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Abstract. Andrews investigated the function Ck,j(n) which counts the number of overpar-

titions of n in which no part is divisible by k and only parts ≡ ±j (mod k) may be overlined.

Let Aℓ(n) denote the number of ℓ-regular overpartitions of n. Very recently, Mahadeva Naika

and Gireesh discovered some congruences for C3,1(n) modulo 2i3j for some values of i and j
and modulo 24 for A5(n). Furthermore, they conjectured that C3,1(12n + 11) ≡ 0 (mod 144).
In this paper, we con�rm this conjecture. We also establish several congruences for A5(n) and
A3r(n), r ≥ 2 modulo 2i3j for few values of i and j.

1 Introduction

A partition of a positive integer n is a �nite non-increasing sequence of positive integers λ1, λ2, . . . ,
λr such that

∑r
i=1

λi = n. The λi are called the parts of the partition. We shall set p(0) = 1

and for n ≥ 1, let p(n) denote the number of partitions of n. The generating function for p(n) is
given by

∞∑
n=0

p(n)qn =
1

f1
.

Here and throughout this paper, we assume that |q| < 1 and for any positive integer k, fk is

de�ned by

fk :=
∞∏
n=1

(1− qkn).

In 1919, Ramanujan [16] found nice congruence properties for p(n)moduli 5, 7 and 11. Namely,

for any nonnegative integer n,

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

Motivated by the above congruences, many mathematicians discovered many congruence prop-

erties for different partition functions such as singular overpartitions, ℓ-regular partitions, bro-
ken k-diamond partitions and ℓ-regular overpartitions. Among these, arithmetic properties of

ℓ-regular overpartitons has received a great deal of attention. For a positive integer l ≥ 2, a

partition is called ℓ-regular if none of its parts is divisible by ℓ. An overpartition of n is a non-

increasing sequence of natural numbers whose sum is n in which the �nal occurrence of a part

may be overlined.

In [13], Lovejoy proved the following theorem in the theory of overpartitions.

Theorem 1.1. ([13]) IfBℓ(n) denote the number of overpartitions of n of the form y1+y2+· · ·+
ys, where yj − yj+ℓ−1 ≥ 1 if yj+ℓ−1 is overlined and yj − yj+ℓ−1 ≥ 2 otherwise. Let Aℓ(0) = 1
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and for n ≥ 1, let Aℓ(n) denote number of overpartitions of n with no parts divisible by ℓ. Then
Aℓ(n) = Bℓ(n).

The generating function for Aℓ(n) is given by [18]

∞∑
n=0

Aℓ(n)q
n =

f2

ℓ f2

f2

1
f2ℓ

. (1.1)

Setting ℓ = 3 in (1.1), Shen [18] observed that A3(n) = C3,1(n), where Ck,j(n) counts the
number of overpartitions of n in which no part is divisible by k and only parts ≡ ±j (mod k)
may be overlined. This function was introduced and investigated by Andrews in [3]. As noted

in [3], the generating function for Ck,j(n) is given by

∞∑
n=0

Ck,j(n)q
n =

(qk; qk)∞(−qj ; qk)∞(−qk−j ; qk)∞
(q; q)∞

, (1.2)

where k ≥ 3 and 1 ≤ i ≤
⌊
k
2

⌋
. Using generating function dissection techniques, Shen [18] es-

tablished several interesting congruences modulo 2, 6, 24 for A3(n) and modulo 3, 24 for A4(n).
For example

Theorem 1.2. ([18])For all non-negative integer n,

A3(9n+ 3) ≡ 0 (mod 6),

A3(9n+ 6) ≡ 0 (mod 24),

A4(12n+ 8) ≡ 0 (mod 3),

A4(12n+ 7) ≡ 0 (mod 24).

In the same paper, Shen gave a combinatorial interpretation of �rst two congruences in the

above theorem by introducing the rank of vector partitions. Very recently, Mahadeva Naika and

Gireesh [14] employed dissection formulas of certain quotients of theta functions to establish

several in�nite families of congruences for Ck,j(n) for different values of k and j. They also

considered the function A5(n) and proved some congruences modulo 16. For example, they

proved the following theorems:

Theorem 1.3. ([14]) For all integers n ≥ 0, we have

C3,1(8n+ 7) ≡ 0 (mod 12),

C3,1(8n+ 6) ≡ 0 (mod 24),

C3,1(24n+ 14) ≡ 0 (mod 72).

Theorem 1.4. ([14]) Let p ≥ 5 be prime and
(

−2

p

)
= −1.Then for all integers n ≥ 0, α ≥ 1

and 1 ≤ j ≤ p− 1, we have

A5

(
8p2αn+ p2α−1(3p+ 8j)

)
≡ 0 (mod 24).

In the same paper, they also proposed the following conjecture for C3,1(n).

Conjecture 1.5. [14] For all integer n ≥ 0,

C3,1(12n+ 11) ≡ 0 (mod 144).

Alanazi, Munagi and Sellers [2] established several Ramanujan type congruences for ℓ-
regular overpatitions. In particular, Alanazi et al. [2] discovered the following theorem.

Theorem 1.6. ([2]) For all n ≥ 0, we have A9(6n+ 5) ≡ 0 (mod 3).
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The following theorem was proved by Alanazi et al. [2] using a congruence relation due to

Munagi and Sellers [15].

Theorem 1.7. ([2]) For all n ≥ 0 and all j ≥ 3, we have A3j (27n+ 18) ≡ 0 (mod 3).

The main aim of this paper is to show that Conjecture 1.5 is true and also to prove some new

congruences for A5(n) and A3r(n). The paper is organized as follows: In Section 2, we recall

some notations, de�nitions and also we collect some lemmas and theorems which are useful to

prove our main results. In Section 3, we give a simple proof of Conjecture 1.5 and also establish

a p-dissection formula for f5

1
/f2

2
which seems to be new. In Section 4, we derive some new

congruences modulo 8 and 16 for A5(n). In Section 5, we discover several in�nite families of

congruences modulo 6, 8 and 16 for A9(n). We also deduce Theorem 1.6 as a special case of

one of our theorems. In Section 6, we prove in�nite families of congruences for A3r(n), r ≥ 2

modulo 3, 4, 8 and 16. We also provide a short and simple proof of the Theorem 1.7.

