On some new congruences for ℓ -regular overpartitions

Ranganatha D.

Communicated by P.K. Banerji

MSC 2010 Classifications: Primary o5A17; Secondary 11P83.

Keywords and phrases: Congruences, *l*-regular overpartitions, singular overpartitions.

The author is thankful to the anonymous referee for helpful comments and also to Prof. Chadrashekar Adiga for his advice and guidance.

Abstract. Andrews investigated the function $\overline{C_{k,j}}(n)$ which counts the number of overpartitions of n in which no part is divisible by k and only parts $\equiv \pm j \pmod{k}$ may be overlined. Let $\overline{A_{\ell}}(n)$ denote the number of ℓ -regular overpartitions of n. Very recently, Mahadeva Naika and Gireesh discovered some congruences for $\overline{C_{3,1}}(n)$ modulo $2^i 3^j$ for some values of i and j and modulo 2^4 for $\overline{A_5}(n)$. Furthermore, they conjectured that $\overline{C_{3,1}}(12n+11) \equiv 0 \pmod{144}$. In this paper, we confirm this conjecture. We also establish several congruences for $\overline{A_5}(n)$ and $\overline{A_{3r}}(n)$, $r \ge 2 \mod 2^i 3^j$ for few values of i and j.

1 Introduction

A partition of a positive integer n is a finite non-increasing sequence of positive integers $\lambda_1, \lambda_2, \ldots$, λ_r such that $\sum_{i=1}^r \lambda_i = n$. The λ_i are called the parts of the partition. We shall set p(0) = 1 and for $n \ge 1$, let p(n) denote the number of partitions of n. The generating function for p(n) is given by

$$\sum_{n=0}^{\infty} p(n)q^n = \frac{1}{f_1}.$$

Here and throughout this paper, we assume that |q| < 1 and for any positive integer k, f_k is defined by

$$f_k := \prod_{n=1}^{\infty} (1 - q^{kn}).$$

In 1919, Ramanujan [16] found nice congruence properties for p(n) moduli 5, 7 and 11. Namely, for any nonnegative integer n,

$$p(5n+4) \equiv 0 \pmod{5},$$

$$p(7n+5) \equiv 0 \pmod{7},$$

$$p(11n+6) \equiv 0 \pmod{11}.$$

Motivated by the above congruences, many mathematicians discovered many congruence properties for different partition functions such as singular overpartitions, ℓ -regular partitions, broken k-diamond partitions and ℓ -regular overpartitions. Among these, arithmetic properties of ℓ -regular overpartitons has received a great deal of attention. For a positive integer $l \ge 2$, a partition is called ℓ -regular if none of its parts is divisible by ℓ . An overpartition of n is a nonincreasing sequence of natural numbers whose sum is n in which the final occurrence of a part may be overlined.

In [13], Lovejoy proved the following theorem in the theory of overpartitions.

Theorem 1.1. ([13]) If $\overline{B_{\ell}}(n)$ denote the number of overpartitions of n of the form $y_1 + y_2 + \cdots + y_s$, where $y_j - y_{j+\ell-1} \ge 1$ if $y_{j+\ell-1}$ is overlined and $y_j - y_{j+\ell-1} \ge 2$ otherwise. Let $\overline{A_{\ell}}(0) = 1$

and for $n \ge 1$, let $\overline{A_{\ell}}(n)$ denote number of overpartitions of n with no parts divisible by ℓ . Then $\overline{A_{\ell}}(n) = \overline{B_{\ell}}(n)$.

The generating function for $\overline{A_{\ell}}(n)$ is given by [18]

$$\sum_{n=0}^{\infty} \overline{A_{\ell}}(n) q^n = \frac{f_{\ell}^2 f_2}{f_1^2 f_{2\ell}}.$$
(1.1)

Setting $\ell = 3$ in (1.1), Shen [18] observed that $\overline{A_3}(n) = \overline{C_{3,1}}(n)$, where $\overline{C_{k,j}}(n)$ counts the number of overpartitions of n in which no part is divisible by k and only parts $\equiv \pm j \pmod{k}$ may be overlined. This function was introduced and investigated by Andrews in [3]. As noted in [3], the generating function for $\overline{C_{k,j}}(n)$ is given by

$$\sum_{n=0}^{\infty} \overline{C_{k,j}}(n)q^n = \frac{(q^k; q^k)_{\infty}(-q^j; q^k)_{\infty}(-q^{k-j}; q^k)_{\infty}}{(q; q)_{\infty}},$$
(1.2)

where $k \ge 3$ and $1 \le i \le \lfloor \frac{k}{2} \rfloor$. Using generating function dissection techniques, Shen [18] established several interesting congruences modulo 2, 6, 24 for $\overline{A_3}(n)$ and modulo 3, 24 for $\overline{A_4}(n)$. For example

Theorem 1.2. ([18])For all non-negative integer n,

$$\overline{A_3}(9n+3) \equiv 0 \pmod{6},$$
$$\overline{A_3}(9n+6) \equiv 0 \pmod{24},$$
$$\overline{A_4}(12n+8) \equiv 0 \pmod{3},$$
$$\overline{A_4}(12n+7) \equiv 0 \pmod{24}.$$

In the same paper, Shen gave a combinatorial interpretation of first two congruences in the above theorem by introducing the rank of vector partitions. Very recently, Mahadeva Naika and Gireesh [14] employed dissection formulas of certain quotients of theta functions to establish several infinite families of congruences for $\overline{C_{k,j}}(n)$ for different values of k and j. They also considered the function $\overline{A_5}(n)$ and proved some congruences modulo 16. For example, they proved the following theorems:

Theorem 1.3. ([14]) For all integers $n \ge 0$, we have

$$\overline{C_{3,1}}(8n+7) \equiv 0 \pmod{12},$$
$$\overline{C_{3,1}}(8n+6) \equiv 0 \pmod{24},$$
$$\overline{C_{3,1}}(24n+14) \equiv 0 \pmod{72}.$$

Theorem 1.4. ([14]) Let $p \ge 5$ be prime and $\left(\frac{-2}{p}\right) = -1$. Then for all integers $n \ge 0$, $\alpha \ge 1$ and $1 \le j \le p - 1$, we have

$$\overline{A_5}\Big(8p^{2\alpha}n+p^{2\alpha-1}(3p+8j)\Big)\equiv 0\pmod{2^4}.$$

In the same paper, they also proposed the following conjecture for $\overline{C_{3,1}}(n)$.

Conjecture 1.5. [14] For all integer $n \ge 0$,

$$\overline{C_{3,1}}(12n+11) \equiv 0 \pmod{144}$$

Alanazi, Munagi and Sellers [2] established several Ramanujan type congruences for ℓ -regular overpatitions. In particular, Alanazi et al. [2] discovered the following theorem.

Theorem 1.6. ([2]) For all $n \ge 0$, we have $\overline{A_9}(6n + 5) \equiv 0 \pmod{3}$.

The following theorem was proved by Alanazi et al. [2] using a congruence relation due to Munagi and Sellers [15].

Theorem 1.7. ([2]) For all $n \ge 0$ and all $j \ge 3$, we have $\overline{A_{3j}}(27n + 18) \equiv 0 \pmod{3}$.

The main aim of this paper is to show that Conjecture 1.5 is true and also to prove some new congruences for $\overline{A_5}(n)$ and $\overline{A_{3r}}(n)$. The paper is organized as follows: In Section 2, we recall some notations, definitions and also we collect some lemmas and theorems which are useful to prove our main results. In Section 3, we give a simple proof of Conjecture 1.5 and also establish a *p*-dissection formula for f_1^5/f_2^2 which seems to be new. In Section 4, we derive some new congruences modulo 8 and 16 for $\overline{A_5}(n)$. In Section 5, we discover several infinite families of congruences modulo 6, 8 and 16 for $\overline{A_9}(n)$. We also deduce Theorem 1.6 as a special case of one of our theorems. In Section 6, we prove infinite families of congruences for $\overline{A_{3r}}(n)$, $r \ge 2$ modulo 3, 4, 8 and 16. We also provide a short and simple proof of the Theorem 1.7.

2 Set of preliminary results

In this section, we present some identities which are useful to prove our main results.

