 f2~3T*]f?8 f% Jo3r- lflg

Combining (6.5) and (6.8), extracting the terms of the form ¢>”*! and then using (4.6), we obtain
S (9 + 3)q" = 8? =S ms(n)g" (mod 24).
n=0 n=0

Equating the coefficients of ¢™ on both sides of the above congruence, we arrive at (6.1).
Employing (4.6) in (6.7), we see that

ZAy (B3n42)¢" = 4% Zag 2 (mod 2%). (6.9)
n=0

Extracting even powers of ¢ in (6.9), we obtain (6.2).
In view of (6.6) and (4.6), we deduce (6.3). O

Remark 6.2. Equating the odd powers of ¢ in (6.9), we find that
A3 (6n+5)=0 (mod 2%), n > 0.
Utilizing (2.3), we can easily derive the following corollary.
Corollary 6.3. For all non-negative integers n, and 1 < j < 3, we have

ay(4n+1) =0, (6.10)
a3(8n+25) =0 (mod 2) 6.11)
and
(8n) = 1 (mod 2),ifn = k(3k — 1)/2 for some integer k,
~ |0 (mod 2), otherwise.

Theorem 6.4. Ifp =2 (mod 3) and j € {1,2,3}, then for all non-negative integers n and c, we
have

E(pza(% + 3)) =743 (9n+3) (mod 24), (6.12)
Ty(pza(36n + 30)) =0 (mod 2%, (6.13)
Ty(pza(72n 1185 + 3)) =0 (mod 2*) (6.14)

and

23 (mod 2%),if n = k(3k — 1)/2 for some integer k,
0 (mod 2%), otherwise.

Ty(pza (72n + 3)) = {

Proof. Proof follows from Corollary 2.7, Corollary 6.3 and (6.1). O
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Remark 6.5. Employing Corollary 2.7 and Corollary 6.3 in (6.2) and (6.2), we can also find
infinite families of congruences modulo 8 and 4 for A3~ (n) which are similar to congruences in
Theorem 6.4.

Next, we present a short and simple proof of the Theorem 1.7.
Theorem 6.6. For all non-negative integers r > 3 and n, we have
A3(27n+18) = 0 (mod 3).
Proof. From (3.2) and (6.5), it follows that

o fi f

mod 3).
f2.3rflf§ f12 ( )

Z Az (3n)q" =
n=0

In view of above congruence, Lemma 2.3 and (3.2), we find that

00 2 £5 g0
> A3 (9n)q" = Soads fi (mod 3). (6.15)
" Loy i
Substituting (5.30) into (6.15) and then equating the coefficients of ¢°”*2, we obtain the required
congruence. Hence the proof. O
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