2 Set of preliminary results

In this section, we present some identities which are useful to prove our main results.

Let p ≥ 3 be a prime. The Legendre symbol
(

a
p

)
is de�ned by

(
a

p

)
:=


1 if a is a quadratic residue modulo p and p - a,
−1 if a is a quadratic nonresidue modulo p and p - a,
0 if p | a.

For | ab |< 1, Ramanujan's general theta function f(a, b) is de�ned by [1]

f(a, b) =
∞∑

n=−∞
an(n+1)/2bn(n−1)/2.

The following lemma is a consequence of Entry 25 of (i), (ii), (v) and (vi) in [1, pp. 35�36].

Lemma 2.1. The following 2-dissection formulas are true:

1

f2

1

=
f5

8

f5

2
f2

16

+ 2q
f2

4
f2

16

f5

2
f8

(2.1)

and

1

f4

1

=
f14

4

f14

2
f4

8

+ 4q
f2

4
f4

8

f10

2

. (2.2)

The following 2-dissection formula for
f 3

3

f1
was proved by Hirschhorn, Garvan and Borwein

[9] and also by Xia and Yao [19].

Lemma 2.2. The following 2-dissection formulas are true:

f3

3

f1
=

f3

4
f2

6

f2

2
f12

+ q
f3

12

f4
(2.3)

and

f2

3

f2

1

=
f4

4
f6f

2

12

f5

2
f8f24

+ 2q
f4f

2

6
f8f24

f4

2
f12

. (2.4)

For a proof of (2.4), see [5] and [19].

From [8], we recall the following lemma.

Lemma 2.3. The following 3-dissection formula holds:

f2

f2

1

=
f4

6
f6

9

f8

3
f3

18

+ 2q
f3

6
f3

9

f7

3

+ 4q2
f2

6
f3

18

f6

3

.
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From [1, p.49], we recall the following p-dissection formula.

Lemma 2.4. For any prime p, we have

f5

2

f2

1
f2

4

=
f5

2p2

f2

p2
f2

4p2

+
p−1∑
r=1

qr
2

f(qp(p−2r), qp(p+2r)).

Theorem 2.5. ([7, Theorem 2.1]) For any odd prime p,

f2

2

f1
=

p−3

2∑
m=0

q
m2+m

2 f
(
q

p2+(2m+1)p
2 , q

p2−(2m+1)p
2

)
+ q

p2−1

8

f2

2p2

fp2
.

Furthermore, m2+m
2

̸≡ p2−1

8
(mod p) for 0 ≤ m ≤ p−3

2
.

For all integers n, k ≥ 0, let tk(n) (respectively rk(n)) denote the number of representations

of n as sum of k triangular (respectively square) numbers.

Theorem 2.6. For 1 ≤ k ≤ 7, we have

rk(8n+ k) = 2k−1

{
2+

(
k

4

)}
tk(n).

In [12], Hirschhorn and Sellers proved the following arithmetic identity for a3(n).

Theorem 2.7. Let p ≡ 2 (mod 3). For all integers n ≥ 0, we have

a3

(
p2αn+

p2α − 1

3

)
= a3(n),

where a3(n) denote the number of 3-core partitions of n.

3 Proof of Conjecture 1.5 and a p-dissection formula

In this section, we give a simple proof of Conjecture 1.5 and also establish a p-dissection formula

for f5

1
/f2

2
which will be used to prove congruence properties for A5(n) and A9(n).

Theorem 3.1. Conjecture 1.5 is true.

Proof. On using Lemma 2.3, Yao [20] proved that

∞∑
n=0

C3,1(6n+ 5)qn = 16
f2

2
f3

3
f4

4

f9

1

. (3.1)

By the binomial theorem, it is easy to check that, for all positive integers k and m,

f3m
k ≡ f3m

k (mod 3), (3.2)

f9m
k ≡ f3m

3k (mod 33). (3.3)

In view of congruence (3.3), we have

∞∑
n=0

C3,1(6n+ 5)qn = 16
f2

2
f3

3
f4

4

f9

1

≡ 16f2

2 f
4

4 (mod 144). (3.4)

Now, comparing the odd powers of q in (3.4), we obtain the required congruence.

Theorem 3.2. Let p ≥ 5 be a prime. Then

f5

1

f2

2

=

p−1

2∑
k=− p−1

2

k ̸≡±p−1

6

q
3k2+k

2

∞∑
n=−∞

(6pn+ 6k + 1)q
pn(3pn+6k+1)

2 ± pq
p2−1

24

f5

p2

f2

2p2

.

Furthermore, if −p−1

2
≤ k ≤ p−1

2
, k ̸= ±p−1

6
, we have 3k2+k

2
̸≡ p2−1

24
(mod p).
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Proof. From [6, Corollary 1.3.21], we recall that

f5

1

f2

2

=
∞∑

n=−∞
(6n+ 1)q

3n2+n
2 .

Dissecting the right side into p terms, we �nd that

f5

1

f2

2

=

p−1

2∑
k=− p−1

2

∞∑
n=−∞

(6(pn+ k) + 1)q
3(pn+k)2+(pn+k)

2

=

p−1

2∑
k=− p−1

2

q
3k2+k

2

∞∑
n=−∞

(6pn+ 6k + 1)q
pn(3pn+6k+1)

2

=

p−1

2∑
k=− p−1

2

k ̸=±p−1

6

q
3k2+k

2

∞∑
n=−∞

(6pn+ 6k + 1)q
pn(3pn+6k+1)

2 ± q
p2−1

24

∞∑
n=−∞

p (6n+ 1)q
p2(3n2+n)

2

=

p−1

2∑
k=− p−1

2

k ̸=±p−1

6

q
3k2+k

2

∞∑
n=−∞

(6pn+ 6k + 1)q
pn(3pn+6k+1)

2 ± pq
p2−1

24

f5

p2

f2

2p2

.

If 3k2+k
2

≡ p2−1

24
(mod p), which implies that (6k + 1)2 ≡ 0 (mod p). This implies that k =

mp−1

6
for some integer m. Since −p−1

2
≤ k ≤ p−1

2
, we have m = ±1. Thus k = ±p−1

6
which is

a contradiction.