Let $p \ge 3$ be a prime. The Legendre symbol $\left(\frac{a}{p}\right)$ is defined by

$$\begin{pmatrix} a \\ p \end{pmatrix} := \begin{cases} 1 & \text{if } a \text{ is a quadratic residue modulo p and } p \nmid a, \\ -1 & \text{if } a \text{ is a quadratic nonresidue modulo p and } p \nmid a, \\ 0 & \text{if } p \mid a. \end{cases}$$

For |ab| < 1, Ramanujan's general theta function f(a, b) is defined by [1]

$$f(a,b) = \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2}$$

The following lemma is a consequence of Entry 25 of (i), (ii), (v) and (vi) in [1, pp. 35-36].

Lemma 2.1. The following 2-dissection formulas are true:

$$\frac{1}{f_1^2} = \frac{f_8^5}{f_2^5 f_{16}^2} + 2q \frac{f_4^2 f_{16}^2}{f_2^5 f_8} \tag{2.1}$$

and

$$\frac{1}{f_1^4} = \frac{f_4^{14}}{f_2^{14}f_8^4} + 4q \frac{f_4^2 f_8^4}{f_2^{10}}.$$
(2.2)

The following 2-dissection formula for $\frac{f_3^3}{f_1}$ was proved by Hirschhorn, Garvan and Borwein [9] and also by Xia and Yao [19].

Lemma 2.2. The following 2-dissection formulas are true:

$$\frac{f_3^3}{f_1} = \frac{f_4^3 f_6^2}{f_2^2 f_{12}} + q \frac{f_{12}^3}{f_4}$$
(2.3)

and

$$\frac{f_3^2}{f_1^2} = \frac{f_4^4 f_6 f_{12}^2}{f_2^5 f_8 f_{24}} + 2q \frac{f_4 f_6^2 f_8 f_{24}}{f_2^4 f_{12}}.$$
(2.4)

For a proof of (2.4), see [5] and [19].

From [8], we recall the following lemma.

Lemma 2.3. The following 3-dissection formula holds:

$$\frac{f_2}{f_1^2} = \frac{f_6^4 f_9^6}{f_3^8 f_{18}^3} + 2q \frac{f_6^3 f_9^3}{f_3^7} + 4q^2 \frac{f_6^2 f_{18}^3}{f_3^6}.$$

From [1, p.49], we recall the following *p*-dissection formula.

Lemma 2.4. For any prime p, we have

$$\frac{f_2^5}{f_1^2 f_4^2} = \frac{f_{2p^2}^5}{f_{p^2}^2 f_{4p^2}^2} + \sum_{r=1}^{p-1} q^{r^2} f(q^{p(p-2r)}, q^{p(p+2r)}).$$

Theorem 2.5. ([7, Theorem 2.1]) For any odd prime p,

$$\frac{f_2^2}{f_1} = \sum_{m=0}^{\frac{p-2}{2}} q^{\frac{m^2+m}{2}} f\left(q^{\frac{p^2+(2m+1)p}{2}}, q^{\frac{p^2-(2m+1)p}{2}}\right) + q^{\frac{p^2-1}{8}} \frac{f_{2p^2}^2}{f_{p^2}}.$$

Furthermore, $\frac{m^2+m}{2} \not\equiv \frac{p^2-1}{8} \pmod{p}$ for $0 \le m \le \frac{p-3}{2}$.

For all integers $n, k \ge 0$, let $t_k(n)$ (respectively $r_k(n)$) denote the number of representations of n as sum of k triangular (respectively square) numbers.

Theorem 2.6. For $1 \le k \le 7$, we have

$$r_k(8n+k) = 2^{k-1} \left\{ 2 + \binom{k}{4} \right\} t_k(n).$$

In [12], Hirschhorn and Sellers proved the following arithmetic identity for $a_3(n)$.

Theorem 2.7. Let $p \equiv 2 \pmod{3}$. For all integers $n \ge 0$, we have

$$a_3\left(p^{2\alpha}n + \frac{p^{2\alpha}-1}{3}\right) = a_3(n),$$

where $a_3(n)$ denote the number of 3-core partitions of n.

3 Proof of Conjecture **1.5** and a *p*-dissection formula

In this section, we give a simple proof of Conjecture 1.5 and also establish a *p*-dissection formula for f_1^5/f_2^2 which will be used to prove congruence properties for $\overline{A_5}(n)$ and $\overline{A_9}(n)$.

Theorem 3.1. Conjecture 1.5 is true.

Proof. On using Lemma 2.3, Yao [20] proved that

$$\sum_{n=0}^{\infty} \overline{C_{3,1}} (6n+5)q^n = 16 \frac{f_2^2 f_3^3 f_4^4}{f_1^9}.$$
(3.1)

By the binomial theorem, it is easy to check that, for all positive integers k and m,

$$f_k^{3m} \equiv f_k^{3m} \pmod{3},\tag{3.2}$$

$$f_k^{9m} \equiv f_{3k}^{3m} \pmod{3^3}.$$
 (3.3)

In view of congruence (3.3), we have

$$\sum_{n=0}^{\infty} \overline{C_{3,1}}(6n+5)q^n = 16\frac{f_2^2 f_3^3 f_4^4}{f_1^9} \equiv 16f_2^2 f_4^4 \pmod{144}.$$
(3.4)

Now, comparing the odd powers of q in (3.4), we obtain the required congruence. \Box **Theorem 3.2.** Let $p \ge 5$ be a prime. Then

$$\frac{f_1^5}{f_2^2} = \sum_{\substack{k=-\frac{p-1}{2}\\k\neq \frac{\pm p-1}{6}}}^{\frac{p-1}{2}} q^{\frac{3k^2+k}{2}} \sum_{n=-\infty}^{\infty} (6pn+6k+1)q^{\frac{pn(3pn+6k+1)}{2}} \pm pq^{\frac{p^2-1}{24}} \frac{f_{p^2}^5}{f_{2p^2}^2}$$

Furthermore, if $-\frac{p-1}{2} \le k \le \frac{p-1}{2}$, $k \ne \frac{\pm p-1}{6}$, we have $\frac{3k^2+k}{2} \ne \frac{p^2-1}{24} \pmod{p}$.

Proof. From [6, Corollary 1.3.21], we recall that

$$\frac{f_1^5}{f_2^2} = \sum_{n=-\infty}^{\infty} (6n+1)q^{\frac{3n^2+n}{2}}.$$

Dissecting the right side into p terms, we find that

$$\begin{split} \frac{f_1^5}{f_2^2} &= \sum_{k=-\frac{p-1}{2}}^{\frac{p-1}{2}} \sum_{n=-\infty}^{\infty} (6(pn+k)+1)q^{\frac{3(pn+k)^2+(pn+k)}{2}} \\ &= \sum_{k=-\frac{p-1}{2}}^{\frac{p-1}{2}} q^{\frac{3k^2+k}{2}} \sum_{n=-\infty}^{\infty} (6pn+6k+1)q^{\frac{pn(3pn+6k+1)}{2}} \\ &= \sum_{\substack{k=-\frac{p-1}{2}\\k\neq \frac{\pm p-1}{6}}^{\frac{p-1}{2}} q^{\frac{3k^2+k}{2}} \sum_{n=-\infty}^{\infty} (6pn+6k+1)q^{\frac{pn(3pn+6k+1)}{2}} \pm q^{\frac{p^2-1}{24}} \sum_{n=-\infty}^{\infty} p (6n+1)q^{\frac{p^2(3n^2+n)}{2}} \\ &= \sum_{\substack{k=-\frac{p-1}{2}\\k\neq \frac{\pm p-1}{6}}^{\frac{p-1}{2}} q^{\frac{3k^2+k}{2}} \sum_{n=-\infty}^{\infty} (6pn+6k+1)q^{\frac{pn(3pn+6k+1)}{2}} \pm pq^{\frac{p^2-1}{24}} \frac{f_p^5}{f_{2p^2}^2}. \end{split}$$

If $\frac{3k^2+k}{2} \equiv \frac{p^2-1}{24} \pmod{p}$, which implies that $(6k+1)^2 \equiv 0 \pmod{p}$. This implies that $k = \frac{mp-1}{6}$ for some integer m. Since $-\frac{p-1}{2} \leq k \leq \frac{p-1}{2}$, we have $m = \pm 1$. Thus $k = \frac{\pm p-1}{6}$ which is a contradiction.

4 Congruences for $\overline{A_5}(n)$ modulo powers of 2

In this section, we prove infinite families of congruences modulo 2^3 and 2^4 for $\overline{A_5}(n)$.