4 Congruences for A5(n) modulo powers of 2

In this section, we prove in�nite families of congruences modulo 23 and 24 for A5(n).

Theorem 4.1. If p ≥ 5 is a prime such that
(

−5

p

)
= −1 and 1 ≤ j ≤ p − 1, then for all

non-negative integers n and α, we have

A5

(
4p2α+2n+ 4p2α+1j + p2α+2

)
≡ 0 (mod 23), (4.1)

A5

(
4 · 5α+1n+ 13 · 5α

)
≡ 0 (mod 23), (4.2)

A5

(
4 · 5α+1n+ 17 · 5α

)
≡ 0 (mod 23). (4.3)

Proof. In [14], Mahadeva Naika and Gireesh showed that

∞∑
n=0

A5(2n+ 1)qn = 8q
f10f

2

4
f4

8

f7

2

+ 2
f10f

14

4

f11

2
f4

8

. (4.4)

Extracting the even powers of q in (4.4), we obtain

∞∑
n=0

A5(4n+ 1)qn = 2
f14

2
f5

f11

1
f4

4

. (4.5)

By the binomial theorem, for any positive integersm and k, we have

fm
2k ≡ f2m

k (mod 2), (4.6)

f4m
k ≡ f2m

2k (mod 22). (4.7)
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From (4.5) and (4.7), we �nd that

∞∑
n=0

A5(4n+ 1)qn ≡ 2
f5

1
f5

5

f2

2
f2

10

(mod 23). (4.8)

De�ne

∞∑
n=0

a(n)qn =
f5

1

f2

2

f5

5

f2

10

. (4.9)

Then, in view of (4.8) and (4.9), we have

A5(4n+ 1) ≡ 2a(n) (mod 23). (4.10)

Using Lemma 3.2, we can rewrite (4.9) as

∞∑
n=0

a(n)qn =

[ p−1

2∑
j=− p−1

2

j ̸≡±p−1

6

q
3j2+j

2

∞∑
n=−∞

(6pn+ 6j + 1)q
pn(3pn+6j+1)

2 ± pq
p2−1

24

f5

p2

f2

2p2

]

×

[ p−1

2∑
m=− p−1

2

m ̸≡±p−1

6

q5
3m2+m

2

∞∑
n=−∞

(6pn+ 6m+ 1)q5
pn(3pn+6m+1)

2 ± pq5
p2−1

24

f5

5p2

f2

10p2

]
(4.11)

Let p ≥ 5 be a prime with
(

−5

p

)
= −1. For −p−1

2
≤ j,m ≤ p−1

2
, consider the following

congruence equation

3j2 + j

2
+ 5

3m2 +m

2
≡ p2 − 1

4
(mod p), (4.12)

which is equivalent to

(6j + 1)2 + 5(6m+ 1)2 ≡ 0 (mod p).

Since
(

−5

p

)
= −1, the above congruence holds if and only if j = m = ±p−1

6
. So. in (4.11),

extracting the terms involving qpn+
p2−1

4 and then replacing qp by q in the resulting congruence,

we obtain

∞∑
n=0

a
(
pn+

p2 − 1

4

)
qn = (−1)

±p−1

6 p2
f5
p

f2

2p

f5

5p

f2

10p

.

This implies that, for 1 ≤ t ≤ p− 1,

a
(
p(pn+ t)n+

p2 − 1

4

)
= 0 (4.13)

and

∞∑
n=0

a
(
p2n+

p2 − 1

4

)
qn = (−1)

±p−1

6 p2
f5

1

f2

2

f5

5

f2

10

.

From the above identity and (4.9), we �nd that

a
(
p2n+

p2 − 1

4

)
= (−1)

±p−1

6 p2a(n),
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and by induction on α ≥ 0, we deduce

a
(
p2αn+

p2α − 1

4

)
= (−1)

±p−1

6
αp2αa(n).

Replacing n by p2n+ pt+ p2−1

4
(1 ≤ t ≤ p− 1) in the above identity and then invoking (4.13),

we deduce that for α ≥ 0 and n ≥ 0,

a
(
p2α+2n+ p2α+1t+

p2α+1 − 1

4

)
= 0. (4.14)

Replacing n by p2α+2n+ p2α+1t+ p2α+1−1

4
in (4.10) and then using (4.14), we obtain (4.1).

From [1, pp.82], we recall that

f1 = f25
f(−q15,−q10)

f(−q20,−q5)
− q2

f(−q20,−q5)

f(−q15,−q10)
f25 − qf25. (4.15)

In view of (4.8), (4.15) and by induction, we �nd that for all non-negative integers n and α

∞∑
n=0

A5(4 · 5αn+ 5α)qn ≡ 2(−1)αf1f5 (mod 23).

Substituting (4.15) into the above congruence and then equating the coef�cients of q5n+3 and

q5n+4 in the resulting congruence, we obtain the remaining two congruences of the above theo-

rem.

Theorem 4.2. Let p be an odd prime and N be a positive integer with p - N such that pN ≡ 3

(mod 23). Let α ≥ 0 be an integer.

(1) If p ≡ − 1 (mod 24), then A5(p4α+3N) ≡ 0 (mod 24),
(2) If p ≡ 3, 11 (mod 24), then A5(p16α+15N) ≡ 0 (mod 24),
(3) If p ≡ 1, 5, 9 (mod 24), then A5(p32α+31N) ≡ 0 (mod 24),
(4) If p ≡ 7 (mod 24), then A5(p8α+7N) ≡ 0 (mod 24),
(5) If p ≡ 13 (mod 24), then A5(p64α+63N) ≡ 0 (mod 24).

Proof. Hirschhorn and Sellers [11] obtained the following 2−dissection formula:

f5
f1

=
f8f

2

20

f2

2
f40

+ q
f3

4
f10f40

f3

2
f8f20

. (4.16)

From (2.1), (4.4) and (4.16), we �nd that

∞∑
n=0

A5(4n+ 3)qn ≡ 8
f4

4
f8f

2

20

f3

2
f40

+ 8q
f7

4
f10f40

f4

2
f8f20

(mod 24). (4.17)

Extracting the even powers of q in (4.17) and then using (4.6), we �nd that

∞∑
n=0

A5(8n+ 3)qn ≡ 8
f6

2

f3

1

= 8

∞∑
n=0

t3(n)q
n (mod 24).

Equating the coef�cients of qn on both sides of the above congruence, we obtain

A5(8n+ 3) ≡ 8t3(n) (mod 24).

Setting k = 3 in Theorem 2.6, we obtain r3(8n+ 3) = 8t3(n). Hence

A5(8n+ 3) ≡ r3(8n+ 3) (mod 24). (4.18)

Hirschhorn and Sellers [10] proved that if p ≥ 3 is a prime and n is a positive integer, then

r3(p
2αn) =

(
pα+1 − 1

p− 1
−
(−n

p

) pα − 1

p− 1

)
r3(n)− p

pα − 1

p− 1
r3(n/p

2), α ≥ 0. (4.19)



352 Ranganatha D.

Here
(

·
p

)
is the Legendre symbol and we take r3(n/p2) = 0 if p2 - n.

Replacing n by pN (p - N) in (4.19), we get

r3(p
2α+1N) =

(
pα+1 − 1

p− 1

)
r3(pN). (4.20)

By (4.20), if p ≡ −1 (mod 24), then

r3(p
2α+1N) ≡

{
0 (mod 16) if α is odd,

r3(pN) (mod 16) if α is even.

The above congruence implies that r3(p4α+3N) ≡ 0 (mod 24). Setting n = p4α+3N−3

8
in (4.18),

we obtain

A5(p
4α+3N) ≡ r3(p

4α+3N) ≡ 0 (mod 24).

This completes the proof of (1).

Let p ≡ 3, 11 (mod 16). Replacing α by 8α+ 7 in (4.20) and using the fact that

p8α+8 − 1

p− 1
= 1+ p+ · · ·+ p8α+7 ≡ 0 (mod 24),

we obtain

r3(p
16α+15N) ≡ 0 (mod 24). (4.21)

Putting n = p8α+7N−3

8
in (4.18) and then using the above congruence, we get (2). The other

statements follow in a similar way.

Theorem 4.3. Let p ≥ 3 be a prime and N,α ≥ 1 are integers.

(1) If p ≡ 7 (mod 24), then A5(p8α(8N + 3)) ≡ A5(8N + 3) (mod 24),
(2) If p ≡ 1, 5, 9 (mod 24), then A5(p32α(8N + 3)) ≡ A5(8N + 3) (mod 24),
(3) If p ≡ −1 (mod 24), then A5(p4α(8N + 3)) ≡ A5(8N + 3) (mod 24),
(4) If p ≡ 3, 11 (mod 24), then A5(p16α(8N + 3)) ≡ A5(8N + 3) (mod 24),
(5) If p ≡ 13 (mod 24), then A5(p64α(8N + 3)) ≡ A5(8N + 3) (mod 24).

Proof. We give a proof of (1).The proof of other congruences follows similarly. Replacing n by

p2(8N + 3) and α by 4α+ 3 in (4.19), we obtain

r3(p
8α+8(8N + 3)) = r3(p

2(8N + 3))
p8α+8 − 1

p− 1
− r3(8N + 3)p

p8α+7 − 1

p− 1
(α ≥ 0). (4.22)

If p ≡ 7 (mod 16), then we have

p8α+8 − 1

p− 1
= 1+ p+ · · ·+ p8α+7 ≡ 0 (mod 24)

and

p
p8α+7 − 1

p− 1
= p+ p2 + · · ·+ p8α+6 ≡ −1 (mod 24).

Using above two congruences in (4.22), we get

r3(p
8α+8(8N + 3)) ≡ r3(8N + 3) (mod 24). (4.23)

Putting n = p32α+32(8N+3)−3

8
in (4.18) and then using (4.23) and (4.18), we get the required

result.
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Theorem 4.4. If p ≥ 3 is a prime with
(

−10

p

)
= −1, then for all non-negative integers n and α,

A5

(
p2α8n+ 7p2α

)
≡ 8f3

2 f
3

5 (mod 24). (4.24)

Moreover, for 1 ≤ r ≤ p− 1,

A5

(
p2α+2(8n+ 7) + 8p2α+1r

)
≡ 0 (mod 24).

Proof. Extracting the terms involving q2n+1 in (4.17) and then using (4.6), we deduce that

∞∑
n=0

A5(8n+ 7)qn = 8f3

2
f3

5
(mod 24). (4.25)

Thus (4.24) is true for α = 0. In view of Theorem 2.5 and (4.7), we have

f3

1
≡

p−3

2∑
m=0

q
m2+m

2 f
(
q

p2+(2m+1)p
2 , q

p2−(2m+1)p
2

)
+ q

p2−1

8 f3

p2 (mod 22). (4.26)

Assume that (4.24) holds for α = j. With the aid of (4.26), we can rewrite (4.24) with α = j as

∞∑
n=0

A5(p
2j8n+ 7p2j)qn =8

[ p−3

2∑
m=0

q2
m2+m

2 f
(
q2

p2+(2m+1)p
2 , q2

p2−(2m+1)p
2

)
+ q2

p2−1

8 f3

2p2

]

×

[ p−3

2∑
k=0

q5
k2+k

2 f
(
q5

p2+(2k+1)p
2 , q5

p2−(2k+1)p
2

)
+ q5

p2−1

8 f3

5p2

]
(mod 24).

(4.27)

Now consider the congruence equation,

m2 +m+ 5 · k
2 + k

2
≡ 7 · p

2 − 1

8
(mod p).

where 0 ≤ m, k ≤ p−3

2
and p is a prime such that

(
−10

p

)
= −1. We can rewrite the above

congruence as follows:

(4m+ 2)2 + 10(2k + 1)2 ≡ 0 (mod p).

Since
(

−10

p

)
= −1, it implies that

4m+ 2 = 2k + 1 ≡ 0 (mod p).

Thusm = k = p−1

2
. Using the above fact in (4.27), extracting the terms involving qpn+7

p2−1

8 and

then replacing qp by q, we obtain

∞∑
n=0

A5

(
8p2j+1n+ 7p2j+2

)
qn ≡ 8f3

2pf
3

5p (mod 24). (4.28)

Again Extracting the terms involving qp in the above congruence, we see that (4.24) is true for

α = j + 1. Hence the proof of (4.24).