Theorem 4.1. If $p \ge 5$ is a prime such that $\left(\frac{-5}{p}\right) = -1$ and $1 \le j \le p - 1$, then for all non-negative integers n and α , we have

$$\overline{A_5}\Big(4p^{2\alpha+2}n + 4p^{2\alpha+1}j + p^{2\alpha+2}\Big) \equiv 0 \pmod{2^3},\tag{4.1}$$

$$\overline{A_5}\left(4\cdot 5^{\alpha+1}n+13\cdot 5^{\alpha}\right)\equiv 0 \pmod{2^3},\tag{4.2}$$

$$\overline{A_5}\left(4\cdot 5^{\alpha+1}n+17\cdot 5^{\alpha}\right)\equiv 0 \pmod{2^3}.$$
(4.3)

Proof. In [14], Mahadeva Naika and Gireesh showed that

$$\sum_{n=0}^{\infty} \overline{A_5}(2n+1)q^n = 8q \frac{f_{10}f_4^2 f_8^4}{f_2^7} + 2\frac{f_{10}f_4^{14}}{f_2^{11}f_8^4}.$$
(4.4)

Extracting the even powers of q in (4.4), we obtain

$$\sum_{n=0}^{\infty} \overline{A_5} (4n+1) q^n = 2 \frac{f_2^{14} f_5}{f_1^{11} f_4^4}.$$
(4.5)

By the binomial theorem, for any positive integers m and k, we have

$$f_{2k}^m \equiv f_k^{2m} \pmod{2},\tag{4.6}$$

$$f_k^{4m} \equiv f_{2k}^{2m} \pmod{2^2}.$$
 (4.7)

From (4.5) and (4.7), we find that

$$\sum_{n=0}^{\infty} \overline{A_5} (4n+1) q^n \equiv 2 \frac{f_1^5 f_5^5}{f_2^2 f_{10}^2} \pmod{2^3}.$$
(4.8)

Define

$$\sum_{n=0}^{\infty} a(n)q^n = \frac{f_1^5}{f_2^2} \frac{f_5^5}{f_{10}^2}.$$
(4.9)

Then, in view of (4.8) and (4.9), we have

$$\overline{A_5}(4n+1) \equiv 2a(n) \pmod{2^3}.$$
 (4.10)

Using Lemma 3.2, we can rewrite (4.9) as

$$\sum_{n=0}^{\infty} a(n)q^{n} = \left[\sum_{\substack{j=-\frac{p-1}{2}\\j\neq\frac{\pm p-1}{6}}}^{\frac{p-1}{2}} q^{\frac{3j^{2}+j}{2}} \sum_{n=-\infty}^{\infty} (6pn+6j+1)q^{\frac{pn(3pn+6j+1)}{2}} \pm pq^{\frac{p^{2}-1}{24}} \frac{f_{p^{2}}^{5}}{f_{2p^{2}}^{2}}\right] \\ \times \left[\sum_{\substack{m=-\frac{p-1}{2}\\m\neq\frac{\pm p-1}{6}}}^{\frac{p-1}{2}} q^{5\frac{3m^{2}+m}{2}} \sum_{n=-\infty}^{\infty} (6pn+6m+1)q^{5\frac{pn(3pn+6m+1)}{2}} \pm pq^{5\frac{p^{2}-1}{24}} \frac{f_{5p^{2}}^{5}}{f_{10p^{2}}^{2}}\right]$$
(4.11)

Let $p \ge 5$ be a prime with $\left(\frac{-5}{p}\right) = -1$. For $-\frac{p-1}{2} \le j, m \le \frac{p-1}{2}$, consider the following congruence equation

$$\frac{3j^2+j}{2} + 5\frac{3m^2+m}{2} \equiv \frac{p^2-1}{4} \pmod{p},$$
(4.12)

which is equivalent to

$$(6j+1)^2 + 5(6m+1)^2 \equiv 0 \pmod{p}.$$

Since $\left(\frac{-5}{p}\right) = -1$, the above congruence holds if and only if $j = m = \frac{\pm p - 1}{6}$. So. in (4.11), extracting the terms involving $q^{pn+\frac{p^2-1}{4}}$ and then replacing q^p by q in the resulting congruence, we obtain

$$\sum_{n=0}^{\infty} a \left(pn + \frac{p^2 - 1}{4} \right) q^n = (-1)^{\frac{\pm p - 1}{6}} p^2 \frac{f_p^5}{f_{2p}^2} \frac{f_5^5}{f_{10p}^2}.$$

This implies that, for $1 \le t \le p - 1$,

$$a\left(p(pn+t)n + \frac{p^2 - 1}{4}\right) = 0 \tag{4.13}$$

and

$$\sum_{n=0}^{\infty} a \left(p^2 n + \frac{p^2 - 1}{4} \right) q^n = (-1)^{\frac{\pm p - 1}{6}} p^2 \frac{f_1^5}{f_2^2} \frac{f_5^5}{f_{10}^2}.$$

From the above identity and (4.9), we find that

$$a\left(p^{2}n + \frac{p^{2} - 1}{4}\right) = (-1)^{\frac{\pm p - 1}{6}}p^{2}a(n),$$

and by induction on $\alpha \geq 0$, we deduce

$$a\left(p^{2\alpha}n + \frac{p^{2\alpha} - 1}{4}\right) = (-1)^{\frac{\pm p - 1}{6}\alpha}p^{2\alpha}a(n).$$

Replacing n by $p^2n + pt + \frac{p^2-1}{4}$ $(1 \le t \le p-1)$ in the above identity and then invoking (4.13), we deduce that for $\alpha \ge 0$ and $n \ge 0$,

$$a\left(p^{2\alpha+2}n + p^{2\alpha+1}t + \frac{p^{2\alpha+1}-1}{4}\right) = 0.$$
(4.14)

Replacing *n* by $p^{2\alpha+2}n + p^{2\alpha+1}t + \frac{p^{2\alpha+1}-1}{4}$ in (4.10) and then using (4.14), we obtain (4.1). From [1, pp.82], we recall that

$$f_1 = f_{25} \frac{f(-q^{15}, -q^{10})}{f(-q^{20}, -q^5)} - q^2 \frac{f(-q^{20}, -q^5)}{f(-q^{15}, -q^{10})} f_{25} - qf_{25}.$$
(4.15)

In view of (4.8), (4.15) and by induction, we find that for all non-negative integers n and α

$$\sum_{n=0}^{\infty} \overline{A_5} (4 \cdot 5^{\alpha} n + 5^{\alpha}) q^n \equiv 2(-1)^{\alpha} f_1 f_5 \pmod{2^3}.$$

Substituting (4.15) into the above congruence and then equating the coefficients of q^{5n+3} and q^{5n+4} in the resulting congruence, we obtain the remaining two congruences of the above theorem.

Theorem 4.2. Let p be an odd prime and N be a positive integer with $p \nmid N$ such that $pN \equiv 3 \pmod{2^3}$. Let $\alpha \ge 0$ be an integer.

(1) If $p \equiv -1 \pmod{2^4}$, then $\overline{A_5}(p^{4\alpha+3}N) \equiv 0 \pmod{2^4}$, (2) If $p \equiv 3,11 \pmod{2^4}$, then $\overline{A_5}(p^{16\alpha+15}N) \equiv 0 \pmod{2^4}$, (3) If $p \equiv 1,5,9 \pmod{2^4}$, then $\overline{A_5}(p^{32\alpha+31}N) \equiv 0 \pmod{2^4}$, (4) If $p \equiv 7 \pmod{2^4}$, then $\overline{A_5}(p^{8\alpha+7}N) \equiv 0 \pmod{2^4}$, (5) If $p \equiv 13 \pmod{2^4}$, then $\overline{A_5}(p^{64\alpha+63}N) \equiv 0 \pmod{2^4}$.