Next, comparing the coef�cients of qpn+r for 1 ≤ r ≤ p− 1 in (4.28), we obtain

A5

(
8p2j+1(pn+ r) + 7p2j+2

)
= 0 (mod 24).
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Theorem 4.5. For all integers n, α ≥ 0, j ∈ {642, 842} and k ∈ {242, 3242}, we have

A5

(
52α
(
103n+ j

)
− 35

)
≡ 0 (mod 24) (4.29)

and

A5

(
52α
(
5 · 103n+ k

)
− 35

)
≡ 0 (mod 24). (4.30)

Proof. Setting p = 5 in (4.26), we obtain

f3

1
≡ f(q10, q15) + qf(q5, q20) + q3f3

25
(mod 22). (4.31)

Let b(n) be de�ned by

∞∑
n=0

b(n)qn = f3

2
f3

5
. (4.32)

Then from (4.25), we have

A5(8n+ 7) ≡ 8b(n) (mod 24). (4.33)

In view of (4.31) and (4.32), we see that

∞∑
n=0

b(n)qn ≡ f(q20, q30)f3

5
+ q2f(q10, q40)f3

5
+ q6f3

50
f3

5
(mod 22).

Equating the coef�cients of q5n+3, q5n+4 and q5n+1 in the above congruence, we �nd that

b(5n+ 3) ≡ b(5n+ 4) ≡ 0 (mod 22), (4.34)

∞∑
n=0

b(5n+ 1)qn ≡ qf3

1
f3

10
(mod 22).

Employing (4.31) in the above congruence and then equating the coef�cients of q5n, q5n+3 and

q5n+4, we obtain

b(25n+ 1) ≡ b(25n+ 16) ≡ 0 (mod 22), (4.35)

∞∑
n=0

b(25n+ 21)qn ≡ f3

2
f3

5
(mod 22). (4.36)

In view of (4.32), (4.36) and by mathematical induction, we �nd that for α, n ≥ 0

b
(
52α+2n+ 21 · 5

2α − 1

4

)
≡ b(n) (mod 22). (4.37)

Replacing n by 5n+ 3 and 5n+ 4 in (4.37) and then using (4.34), we obtain

b
(
52α+2(5n+ 3) + 21 · 5

2α − 1

4

)
≡ b
(
52α+2(5n+ 4) + 21 · 5

2α − 1

4

)
≡ 0 (mod 22).

(4.38)

From (4.33) and (4.38), we deduce that

A5

(
52α(103n+ 642)− 35

)
≡ A5

(
52α(103n+ 842)− 35

)
≡ 0 (mod 24).

This completes the proof of (4.29). In a similar way, remaining one follows from (4.33), (4.35)

and (4.37).
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5 Congruences modulo powers of 2 and 6 for A9(n)

In this section, we prove several in�nite families of congruences for A9(n) modulo 22, 6, 23 and
24. The following lemma gives the generating functions for A9(4n+ 1) and A9(4n+ 3).

Lemma 5.1. We have

∞∑
n=0

A9(4n+ 1)qn = 2
f2

3
f14

2

f12

1
f4

4

(5.1)

and

∞∑
n=0

A9(4n+ 3)qn = 8
f2

3
f2

2
f4

4

f8

1

. (5.2)

Proof. Setting l = 9 in (1.1), we have

∞∑
n=0

A9(n)q
n =

f2

9
f2

f2

1
f18

. (5.3)

Xia and Yao [19] found the following 2-dissection formula for f9
f1
:

f9
f1

=
f3

12
f18

f2

2
f6f36

+ q
f2

4
f6f36

f3

2
f12

. (5.4)

In view of (5.4), we have

f2
f18

f2

9

f2

1

=
f2
f18

(
f3

12
f18

f2

2
f6f36

+ q
f2

4
f6f36

f3

2
f12

)2

=
f18f

6

12

f3

2
f2

6
f2

36

+ 2q
f2

12
f2

4

f4

2

+ q2
f4

4
f2

6
f2

36

f5

2
f18f2

12

. (5.5)

Combining (5.5) and (5.3) and then extracting the terms involving q2n+1 in the resulting identity,

we obtain

∞∑
n=0

A9(2n+ 1)qn = 2
f2

6
f2

2

f4

1

. (5.6)

With the help of (2.2), we can rewrite the above identity as follows:

∞∑
n=0

A9(2n+ 1)qn = 8q
f2

6
f2

4
f4

8

f8

2

+ 2
f2

6
f14

4

f12

2
f4

8

. (5.7)

Extracting the even powers of q and the odd powers of q in (5.7), we arrive at (5.1) and (5.2)

respectively.

Theorem 5.2. If p ≥ 5 is a prime with
(

−2

p

)
= −1 and 1 ≤ j ≤ p− 1, then for all non-negative

integers n and α, we have

A9

(
p2α+2(8n+ 3) + 8p2α+1j

)
≡ 0 (mod 24).

Proof. Substituting (2.1) and (2.4) into (5.2), we get

∞∑
n=0

A9(4n+ 3)qn = 8
f2

2

f4

4

f2

3

f2

1

1

f6

1

≡ 8
f8

4
f6f

2

12
f14

8

f18

2
f24f

6

16

(mod 24). (5.8)

Employing (4.6), we deduce that

f8

2
f3f

2

6
f14

4

f18

1
f12f

6

8

≡ f3

2

f5

3

f2

6

(mod 2).
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Extracting the even powers of q in (5.8) and then using the above congruence, we �nd that

∞∑
n=0

A9(8n+ 3)qn ≡ 8f3

2

f5

3

f2

6

(mod 24). (5.9)

Using Lemma 3.2 and (4.26), we can rewrite the above congruence as

A9(8n+ 3)qn ≡ 8

[ p−1

2∑
k=− p−1

2

k ̸≡±p−1

6

q3
3k2+k

2

∞∑
n=−∞

(6pn+ 6k + 1)q3
pn(3pn+6k+1)

2 ± pq
p2−1

8

f5

3p2

f2

6p2

]

×

[ p−3

2∑
m=0

qm
2+mf

(
q2

p2+(2m+1)p
2 , q2

p2−(2m+1)p
2

)
+ q

p2−1

4 f3

2p2

]
(mod 24). (5.10)

Let p ≥ 5 be prime with
(

−2

p

)
= −1. For 0 ≤ m ≤ p−3

2
and −p−1

2
≤ k ≤ p−1

2
, we consider the

congruence equation

m2 +m+ 3 · 3k
2 + k

2
≡ 3 · p

2 − 1

8
(mod p). (5.11)

We can rewrite the above congruence as follows:

2(2m+ 1)2 + (6k + 1)2 ≡ 0 (mod p).

Since
(

−2

p

)
= −1, it implies that

2m+ 1 = 6k + 1 ≡ 0 (mod p).

Thus, the congruence (5.11) holds if and only ifm = p−1

2
and k = p−1

6
. Using the above fact in

(5.10), extracting the terms involving qp
2n+3

p2−1

8 and then replacing qp
2

by q, we obtain

∞∑
n=0

A9

(
8p2n+ 3p2

)
qn ≡ 8f3

2

f5

3

f2

6

(mod 24). (5.12)

From (5.9), (5.12) and by mathematical induction, we �nd that for α ≥ 0 and n ≥ 0

∞∑
n=0

A9

(
8p2αn+ 3p2α

)
qn ≡ 8f3

2

f5

3

f2

6

(mod 24). (5.13)

Again employing Lemma 3.2 and (4.26) into (5.13), extracting the terms involving qpn+3
p2−1

8 in

the resulting congruence and then replacing qp by q, we obtain

∞∑
n=0

A9

(
8p2α

(
pn+ 3

p2 − 1

8

)
+ 3p2α

)
qn ≡ 8f3

2p

f5

3p

f2

6p

(mod 24).

Equating the coef�cients of qpn+j for 1 ≤ j ≤ p− 1, we obtain the required congruence.

Remark 5.3. Equating the coef�cients of odd powers of q in (5.8), we see that for n ≥ 0

A9(8n+ 7) ≡ 0 (mod 24).

Theorem 5.4. If p ≥ 5 is a prime with
(

−1

p

)
= −1 and 1 ≤ j ≤ p− 1, then for all non-negative

integers n and α,

A9

(
p2α+2(8n+ 5) + 8p2α+1j

)
≡ 0 (mod 23).
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Proof. In view of (2.1), (2.4) and (5.1), modulo 4, we �nd that

f2

3
f14

2

f12

1
f4

4

≡ 2q

(
f2

4
f6f

2

12
f18

8

f16

2
f24f

6

16

+
f2

6
f26

8
f24

f15

2
f3

4
f12f

10

16

)
+

f6f
2

12
f24

8

f16

2
f24f

10

16

. (5.14)

Combining (5.1) and (5.14), extracting the odd powers of q and then using (4.6), we deduce

∞∑
n=0

A9(8n+ 5)qn ≡ 4f3

4

f5

3

f2

6

+ 4f3

1

f5

12

f2

24

(mod 23). (5.15)

Now, we consider the following two congruences:

3
3j2 + j

2
+ 2m2 + 2m ≡ 5

p2 − 1

8
(mod p), (5.16)

18j2 + 6j +
m2 +m

2
≡ 5

p2 − 1

8
(mod p). (5.17)

where 0 ≤ m ≤ p−3

2
, −p−1

2
≤ j ≤ p−1

2
and p ≥ 5 is a prime such that

(
−1

p

)
= −1. We can

rewrite above congruences as follows:

(6j + 1)2 + (4m+ 2)2 ≡ 0 (mod p),

(12j + 2)2 + (2m+ 1)2 ≡ 0 (mod p).

Since
(

−1

p

)
= −1, above two congruence implies that

6j + 1 = 2m+ 1 ≡ 0 (mod p).

Thus, the congruences (5.16) and (5.17) holds if and only ifm = p−1

2
and j = p−1

6
. Substituting

Lemma 3.2 and (4.26) into (5.15), using the above fact in the resulting congruence and then

extracting the terms involving qp
2n+5

p2−1

8 , we obtain

∞∑
n=0

A9

(
8p2n+ 5p2

)
qn ≡ 4f3

4

f5

3

f2

6

+ 4f3

1

f5

12

f2

24

(mod 23). (5.18)

From (5.15), (5.18) and by mathematical induction, we see that for α ≥ 0 and n ≥ 0

∞∑
n=0

A9

(
8p2αn+ 5p2α

)
qn ≡ 4f3

4

f5

3

f2

6

+ 4f3

1

f5

12

f2

24

(mod 23). (5.19)

Again employing Lemma 3.2 and (4.26) into (5.19), extracting the terms involving qpn+5
p2−1

8 in

the resulting congruence and then replacing qp by q, we obtain

∞∑
n=0

A9

(
8p2α

(
pn+ 5

p2 − 1

8

)
+ 5p2α

)
qn ≡ 4f3

4p

f5

3p

f2

6p

+ 4f3

p

f5

12p

f2

24p

(mod 23).

Equating the coef�cients of qpn+j for 1 ≤ j ≤ p − 1 in the above congruence, we obtain the

required result.

Theorem 5.5. If p ≥ 5 is a prime with
(

−2

p

)
= −1 and 1 ≤ j ≤ p− 1, then for all non-negative

integers n and α,

A9

(
p2α+2(8n+ 1) + 8p2α+1j

)
≡ 0 (mod 23).
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Proof. Combining (5.1) and (5.14), extracting the even powers of q and then using (4.7), we see
that

∞∑
n=0

A9(8n+ 1)qn ≡ 2
f5

3

f2

6

f2

6

f12
(mod 23). (5.20)

Using Lemma 2.4 with q replaced by −q and Lemma 3.2 in (5.20), we have

∞∑
n=0

A9

(
p2j8n+ p2j

)
qn ≡ 2

[ p−1

2∑
k=−p−1

2

k ̸≡±p−1

6

q3
3k2+k

2

∞∑
n=−∞

(6pn+ 6k + 1)q3
pn(3pn+6k+1)

2 ± pq
p2−1

8

f5

p2

f2

2p2

]

×

[
f2

6p2

f12p2
+

p−1∑
r=1

(−1)rq6r
2

f(−q6p(p−2r),−q6p(p+2r))

]
(mod 23).