Proof. Hirschhorn and Sellers [11] obtained the following 2-dissection formula:

$$\frac{f_5}{f_1} = \frac{f_8 f_{20}^2}{f_2^2 f_{40}} + q \frac{f_4^3 f_{10} f_{40}}{f_2^3 f_8 f_{20}}.$$
(4.16)

From (2.1), (4.4) and (4.16), we find that

$$\sum_{n=0}^{\infty} \overline{A_5}(4n+3)q^n \equiv 8\frac{f_4^4 f_8 f_{20}^2}{f_2^3 f_{40}} + 8q\frac{f_4^7 f_{10} f_{40}}{f_2^4 f_8 f_{20}} \pmod{2^4}.$$
(4.17)

Extracting the even powers of q in (4.17) and then using (4.6), we find that

$$\sum_{n=0}^{\infty} \overline{A_5}(8n+3)q^n \equiv 8\frac{f_2^6}{f_1^3} = 8\sum_{n=0}^{\infty} t_3(n)q^n \pmod{2^4}.$$

Equating the coefficients of q^n on both sides of the above congruence, we obtain

$$\overline{A_5}(8n+3) \equiv 8t_3(n) \pmod{2^4}.$$

Setting k = 3 in Theorem 2.6, we obtain $r_3(8n + 3) = 8t_3(n)$. Hence

$$\overline{A_5}(8n+3) \equiv r_3(8n+3) \pmod{2^4}.$$
 (4.18)

Hirschhorn and Sellers [10] proved that if $p \ge 3$ is a prime and n is a positive integer, then

$$r_3(p^{2\alpha}n) = \left(\frac{p^{\alpha+1}-1}{p-1} - \left(\frac{-n}{p}\right)\frac{p^{\alpha}-1}{p-1}\right)r_3(n) - p\frac{p^{\alpha}-1}{p-1}r_3(n/p^2), \quad \alpha \ge 0.$$
(4.19)

Here $\left(\frac{\cdot}{n}\right)$ is the Legendre symbol and we take $r_3(n/p^2) = 0$ if $p^2 \nmid n$.

Replacing n by pN $(p \nmid N)$ in (4.19), we get

$$r_3(p^{2\alpha+1}N) = \left(\frac{p^{\alpha+1}-1}{p-1}\right) r_3(pN).$$
(4.20)

By (4.20), if $p \equiv -1 \pmod{2^4}$, then

$$r_3(p^{2\alpha+1}N) \equiv \begin{cases} 0 \pmod{16} & \text{if } \alpha \text{ is odd,} \\ r_3(pN) \pmod{16} & \text{if } \alpha \text{ is even.} \end{cases}$$

The above congruence implies that $r_3(p^{4\alpha+3}N) \equiv 0 \pmod{2^4}$. Setting $n = \frac{p^{4\alpha+3}N-3}{8}$ in (4.18), we obtain

$$\overline{A_5}(p^{4\alpha+3}N) \equiv r_3(p^{4\alpha+3}N) \equiv 0 \pmod{2^4}.$$

This completes the proof of (1).

Let $p \equiv 3, 11 \pmod{16}$. Replacing α by $8\alpha + 7$ in (4.20) and using the fact that

$$\frac{p^{8\alpha+8}-1}{p-1} = 1 + p + \dots + p^{8\alpha+7} \equiv 0 \pmod{2^4},$$

we obtain

$$r_3(p^{16\alpha+15}N) \equiv 0 \pmod{2^4}.$$
 (4.21)

Putting $n = \frac{p^{8\alpha+7}N-3}{8}$ in (4.18) and then using the above congruence, we get (2). The other statements follow in a similar way.

Theorem 4.3. Let $p \ge 3$ be a prime and $N, \alpha \ge 1$ are integers. (1) If $p \equiv 7 \pmod{2^4}$, then $\overline{A_5}(p^{8\alpha}(8N+3)) \equiv \overline{A_5}(8N+3) \pmod{2^4}$, (2) If $p \equiv 1, 5, 9 \pmod{2^4}$, then $\overline{A_5}(p^{32\alpha}(8N+3)) \equiv \overline{A_5}(8N+3) \pmod{2^4}$, (3) If $p \equiv -1 \pmod{2^4}$, then $\overline{A_5}(p^{4\alpha}(8N+3)) \equiv \overline{A_5}(8N+3) \pmod{2^4}$, (4) If $p \equiv 3, 11 \pmod{2^4}$, then $\overline{A_5}(p^{16\alpha}(8N+3)) \equiv \overline{A_5}(8N+3) \pmod{2^4}$, (5) If $p \equiv 13 \pmod{2^4}$, then $\overline{A_5}(p^{64\alpha}(8N+3)) \equiv \overline{A_5}(8N+3) \pmod{2^4}$.

Proof. We give a proof of (1). The proof of other congruences follows similarly. Replacing n by $p^2(8N+3)$ and α by $4\alpha + 3$ in (4.19), we obtain

$$r_3(p^{8\alpha+8}(8N+3)) = r_3(p^2(8N+3))\frac{p^{8\alpha+8}-1}{p-1} - r_3(8N+3)p\,\frac{p^{8\alpha+7}-1}{p-1} \quad (\alpha \ge 0).$$
(4.22)

If $p \equiv 7 \pmod{16}$, then we have

$$\frac{p^{8\alpha+8}-1}{p-1} = 1 + p + \dots + p^{8\alpha+7} \equiv 0 \pmod{2^4}$$

and

$$p \frac{p^{8\alpha+7}-1}{p-1} = p + p^2 + \dots + p^{8\alpha+6} \equiv -1 \pmod{2^4}.$$

Using above two congruences in (4.22), we get

$$r_3(p^{8\alpha+8}(8N+3)) \equiv r_3(8N+3) \pmod{2^4}.$$
 (4.23)

Putting $n = \frac{p^{32\alpha+32}(8N+3)-3}{8}$ in (4.18) and then using (4.23) and (4.18), we get the required result.

Theorem 4.4. If $p \ge 3$ is a prime with $\left(\frac{-10}{p}\right) = -1$, then for all non-negative integers n and α ,

$$\overline{A_5}\left(p^{2\alpha}8n + 7p^{2\alpha}\right) \equiv 8f_2^3 f_5^3 \pmod{2^4}.$$
(4.24)

Moreover, for $1 \leq r \leq p-1$,

$$\overline{A_5}\left(p^{2\alpha+2}(8n+7)+8p^{2\alpha+1}r\right) \equiv 0 \pmod{2^4}.$$

Proof. Extracting the terms involving q^{2n+1} in (4.17) and then using (4.6), we deduce that

$$\sum_{n=0}^{\infty} \overline{A_5}(8n+7)q^n = 8f_2^3 f_5^3 \pmod{2^4}.$$
(4.25)

Thus (4.24) is true for $\alpha = 0$. In view of Theorem 2.5 and (4.7), we have

$$f_1^3 \equiv \sum_{m=0}^{\frac{p-3}{2}} q^{\frac{m^2+m}{2}} f\left(q^{\frac{p^2+(2m+1)p}{2}}, q^{\frac{p^2-(2m+1)p}{2}}\right) + q^{\frac{p^2-1}{8}} f_{p^2}^3 \pmod{2^2}.$$
 (4.26)

Assume that (4.24) holds for $\alpha = j$. With the aid of (4.26), we can rewrite (4.24) with $\alpha = j$ as

$$\sum_{n=0}^{\infty} \overline{A_5}(p^{2j}8n+7p^{2j})q^n = 8 \left[\sum_{m=0}^{\frac{p-2}{2}} q^{2\frac{m^2+m}{2}} f\left(q^{2\frac{p^2+(2m+1)p}{2}}, q^{2\frac{p^2-(2m+1)p}{2}}\right) + q^{2\frac{p^2-1}{8}} f_{2p^2}^3 \right] \\ \times \left[\sum_{k=0}^{\frac{p-3}{2}} q^{5\frac{k^2+k}{2}} f\left(q^{5\frac{p^2+(2k+1)p}{2}}, q^{5\frac{p^2-(2k+1)p}{2}}\right) + q^{5\frac{p^2-1}{8}} f_{5p^2}^3 \right] \pmod{2^4}.$$

$$(4.27)$$

Now consider the congruence equation,

$$m^2 + m + 5 \cdot \frac{k^2 + k}{2} \equiv 7 \cdot \frac{p^2 - 1}{8} \pmod{p}.$$

where $0 \le m, k \le \frac{p-3}{2}$ and p is a prime such that $\left(\frac{-10}{p}\right) = -1$. We can rewrite the above congruence as follows:

$$(4m+2)^2 + 10(2k+1)^2 \equiv 0 \pmod{p}.$$

Since $\left(\frac{-10}{p}\right) = -1$, it implies that

$$4m+2 = 2k+1 \equiv 0 \pmod{p}$$

Thus $m = k = \frac{p-1}{2}$. Using the above fact in (4.27), extracting the terms involving $q^{pn+7\frac{p^2-1}{8}}$ and then replacing q^p by q, we obtain

$$\sum_{n=0}^{\infty} \overline{A_5} \Big(8p^{2j+1}n + 7p^{2j+2} \Big) q^n \equiv 8f_{2p}^3 f_{5p}^3 \pmod{2^4}.$$
(4.28)

Again Extracting the terms involving q^p in the above congruence, we see that (4.24) is true for $\alpha = j + 1$. Hence the proof of (4.24).

Next, comparing the coefficients of q^{pn+r} for $1 \le r \le p-1$ in (4.28), we obtain

$$\overline{A_5}\Big(8p^{2j+1}(pn+r)+7p^{2j+2}\Big) = 0 \pmod{2^4}.$$

Theorem 4.5. For all integers $n, \alpha \ge 0, j \in \{642, 842\}$ and $k \in \{242, 3242\}$, we have

$$\overline{A_5}\left(5^{2\alpha}\left(10^3n+j\right)-35\right) \equiv 0 \pmod{2^4}$$
(4.29)

and

$$\overline{A_5}\left(5^{2\alpha}\left(5\cdot 10^3n+k\right)-35\right)\equiv 0 \pmod{2^4}.$$
(4.30)

Proof. Setting p = 5 in (4.26), we obtain

$$f_1^3 \equiv f(q^{10}, q^{15}) + qf(q^5, q^{20}) + q^3 f_{25}^3 \pmod{2^2}.$$
 (4.31)

Let b(n) be defined by

$$\sum_{n=0}^{\infty} b(n)q^n = f_2^3 f_5^3.$$
(4.32)

Then from (4.25), we have

$$\overline{A_5}(8n+7) \equiv 8b(n) \pmod{2^4}.$$
(4.33)

In view of (4.31) and (4.32), we see that

$$\sum_{n=0}^{\infty} b(n)q^n \equiv f(q^{20}, q^{30})f_5^3 + q^2f(q^{10}, q^{40})f_5^3 + q^6f_{50}^3f_5^3 \pmod{2^2}.$$

Equating the coefficients of q^{5n+3} , q^{5n+4} and q^{5n+1} in the above congruence, we find that

$$b(5n+3) \equiv b(5n+4) \equiv 0 \pmod{2^2},$$

$$\sum_{n=0}^{\infty} b(5n+1)q^n \equiv qf_1^3 f_{10}^3 \pmod{2^2}.$$
(4.34)

Employing (4.31) in the above congruence and then equating the coefficients of q^{5n} , q^{5n+3} and q^{5n+4} , we obtain

$$b(25n+1) \equiv b(25n+16) \equiv 0 \pmod{2^2},$$
 (4.35)

$$\sum_{n=0}^{\infty} b(25n+21)q^n \equiv f_2^3 f_5^3 \pmod{2^2}.$$
(4.36)

In view of (4.32), (4.36) and by mathematical induction, we find that for $\alpha, n \ge 0$

$$b\left(5^{2\alpha+2}n+21\cdot\frac{5^{2\alpha}-1}{4}\right) \equiv b(n) \pmod{2^2}.$$
 (4.37)

Replacing n by 5n + 3 and 5n + 4 in (4.37) and then using (4.34), we obtain

$$b\left(5^{2\alpha+2}(5n+3)+21\cdot\frac{5^{2\alpha}-1}{4}\right) \equiv b\left(5^{2\alpha+2}(5n+4)+21\cdot\frac{5^{2\alpha}-1}{4}\right) \equiv 0 \pmod{2^2}.$$
(4.38)

From (4.33) and (4.38), we deduce that

$$\overline{A_5}\left(5^{2\alpha}(10^3n+642)-35\right) \equiv \overline{A_5}\left(5^{2\alpha}(10^3n+842)-35\right) \equiv 0 \pmod{2^4}.$$

This completes the proof of (4.29). In a similar way, remaining one follows from (4.33), (4.35) and (4.37).

5 Congruences modulo powers of 2 and 6 for $\overline{A_9}(n)$

In this section, we prove several infinite families of congruences for $\overline{A_9}(n)$ modulo 2^2 , 6, 2^3 and 2^4 . The following lemma gives the generating functions for $\overline{A_9}(4n+1)$ and $\overline{A_9}(4n+3)$.

Lemma 5.1. We have

$$\sum_{n=0}^{\infty} \overline{A_9} (4n+1) q^n = 2 \frac{f_3^2 f_2^{14}}{f_1^{12} f_4^4}$$
(5.1)

and

$$\sum_{n=0}^{\infty} \overline{A_9} (4n+3)q^n = 8 \frac{f_3^2 f_2^2 f_4^4}{f_1^8}.$$
(5.2)

Proof. Setting l = 9 in (1.1), we have

$$\sum_{n=0}^{\infty} \overline{A_9}(n) q^n = \frac{f_9^2 f_2}{f_1^2 f_{18}}.$$
(5.3)

Xia and Yao [19] found the following 2-dissection formula for $\frac{f_9}{f_1}$:

$$\frac{f_9}{f_1} = \frac{f_{12}^3 f_{18}}{f_2^2 f_6 f_{36}} + q \frac{f_4^2 f_6 f_{36}}{f_2^3 f_{12}}.$$
(5.4)

In view of (5.4), we have

$$\frac{f_2}{f_{18}}\frac{f_9^2}{f_1^2} = \frac{f_2}{f_{18}} \left(\frac{f_{12}^3 f_{18}}{f_2^2 f_6 f_{36}} + q \frac{f_4^2 f_6 f_{36}}{f_2^3 f_{12}} \right)^2 = \frac{f_{18} f_{12}^6}{f_2^3 f_6^2 f_{36}^2} + 2q \frac{f_{12}^2 f_4^2}{f_2^4} + q^2 \frac{f_4^4 f_6^2 f_{36}^2}{f_2^5 f_{18} f_{12}^2}.$$
(5.5)

Combining (5.5) and (5.3) and then extracting the terms involving q^{2n+1} in the resulting identity, we obtain

$$\sum_{n=0}^{\infty} \overline{A_9} (2n+1) q^n = 2 \frac{f_6^2 f_2^2}{f_1^4}.$$
(5.6)

With the help of (2.2), we can rewrite the above identity as follows:

$$\sum_{n=0}^{\infty} \overline{A_9} (2n+1) q^n = 8q \frac{f_6^2 f_4^2 f_8^4}{f_2^8} + 2 \frac{f_6^2 f_4^{14}}{f_2^{12} f_8^4}.$$
(5.7)

Extracting the even powers of q and the odd powers of q in (5.7), we arrive at (5.1) and (5.2) respectively.

Theorem 5.2. If $p \ge 5$ is a prime with $\left(\frac{-2}{p}\right) = -1$ and $1 \le j \le p - 1$, then for all non-negative integers n and α , we have

$$\overline{A_9}\left(p^{2\alpha+2}(8n+3)+8p^{2\alpha+1}j\right) \equiv 0 \pmod{2^4}.$$

Proof. Substituting (2.1) and (2.4) into (5.2), we get

$$\sum_{n=0}^{\infty} \overline{A_9}(4n+3)q^n = 8\frac{f_2^2}{f_4^4}\frac{f_3^2}{f_1^2}\frac{1}{f_1^6} \equiv 8\frac{f_4^8f_6f_{12}f_8^{14}}{f_2^{18}f_{24}f_{16}^6} \pmod{2^4}.$$
(5.8)

Employing (4.6), we deduce that

$$\frac{f_2^8 f_3 f_6^2 f_4^{14}}{f_1^{18} f_{12} f_8^{6}} \equiv f_2^3 \frac{f_3^5}{f_6^2} \pmod{2}$$

Extracting the even powers of q in (5.8) and then using the above congruence, we find that

$$\sum_{n=0}^{\infty} \overline{A_9}(8n+3)q^n \equiv 8f_2^3 \frac{f_3^5}{f_6^2} \pmod{2^4}.$$
(5.9)