(5.21)

Let p ≥ 5 be a prime with
(

−2

p

)
= −1. For −p−1

2
≤ k ≤ p−1

2
and 1 ≤ r ≤ p − 1, consider the

congruence equation

3
3k2 + k

2
+ r2 ≡ p2 − 1

8
(mod p), (5.22)

which is equivalent to

(6k + 1)2 + 2(2r)2 ≡ 0 (mod p).

Since
(

−2

p

)
= −1, the only solution of the congruence (5.22) is k = ±p−1

6
and r = 0. Using

the above fact in (5.21), extracting the terms involving qp
2n+ p2−1

8 and then replacing qp
2

by q, we
obtain

∞∑
n=0

A9

(
8p2n+ p2

)
qn ≡ ±2p

f5

3

f2

6

f2

6

f12
(mod 23). (5.23)

From (5.20), (5.23) and by induction, we �nd that for n ≥ 0 and α ≥ 0,

∞∑
n=0

A9

(
8p2αn+ p2α

)
qn ≡ 2

(
± p
)α f5

3

f2

6

f2

6

f12
(mod 23). (5.24)

Substituting Lemma 2.4 with q replaced by −q and Lemma 3.2 into (5.24), extracting the terms

invloving qpn+
p2−1

8 in the resulting congruence, we deduce that

∞∑
n=0

A9

(
8p2α

(
pn+

p2 − 1

8

)
+ p2α

)
qn ≡ 2

(
± p
)α+1 f5

3p

f2

6p

f2

6p

f12p
(mod 23). (5.25)

Equating the coef�cients of qpk+j for 1 ≤ j ≤ p− 1 in (5.25), we obtain

A9

(
p2α+18(pn+ j) + p2α+2

)
≡ 0 (mod 23).

Hence the proof.

Theorem 5.6. If p is a odd prime such that
(

−3

p

)
= −1 and 1 ≤ k ≤ p− 1, then for all integers

n ≥ 0 and α ≥ 0

A9

(
2p2α+2n+ 2p2α+1k + p2α+2

)
≡ 0 (mod 6), (5.26)

A9

(
3α(2n+ 1)

)
≡ A9(2n+ 1) (mod 6), (5.27)

A9

(
3α(6n+ 5)

)
≡ 0 (mod 6). (5.28)
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Proof. It follows from (3.2) and (5.6) that

∞∑
n=0

A9(2n+ 1)qn ≡ 2
f2

6

f3

f2

2

f1
(mod 6). (5.29)

Let p be odd prime such that
(

−3

p

)
= −1 and for 0 ≤ m, j ≤ p−3

2
, the following relation

3 · m
2 +m

2
+

j2 + j

2
≡ p2 − 1

2
(mod p)

holds if and only if m = j = p−1

2
. From Theorem 2.5, (5.29) and by induction α, we �nd that

for all integer n ≥ 0

∞∑
n=0

A9

(
2p2αn+ p2α

)
qn ≡ 2

f2

6

f3

f2

2

f1
(mod 6).

Now, substituting Theorem 2.5 into the above congruence and then extracting the terms involving

qpn+
p2−1

2 , we deduce

∞∑
n=0

A9

(
2p2α

(
pn+

p2 − 1

2

)
+ p2α

)
qn ≡ 2

f2

6p

f3p

f2

2p

fp
(mod 6).

Equating the coef�cients of qpn+k for 1 ≤ k ≤ p−1 in the above congruence, we arrive at (5.26).

Form [1, pp.49], we recall that

f2

2

f1
= f(q3, q6) + q

f2

18

f9
. (5.30)

In view of (5.30), (5.29) and by induction, we arrive at (5.27) and (5.28).

Remark 5.7. Setting α = 0 in (5.28), we obtain Theorem 1.6.

6 Congruences modulo powers of 2 and 3 for A3r(n)

In this section, by employing (2.3) and Lemma 2.3, we �nd several congruences modulo 22, 23,
24 and 3 for A3r(n), r ≥ 2.

Lemma 6.1. We have

A3r(9n+ 3) ≡ 8a3(n) (mod 24), (6.1)

A3r(6n+ 2) ≡ 4a3(n) (mod 23), (6.2)

A3r(3n+ 1) ≡ 2a3(n) (mod 22), (6.3)

where a3(n) denote the number of 3−cores of n.

Proof. Setting l = 3r (r ≥ 2) in (1.1) and then employing Lemma 2.3, we �nd that

∞∑
n=0

A3r(n)q
n =

f2

3r
f4

6
f6

9

f2·3rf
8

3
f3

18

+ 2q
f2

3r
f3

6
f3

9

f2·3rf
7

3

+ 4q2
f2

3r
f2

6
f3

18

f2·3rf
6

3

. (6.4)

Extracting the terms involving q3n, q3n+1 and q3n+2 in (6.4), we obtain

∞∑
n=0

A3r(3n)q
n =

f2

3r−1f
4

2
f6

3

f2·3r−1f8

1
f3

6

, (6.5)

∞∑
n=0

A3r(3n+ 1)qn = 2
f2

3r−1f
3

2
f3

3

f2·3r−1f7

1

(6.6)
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and

∞∑
n=0

A3r(3n+ 2)qn = 4
f2

3r−1f
2

2
f3

6

f2·3r−1f6

1

. (6.7)

In view of Lemma 2.3, modulo 16, we �nd that

f2

3r−1f
6

3

f2·3r−1f3

6

f4

2

f8

1

=
f2

3r−1f
6

3

f2·3r−1f3

6

(
f4

6
f6

9

f8

3
f3

18

+ 2q
f3

6
f3

9

f7

3

+ 4q2
f2

6
f3

18

f6

3

)4

≡
f2

3r−1f
13

6
f24

9

f26

3
f2·3r−1f12

18

+ 8q
f2

3r−1f
12

6
f21

9

f25

3
f2·3r−1f9

18

+ 8q2
f2

3r−1f
11

6
f18

9

f24

3
f2·3r−1f6

18

. (6.8)

Combining (6.5) and (6.8), extracting the terms of the form q3n+1 and then using (4.6), we obtain

∞∑
n=0

A3r(9n+ 3)qn ≡ 8
f3

3

f1
=

∞∑
n=0

a3(n)q
n (mod 24).

Equating the coef�cients of qn on both sides of the above congruence, we arrive at (6.1).