Using Lemma 3.2 and (4.26), we can rewrite the above congruence as

$$\overline{A_{9}}(8n+3)q^{n} \equiv 8 \left[\sum_{\substack{k=-\frac{p-1}{2}\\k\neq\frac{\pm p-1}{6}}}^{\frac{p-1}{2}} q^{3\frac{3k^{2}+k}{2}} \sum_{n=-\infty}^{\infty} (6pn+6k+1)q^{3\frac{pn(3pn+6k+1)}{2}} \pm pq^{\frac{p^{2}-1}{8}} \frac{f_{3p^{2}}^{5}}{f_{6p^{2}}^{2}} \right] \\ \times \left[\sum_{m=0}^{\frac{p-3}{2}} q^{m^{2}+m} f\left(q^{2\frac{p^{2}+(2m+1)p}{2}}, q^{2\frac{p^{2}-(2m+1)p}{2}}\right) + q^{\frac{p^{2}-1}{4}} f_{2p^{2}}^{3} \right] \pmod{2^{4}}.$$
(5.10)

Let $p \ge 5$ be prime with $\left(\frac{-2}{p}\right) = -1$. For $0 \le m \le \frac{p-3}{2}$ and $-\frac{p-1}{2} \le k \le \frac{p-1}{2}$, we consider the congruence equation

$$m^2 + m + 3 \cdot \frac{3k^2 + k}{2} \equiv 3 \cdot \frac{p^2 - 1}{8} \pmod{p}.$$
 (5.11)

We can rewrite the above congruence as follows:

$$2(2m+1)^2 + (6k+1)^2 \equiv 0 \pmod{p}.$$

Since $\left(\frac{-2}{p}\right) = -1$, it implies that

$$2m+1 = 6k+1 \equiv 0 \pmod{p}$$

Thus, the congruence (5.11) holds if and only if $m = \frac{p-1}{2}$ and $k = \frac{p-1}{6}$. Using the above fact in (5.10), extracting the terms involving $q^{p^2n+3\frac{p^2-1}{8}}$ and then replacing q^{p^2} by q, we obtain

$$\sum_{n=0}^{\infty} \overline{A_9} \Big(8p^2n + 3p^2 \Big) q^n \equiv 8f_2^3 \frac{f_3^5}{f_6^2} \pmod{2^4}.$$
(5.12)

From (5.9), (5.12) and by mathematical induction, we find that for $\alpha \ge 0$ and $n \ge 0$

$$\sum_{n=0}^{\infty} \overline{A_9} \Big(8p^{2\alpha}n + 3p^{2\alpha} \Big) q^n \equiv 8f_2^3 \frac{f_3^5}{f_6^2} \pmod{2^4}.$$
(5.13)

Again employing Lemma 3.2 and (4.26) into (5.13), extracting the terms involving $q^{pn+3\frac{p^2-1}{8}}$ in the resulting congruence and then replacing q^p by q, we obtain

$$\sum_{n=0}^{\infty} \overline{A_9} \left(8p^{2\alpha} \left(pn + 3\frac{p^2 - 1}{8} \right) + 3p^{2\alpha} \right) q^n \equiv 8f_{2p}^3 \frac{f_{3p}^5}{f_{6p}^2} \pmod{2^4}.$$

Equating the coefficients of q^{pn+j} for $1 \le j \le p-1$, we obtain the required congruence. **Remark 5.3.** Equating the coefficients of odd powers of q in (5.8), we see that for $n \ge 0$

$$\overline{A_9}(8n+7) \equiv 0 \pmod{2^4}.$$

Theorem 5.4. If $p \ge 5$ is a prime with $\left(\frac{-1}{p}\right) = -1$ and $1 \le j \le p-1$, then for all non-negative integers n and α ,

$$\overline{A_9}\left(p^{2\alpha+2}(8n+5)+8p^{2\alpha+1}j\right) \equiv 0 \pmod{2^3}.$$

Proof. In view of (2.1), (2.4) and (5.1), modulo 4, we find that

$$\frac{f_3^2 f_2^{14}}{f_1^{12} f_4^4} \equiv 2q \left(\frac{f_4^2 f_6 f_{12}^2 f_8^{18}}{f_2^{16} f_{24} f_{16}^6} + \frac{f_6^2 f_8^{26} f_{24}}{f_2^{15} f_4^3 f_{12} f_{16}^{10}} \right) + \frac{f_6 f_{12}^2 f_8^{24}}{f_2^{16} f_{24} f_{16}^{10}}.$$
(5.14)

Combining (5.1) and (5.14), extracting the odd powers of q and then using (4.6), we deduce

$$\sum_{n=0}^{\infty} \overline{A_9}(8n+5)q^n \equiv 4f_4^3 \frac{f_3^5}{f_6^2} + 4f_1^3 \frac{f_{12}^5}{f_{24}^2} \pmod{2^3}.$$
 (5.15)

Now, we consider the following two congruences:

$$3\frac{3j^2+j}{2} + 2m^2 + 2m \equiv 5\frac{p^2-1}{8} \pmod{p},$$
(5.16)

$$18j^2 + 6j + \frac{m^2 + m}{2} \equiv 5\frac{p^2 - 1}{8} \pmod{p}.$$
 (5.17)

where $0 \le m \le \frac{p-3}{2}, -\frac{p-1}{2} \le j \le \frac{p-1}{2}$ and $p \ge 5$ is a prime such that $\left(\frac{-1}{p}\right) = -1$. We can rewrite above congruences as follows:

$$(6j+1)^2 + (4m+2)^2 \equiv 0 \pmod{p},$$

 $(12j+2)^2 + (2m+1)^2 \equiv 0 \pmod{p}.$

Since $\left(\frac{-1}{p}\right) = -1$, above two congruence implies that

$$6j + 1 = 2m + 1 \equiv 0 \pmod{p}$$
.

Thus, the congruences (5.16) and (5.17) holds if and only if $m = \frac{p-1}{2}$ and $j = \frac{p-1}{6}$. Substituting Lemma 3.2 and (4.26) into (5.15), using the above fact in the resulting congruence and then extracting the terms involving $q^{p^2n+5\frac{p^2-1}{8}}$, we obtain

$$\sum_{n=0}^{\infty} \overline{A_9} \Big(8p^2n + 5p^2 \Big) q^n \equiv 4f_4^3 \frac{f_5^5}{f_6^2} + 4f_1^3 \frac{f_{12}^5}{f_{24}^2} \pmod{2^3}.$$
(5.18)

From (5.15), (5.18) and by mathematical induction, we see that for $\alpha \ge 0$ and $n \ge 0$

$$\sum_{n=0}^{\infty} \overline{A_9} \Big(8p^{2\alpha}n + 5p^{2\alpha} \Big) q^n \equiv 4f_4^3 \frac{f_3^5}{f_6^2} + 4f_1^3 \frac{f_{12}^5}{f_{24}^2} \pmod{2^3}.$$
(5.19)

Again employing Lemma 3.2 and (4.26) into (5.19), extracting the terms involving $q^{pn+5\frac{p^2-1}{8}}$ in the resulting congruence and then replacing q^p by q, we obtain

$$\sum_{n=0}^{\infty} \overline{A_9} \left(8p^{2\alpha} \left(pn + 5\frac{p^2 - 1}{8} \right) + 5p^{2\alpha} \right) q^n \equiv 4f_{4p}^3 \frac{f_{3p}^5}{f_{6p}^2} + 4f_p^3 \frac{f_{12p}^5}{f_{24p}^2} \pmod{2^3}.$$

Equating the coefficients of q^{pn+j} for $1 \le j \le p-1$ in the above congruence, we obtain the required result.