Employing (4.6) in (6.7), we see that

∞∑
n=0

A3r(3n+ 2)qn ≡ 4
f3

6

f2
=

∞∑
n=0

a3(n)q
2n (mod 23). (6.9)

Extracting even powers of q in (6.9), we obtain (6.2).
In view of (6.6) and (4.6), we deduce (6.3).

Remark 6.2. Equating the odd powers of q in (6.9), we �nd that

A3r(6n+ 5) ≡ 0 (mod 23), n ≥ 0.

Utilizing (2.3), we can easily derive the following corollary.

Corollary 6.3. For all non-negative integers n, α and 1 ≤ j ≤ 3, we have

a3(4n+ 1) = 0, (6.10)

a3(8n+ 2j) ≡ 0 (mod 2) (6.11)

and

a3(8n) ≡

{
1 (mod 2), if n = k(3k − 1)/2 for some integer k,

0 (mod 2), otherwise.

Theorem 6.4. If p ≡ 2 (mod 3) and j ∈ {1, 2, 3}, then for all non-negative integers n and α, we
have

A3r

(
p2α(9n+ 3)

)
≡ A3r(9n+ 3) (mod 24), (6.12)

A3r

(
p2α(36n+ 30)

)
≡ 0 (mod 24), (6.13)

A3r

(
p2α(72n+ 18j + 3)

)
≡ 0 (mod 24) (6.14)

and

A3r

(
p2α(72n+ 3)

)
≡

{
23 (mod 24), if n = k(3k − 1)/2 for some integer k,

0 (mod 24), otherwise.

Proof. Proof follows from Corollary 2.7, Corollary 6.3 and (6.1).
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Remark 6.5. Employing Corollary 2.7 and Corollary 6.3 in (6.2) and (6.2), we can also �nd

in�nite families of congruences modulo 8 and 4 for A3r(n) which are similar to congruences in

Theorem 6.4.

Next, we present a short and simple proof of the Theorem 1.7.

Theorem 6.6. For all non-negative integers r ≥ 3 and n, we have

A3r(27n+ 18) ≡ 0 (mod 3).

Proof. From (3.2) and (6.5), it follows that

∞∑
n=0

A3r(3n)q
n ≡

f2

3r−1f
4

3

f2·3r−1f 2

6

f2

f2

1

(mod 3).

In view of above congruence, Lemma 2.3 and (3.2), we �nd that

∞∑
n=0

A3r(9n)q
n ≡

f2

3r−2f
5

3

f2·3r−2f 2

6

f2

2

f1
(mod 3). (6.15)

Substituting (5.30) into (6.15) and then equating the coef�cients of q3n+2, we obtain the required

congruence. Hence the proof.

References

[1] C. Adiga, B. C. Berndt, S. Bhargava and G. N. Watson, Chapter 16 of Ramanujan's second notebook:

Theta functions and q-series,Mem. Amer. Math. Soc. 315, 1�91 (1985).

[2] A. M. Alanazi, A. O. Munagi and J. A. Sellers, An in�nite family of congruences for ℓ-regular overparti-
tions, Integers 16, #A37 (2016).

[3] G. E. Andrews, Singular overpartitions, Int. J. Number Theory 5 (11), 1523�1533 (2015).

[4] P. Barrucand, S. Cooper and M. D. Hirschhorn, Relations between squares and triangles, Discrete Math.

248, 245�247 (2002).

[5] N. D. Baruah, K. K. Ojah, Analogues of Ramanujan's partition identities and congruences arising from

his theta functions and modular equation, Ramanujan J. 28, 385�407 (2012).

[6] B. C. Berndt, Number theory in the Spirit of Ramanujan, Amer Math Soc 2006: Providence.

[7] S. -P. Cui and N. S. S. Gu, Arithmetic properties of ℓ-regular partition, Adv. Appl. Math. 51, 507�523

(2013).

[8] F. -P. Fortin, P. Jacob and P. Mathieu, Jagged partitions, Ramanujan J. 10, 215�235 (2005).

[9] M. D. Hirschhorn, F. Garvan and J. Borwein, Cubic analogs of the Jacobi cubic theta function Q(z, q),
Can. J. Math. 45, 673�694 (1993).

[10] M. D. Hirschhorn and J. A. Sellers, On representations of a number as a sum of three squares, Discrete

Math. 85, 85�101 (1999).

[11] M. D. Hirschhorn and J. A. Sellers, Elementary proofs of parity results for 5-regular partitions, Bull. Aust.

Math. Soc. 81, 58�63 (2010).

[12] M. D. Hirschhorn and J. A. Sellers, Elementary proofs of various facts about 3-cores, Bull. Aust. Math.

Soc. 79, 507�512 (2009).

[13] J. Lovejoy, Gordon's theorem for overpartitions, J. Combin. Theory (Ser A) 103, 393�401 (2003).

[14] M. S. Mahadeva Naika and D. S. Gireesh, Congruences for Andrews's singular overpartitions, J. Number

theory 165, 109�130 (2016).

[15] A. O. Munagi and J. A. Sellers, Re�ning overlined parts in overpartitions via residue classes: bijections,

generating functions, and congruenes, Util. Math. 95, 33�49 (2014).

[16] S. Ramanujan, Some propeties of p(n), the number of partitions of n, Proc. Cambridge Philos Soc. 19,

207�210 (1919).

[17] D. Ranganatha, On a Ramanujan-type congruence for bipartitions with 5-cores, J. Integer Sequences 19,

Article 16.8.1 (2016).

[18] E. Y. Y. Shen, Arithmetic properties of ℓ-regular overpartitions, Int. J. Number Theory 12 (3), 841�852

(2016).



362 Ranganatha D.

[19] E. X. W. Xia and O. X. M. Yao, Analogus of Ramanujan's partition identities, Ramanujan J. 31, 373�396

(2013).

[20] O. X. M. Yao, Congruences modulo 16, 32, and 64 for Andrews's singular overpartitions, Ramanujan J.

(2016); DOI 10.1007/s11139-015-9760-2.

Author information

Ranganatha D., Department of Mathematics, Siddaganga Institute of Technology, B.H. Road, Tumakuru-

572103, Karnataka, India.

E-mail: ddranganatha@gmail.com

Received: November 24, 2016.

Accepted: January 23, 2017.