Theorem 5.5. If $p \ge 5$ is a prime with $\left(\frac{-2}{p}\right) = -1$ and $1 \le j \le p - 1$, then for all non-negative integers n and α ,

$$\overline{A_9}\left(p^{2\alpha+2}(8n+1)+8p^{2\alpha+1}j\right) \equiv 0 \pmod{2^3}.$$

Proof. Combining (5.1) and (5.14), extracting the even powers of q and then using (4.7), we see that

$$\sum_{n=0}^{\infty} \overline{A_9}(8n+1)q^n \equiv 2\frac{f_3^5}{f_6^2} \frac{f_6^2}{f_{12}} \pmod{2^3}.$$
 (5.20)

Using Lemma 2.4 with q replaced by -q and Lemma 3.2 in (5.20), we have

$$\sum_{n=0}^{\infty} \overline{A_9} \left(p^{2j} 8n + p^{2j} \right) q^n \equiv 2 \left[\sum_{\substack{k=\frac{-p-1}{2}\\k\neq\frac{\pm p-1}{2}\\k\neq\frac{\pm p-1}{6}}}^{\frac{p-1}{2}} q^{3\frac{3k^2+k}{2}} \sum_{n=-\infty}^{\infty} (6pn+6k+1)q^{3\frac{pn(3pn+6k+1)}{2}} \pm pq^{\frac{p^2-1}{8}} \frac{f_{p^2}^5}{f_{2p^2}^2} \right] \times \left[\frac{f_{6p^2}^2}{f_{12p^2}} + \sum_{r=1}^{p-1} (-1)^r q^{6r^2} f(-q^{6p(p-2r)}, -q^{6p(p+2r)}) \right] \pmod{2^3}.$$
(5.21)

Let $p \ge 5$ be a prime with $\left(\frac{-2}{p}\right) = -1$. For $-\frac{p-1}{2} \le k \le \frac{p-1}{2}$ and $1 \le r \le p-1$, consider the congruence equation

$$3\frac{3k^2+k}{2} + r^2 \equiv \frac{p^2-1}{8} \pmod{p},$$
(5.22)

which is equivalent to

$$(6k+1)^2 + 2(2r)^2 \equiv 0 \pmod{p}$$

Since $\left(\frac{-2}{p}\right) = -1$, the only solution of the congruence (5.22) is $k = \frac{\pm p-1}{6}$ and r = 0. Using the above fact in (5.21), extracting the terms involving $q^{p^2n+\frac{p^2-1}{8}}$ and then replacing q^{p^2} by q, we obtain

$$\sum_{n=0}^{\infty} \overline{A_9} \Big(8p^2 n + p^2 \Big) q^n \equiv \pm 2p \frac{f_3^5}{f_6^2} \frac{f_6^2}{f_{12}} \pmod{2^3}.$$
(5.23)

From (5.20), (5.23) and by induction, we find that for $n \ge 0$ and $\alpha \ge 0$,

$$\sum_{n=0}^{\infty} \overline{A_9} \Big(8p^{2\alpha}n + p^{2\alpha} \Big) q^n \equiv 2\Big(\pm p\Big)^{\alpha} \frac{f_3^5}{f_6^2} \frac{f_6^2}{f_{12}} \pmod{2^3}.$$
(5.24)

Substituting Lemma 2.4 with q replaced by -q and Lemma 3.2 into (5.24), extracting the terms invloving $q^{pn+\frac{p^2-1}{8}}$ in the resulting congruence, we deduce that

$$\sum_{n=0}^{\infty} \overline{A_9} \left(8p^{2\alpha} \left(pn + \frac{p^2 - 1}{8} \right) + p^{2\alpha} \right) q^n \equiv 2 \left(\pm p \right)^{\alpha + 1} \frac{f_{3p}^5}{f_{6p}^2} \frac{f_{6p}^2}{f_{12p}} \pmod{2^3}.$$
(5.25)

Equating the coefficients of q^{pk+j} for $1 \le j \le p-1$ in (5.25), we obtain

$$\overline{A_9}\left(p^{2\alpha+1}8(pn+j)+p^{2\alpha+2}\right) \equiv 0 \pmod{2^3}.$$

Hence the proof.

Theorem 5.6. If p is a odd prime such that $\left(\frac{-3}{p}\right) = -1$ and $1 \le k \le p - 1$, then for all integers $n \ge 0$ and $\alpha \ge 0$

$$\overline{A_9}\left(2p^{2\alpha+2}n + 2p^{2\alpha+1}k + p^{2\alpha+2}\right) \equiv 0 \pmod{6},$$
(5.26)

$$\overline{A_9}(3^{\alpha}(2n+1)) \equiv \overline{A_9}(2n+1) \pmod{6}, \tag{5.27}$$

$$\overline{A_9}\left(3^{\alpha}(6n+5)\right) \equiv 0 \pmod{6}.$$
(5.28)

Proof. It follows from (3.2) and (5.6) that

$$\sum_{n=0}^{\infty} \overline{A_9}(2n+1)q^n \equiv 2\frac{f_6^2}{f_3} \frac{f_2^2}{f_1} \pmod{6}.$$
(5.29)

Let p be odd prime such that $\left(\frac{-3}{p}\right) = -1$ and for $0 \le m, j \le \frac{p-3}{2}$, the following relation

$$3 \cdot \frac{m^2 + m}{2} + \frac{j^2 + j}{2} \equiv \frac{p^2 - 1}{2} \pmod{p}$$

holds if and only if $m = j = \frac{p-1}{2}$. From Theorem 2.5, (5.29) and by induction α , we find that for all integer $n \ge 0$

$$\sum_{n=0}^{\infty} \overline{A_9} \Big(2p^{2\alpha}n + p^{2\alpha} \Big) q^n \equiv 2 \frac{f_6^2}{f_3} \frac{f_2^2}{f_1} \pmod{6}$$

Now, substituting Theorem 2.5 into the above congruence and then extracting the terms involving $q^{pn+\frac{p^2-1}{2}}$, we deduce

$$\sum_{n=0}^{\infty} \overline{A_9} \Big(2p^{2\alpha} \Big(pn + \frac{p^2 - 1}{2} \Big) + p^{2\alpha} \Big) q^n \equiv 2 \frac{f_{6p}^2}{f_{3p}} \frac{f_{2p}^2}{f_p} \pmod{6}$$

Equating the coefficients of q^{pn+k} for $1 \le k \le p-1$ in the above congruence, we arrive at (5.26). Form [1, pp.49], we recall that

$$\frac{f_2^2}{f_1} = f(q^3, q^6) + q \frac{f_{18}^2}{f_9}.$$
(5.30)

In view of (5.30), (5.29) and by induction, we arrive at (5.27) and (5.28).

Remark 5.7. Setting $\alpha = 0$ in (5.28), we obtain Theorem 1.6.

6 Congruences modulo powers of 2 and 3 for $\overline{A_{3^r}}(n)$

In this section, by employing (2.3) and Lemma 2.3, we find several congruences modulo 2^2 , 2^3 , 2^4 and 3 for $\overline{A_{3^r}}(n)$, $r \ge 2$.

Lemma 6.1. We have

$$\overline{A_{3^r}}(9n+3) \equiv 8a_3(n) \pmod{2^4},$$
(6.1)

$$\overline{A_{3^r}}(6n+2) \equiv 4a_3(n) \pmod{2^3},$$
 (6.2)

$$\overline{A_{3r}}(3n+1) \equiv 2a_3(n) \pmod{2^2},$$
 (6.3)

where $a_3(n)$ denote the number of 3-cores of n.

Proof. Setting $l = 3^r$ $(r \ge 2)$ in (1.1) and then employing Lemma 2.3, we find that

$$\sum_{n=0}^{\infty} \overline{A_{3^r}}(n)q^n = \frac{f_{3^r}^2 f_6^4 f_9^6}{f_{2\cdot 3^r} f_3^8 f_{18}^3} + 2q \frac{f_{3^r}^2 f_6^3 f_9^3}{f_{2\cdot 3^r} f_3^7} + 4q^2 \frac{f_{3^r}^2 f_6^2 f_{18}^3}{f_{2\cdot 3^r} f_3^6}.$$
(6.4)

Extracting the terms involving q^{3n} , q^{3n+1} and q^{3n+2} in (6.4), we obtain

$$\sum_{n=0}^{\infty} \overline{A_{3^r}}(3n)q^n = \frac{f_{3^{r-1}}^2 f_2^4 f_3^6}{f_{2\cdot 3^{r-1}} f_1^8 f_6^3},$$
(6.5)

$$\sum_{n=0}^{\infty} \overline{A_{3^r}} (3n+1)q^n = 2 \frac{f_{3^{r-1}}^2 f_2^3 f_3^3}{f_{2\cdot 3^{r-1}} f_1^7}$$
(6.6)

and

$$\sum_{n=0}^{\infty} \overline{A_{3^r}} (3n+2)q^n = 4 \frac{f_{3^{r-1}}^2 f_2^2 f_6^3}{f_{2 \cdot 3^{r-1}} f_1^6}.$$
(6.7)

In view of Lemma 2.3, modulo 16, we find that

$$\frac{f_{3r-1}^2 f_3^6}{f_{2\cdot3^{r-1}} f_6^3} \frac{f_2^4}{f_1^8} = \frac{f_{3r-1}^2 f_3^6}{f_{2\cdot3^{r-1}} f_6^3} \left(\frac{f_6^4 f_9^6}{f_3^8 f_{18}^3} + 2q \frac{f_6^3 f_9^3}{f_3^7} + 4q^2 \frac{f_6^2 f_{18}^3}{f_3^6} \right)^4 \\ \equiv \frac{f_{3r-1}^2 f_6^{13} f_9^{24}}{f_3^{26} f_{2\cdot3^{r-1}} f_{18}^{12}} + 8q \frac{f_{3r-1}^2 f_6^{12} f_9^{21}}{f_3^{25} f_{2\cdot3^{r-1}} f_{18}^9} + 8q^2 \frac{f_{3r-1}^2 f_6^{11} f_9^{18}}{f_3^{24} f_{2\cdot3^{r-1}} f_{18}^{16}}.$$
(6.8)

Combining (6.5) and (6.8), extracting the terms of the form q^{3n+1} and then using (4.6), we obtain

$$\sum_{n=0}^{\infty} \overline{A_{3^r}}(9n+3)q^n \equiv 8\frac{f_3^3}{f_1} = \sum_{n=0}^{\infty} a_3(n)q^n \pmod{2^4}.$$

Equating the coefficients of q^n on both sides of the above congruence, we arrive at (6.1). Employing (4.6) in (6.7), we see that

$$\sum_{n=0}^{\infty} \overline{A_{3^r}} (3n+2)q^n \equiv 4\frac{f_6^3}{f_2} = \sum_{n=0}^{\infty} a_3(n)q^{2n} \pmod{2^3}.$$
(6.9)

Extracting even powers of q in (6.9), we obtain (6.2).

In view of (6.6) and (4.6), we deduce (6.3).

Remark 6.2. Equating the odd powers of q in (6.9), we find that

$$\overline{A_{3^r}}(6n+5) \equiv 0 \pmod{2^3}, \qquad n \ge 0$$

Utilizing (2.3), we can easily derive the following corollary.

Corollary 6.3. For all non-negative integers n, α and $1 \le j \le 3$, we have

$$a_3(4n+1) = 0, (6.10)$$

$$a_3(8n+2j) \equiv 0 \pmod{2}$$
 (6.11)

and

$$a_3(8n) \equiv \begin{cases} 1 \pmod{2}, & \text{if } n = k(3k-1)/2 \text{ for some integer } k, \\ 0 \pmod{2}, & \text{otherwise.} \end{cases}$$

Theorem 6.4. If $p \equiv 2 \pmod{3}$ and $j \in \{1, 2, 3\}$, then for all non-negative integers n and α , we have

$$\overline{A_{3^r}}\left(p^{2\alpha}(9n+3)\right) \equiv \overline{A_{3^r}}(9n+3) \pmod{2^4},\tag{6.12}$$

$$\overline{A_{3^r}}\Big(p^{2\alpha}(36n+30)\Big) \equiv 0 \pmod{2^4},$$
 (6.13)

$$\overline{A_{3^r}}\Big(p^{2\alpha}(72n+18j+3)\Big) \equiv 0 \pmod{2^4}$$
(6.14)

and

$$\overline{A_{3^r}}\left(p^{2\alpha}(72n+3)\right) \equiv \begin{cases} 2^3 \pmod{2^4}, & \text{if } n = k(3k-1)/2 \text{ for some integer } k, \\ 0 \pmod{2^4}, & \text{otherwise.} \end{cases}$$

Proof. Proof follows from Corollary 2.7, Corollary 6.3 and (6.1).

360

Remark 6.5. Employing Corollary 2.7 and Corollary 6.3 in (6.2) and (6.2), we can also find infinite families of congruences modulo 8 and 4 for $\overline{A_{3r}}(n)$ which are similar to congruences in Theorem 6.4.

Next, we present a short and simple proof of the Theorem 1.7.

Theorem 6.6. For all non-negative integers $r \ge 3$ and n, we have

$$\overline{A_{3^r}}(27n+18) \equiv 0 \pmod{3}.$$

Proof. From (3.2) and (6.5), it follows that

$$\sum_{n=0}^{\infty} \overline{A_{3^r}}(3n)q^n \equiv \frac{f_{3^{r-1}}^2 f_3^4}{f_{2\cdot 3^{r-1} f_6^2}} \frac{f_2}{f_1^2} \pmod{3}.$$

In view of above congruence, Lemma 2.3 and (3.2), we find that

$$\sum_{n=0}^{\infty} \overline{A_{3^r}}(9n)q^n \equiv \frac{f_{3^{r-2}}^2 f_3^5}{f_{2\cdot 3^{r-2} f_6^2}^2} \frac{f_2^2}{f_1} \pmod{3}.$$
(6.15)

Substituting (5.30) into (6.15) and then equating the coefficients of q^{3n+2} , we obtain the required congruence. Hence the proof.

References

- [1] C. Adiga, B. C. Berndt, S. Bhargava and G. N. Watson, Chapter 16 of Ramanujan's second notebook: Theta functions and *q*-series, *Mem. Amer. Math. Soc.* **315**, 1–91 (1985).
- [2] A. M. Alanazi, A. O. Munagi and J. A. Sellers, An infinite family of congruences for ℓ-regular overpartitions, *Integers* 16, #A37 (2016).
- [3] G. E. Andrews, Singular overpartitions, Int. J. Number Theory 5 (11), 1523–1533 (2015).
- [4] P. Barrucand, S. Cooper and M. D. Hirschhorn, Relations between squares and triangles, *Discrete Math.* 248, 245–247 (2002).
- [5] N. D. Baruah, K. K. Ojah, Analogues of Ramanujan's partition identities and congruences arising from his theta functions and modular equation, *Ramanujan J.* 28, 385–407 (2012).
- [6] B. C. Berndt, Number theory in the Spirit of Ramanujan, Amer Math Soc 2006: Providence.
- [7] S. -P. Cui and N. S. S. Gu, Arithmetic properties of ℓ-regular partition, Adv. Appl. Math. 51, 507–523 (2013).
- [8] F. -P. Fortin, P. Jacob and P. Mathieu, Jagged partitions, Ramanujan J. 10, 215–235 (2005).
- [9] M. D. Hirschhorn, F. Garvan and J. Borwein, Cubic analogs of the Jacobi cubic theta function $\Theta(z,q)$, *Can. J. Math.* **45**, 673–694 (1993).
- [10] M. D. Hirschhorn and J. A. Sellers, On representations of a number as a sum of three squares, *Discrete Math.* 85, 85–101 (1999).
- [11] M. D. Hirschhom and J. A. Sellers, Elementary proofs of parity results for 5-regular partitions, Bull. Aust. Math. Soc. 81, 58–63 (2010).
- [12] M. D. Hirschhorn and J. A. Sellers, Elementary proofs of various facts about 3-cores, Bull. Aust. Math. Soc. 79, 507–512 (2009).
- [13] J. Lovejoy, Gordon's theorem for overpartitions, J. Combin. Theory (Ser A) 103, 393-401 (2003).
- [14] M. S. Mahadeva Naika and D. S. Gireesh, Congruences for Andrews's singular overpartitions, J. Number theory 165, 109–130 (2016).
- [15] A. O. Munagi and J. A. Sellers, Refining overlined parts in overpartitions via residue classes: bijections, generating functions, and congruenes, *Util. Math.* 95, 33–49 (2014).
- [16] S. Ramanujan, Some properties of p(n), the number of partitions of n, *Proc. Cambridge Philos Soc.* **19**, 207–210 (1919).
- [17] D. Ranganatha, On a Ramanujan-type congruence for bipartitions with 5-cores, J. Integer Sequences 19, Article 16.8.1 (2016).
- [18] E. Y. Y. Shen, Arithmetic properties of ℓ-regular overpartitions, Int. J. Number Theory 12 (3), 841–852 (2016).

- [19] E. X. W. Xia and O. X. M. Yao, Analogus of Ramanujan's partition identities, *Ramanujan J.* 31, 373–396 (2013).
- [20] O. X. M. Yao, Congruences modulo 16, 32, and 64 for Andrews's singular overpartitions, *Ramanujan J.* (2016); DOI 10.1007/s11139-015-9760-2.

Author information

Ranganatha D., Department of Mathematics, Siddaganga Institute of Technology, B.H. Road, Tumakuru-572103, Karnataka, India. E-mail: ddranganatha@gmail.com

Received: November 24, 2016.

Accepted: January 23, 2017.