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Abstract The aim of this paper is to introduce and investigate several new identities related

to the uni�ed families of Apostol type polynomials. The results presented here are based upon

the theory of the umbral calculus and the umbral algebra. We consider Apostol type polynomials

related to associated sequences of polynomials and �nally give some new and interesting iden-

tities of those polynomials arising from transfer formula for the associated sequences. Further,

we derive several identities involving Apostol type polynomials arising from umbral calculus

to have alternative ways. Some new and known identities are also derived for the families of

Apostol type polynomials using umbral calculus as special cases.

1 Introduction

Umbral calculus provide powerful tool to deal with the properties of special polynomials and

functions. It has been used in numerous problems of mathematics and its related �eld like com-

binotorics (for example, see [1, 3, 6, 7, 9]). Its techniques have been used in different areas of

physics for example, it was used in group theory and quantum mechanics by Biedenharn et al.

[5, 6]. Here we �rst recall the notations and de�nitions related to the umbral algebra and calculus

[32, 33].

Let F be the set of all formal power series in the variable t over C with

F =
(
f(t) = S

∞
k=0

αk

k!
tk|αk ∈ C

)
.

Let us assume that P be the algebra of polynomials in the variable x over C and P∗ is the

vector space of all linear functionals on P. As a notation, the action of the linear functional L on

a polynomial p(x) is denoted by ⟨L|p(x)⟩. The formal power series

f(t) = S
∞
k=0

αk

k!
tk ∈ F ,

de�nes a linear functional on P by setting

⟨f(t)|xn⟩ = αn, (n ≥ 0). (1.1)

From (1.1), we note that

⟨tk|xn⟩ = n!δn,k, (n, k ≥ 0), (1.2)

where δn,k is the Kronecker symbol (see [10, 14, 15, 32, 33]).

Let fL(t) = S
∞
k=0

⟨L|xk⟩
k! tk. Then, by (1.1), we get ⟨fL(t)|xn⟩ = ⟨L|xn⟩ . The map L → fL(t)

is a vector space isomorphism from P∗ onto F . Hence forth, F thought of as both a formal

power series and a linear functional. We shall call F the umbral algebra. The umbral calculus
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is the study of umbral algebra (see [10, 14, 15, 31, 32, 33]).

The order o(f(t)) of the non-zero power series f(t) is the smallest integer k for which the

coef�cient of tk does not vanish (see [10, 14, 15, 32, 33]). If o(f(t)) = 1, then f(t) is called
a delta series, and if o(f(t)) = 0, then f(t) is called an invertible series. Let o(f(t)) =
1 and o(g(t)) = 0. Then there exists a unique sequence Sn(x) of polynomials such that

⟨g(t)f(t)k|Sn(x)⟩ = n!δn,k, (n, k ≥ 0). The sequence Sn(x) is called Sheffer sequence for

(g(t), f(t)), which is denoted by Sn(x) ∼ (g(t), f(t)). If Sn(x) ∼ (1, f(t)), then Sn(x) is called
the associated sequence for f(t) (see [10, 14, 31, 32, 33]).

From (1.1), we note that

⟨eyt|p(x)⟩ = p(y).

Let f(t) ∈ F and p(x) ∈ P. Then we have

f(t) = S
∞
k=0

⟨f(t)|xk⟩
k!

tk, p(x) = S
∞
k=0

⟨tk|p(x)⟩
k!

xk (1.3)

and by (1.2), we get:

p(k)(0) = ⟨tk|p(x)⟩ ⟨1|p(k)(x)⟩ = p(k)(0). (1.4)

Thus from (1.3), we have

tkp(x) = p(k)(x) =
dKp(x)

dxk
. (1.5)

Also we note that

⟨f(t)(g(t)|p(x)⟩ = ⟨(g(t)|f(t)p(x)⟩.

Let Sn(x) ∼ (g(t), f(t)). Then we see that

1

g(f̄(t))
eyf̄(t) = S

∞
k=0

Sk(y)

k!
tk, ∀ y ∈ C, (1.6)

where f̄(t) is the compositional inverse of f(t) (see [32, 33]). Let pn(x) ∼ (1, f(t)), qn(x) ∼
(1, g(t)). Then, the transfer formula for the associated sequence is given by

qn(x) = x
(f(t)
g(t)

)n

x−1pn(x). (1.7)

Further, let Sn(x) ∼ (g(t), f(t)) and rn(x) ∼ (h(t), l(t)) then

Sn(x) = S
n
k=0Cn,krk(x), (1.8)

where the connection constant Cn,k are given by

Cn,k =
1

k!
⟨h(f̄(t))
g(f̄(t))

l(f̄(t))k|xn⟩. (1.9)

Equations (1.8) and (1.9) are called the alternative ways of Sheffer sequences.

The polynomialsB
(α)
n (x), E

(α)
n (x) andG

(α)
n (x) are de�ned by the following generating func-

tions [11, 34]: ( t

et − 1

)α

ext =
∞∑
n=0

B(α)
n (x)

tn

n!
, |t| < 2π, (1.10)

( 2

et + 1

)α

ext =
∞∑
n=0

E(α)
n (x)

tn

n!
, |t| < π, (1.11)

( 2t

et + 1

)α

ext =
∞∑
n=0

G(α)
n (x)

tn

n!
, |t| < π. (1.12)
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It is easy to see that Bn(x), En(x) and Gn(x) are given, respectively, by

B(1)
n (x) = Bn(x); E

(1)
n (x) = En(x); G

(1)
n (x) = Gn(x), n ∈ N0 := N ∪ {0}. (1.13)

Some interesting analogues of the classical Bernoulli and Euler polynomials were �rst inves-

tigated by Apostol [2] and further studied by Srivastava [36]. Luo and Srivastava [27] introduced

the Apostol Bernoulli polynomials of order α ∈ N0, denoted by B
(α)
n (x;λ), λ ∈ C, which are

de�ned by the generating function

( t

λet − 1

)α

ext =
∞∑
n=0

B(α)
n (x;λ)

tn

n!
, |t| < 2π, when λ = 1; |t| < |logλ|, when λ ̸= 1, (1.14)

with

B(α)
n (x; 1) = B(α)

n (x). (1.15)

The Apostol Euler polynomials of order α ∈ N0, denoted byE
(α)
n (x;λ), λ ∈ C are introduced

by Luo [21] and are de�ned by the generating function

( 2

λet + 1

)α

ext =
∞∑
n=0

E(α)
n (x;λ)

tn

n!
, |t| < |log(−λ)|, (1.16)

with

E(α)
n (x; 1) = E(α)

n (x). (1.17)

Further, Luo [24] introduced the Apostol Genocchi polynomials of order α ∈ N0, denoted by

G(α)
n (x;λ), λ ∈ C, which are de�ned by the generating function

( 2t

λet + 1

)α

ext =
∞∑
n=0

G(α)
n (x;λ)

tn

n!
, |t| < |log(−λ)|, (1.18)

with

G(α)
n (x; 1) = G(α)

n (x). (1.19)

Certain properties of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomi-

als such as asymptotic estimates, fourier expansions, multiplication formulas etc. are studied by

several researchers, see for example [4, 17, 22, 23, 25, 30]. Recently, Luo and Srivastava [28]

introduced the Apostol-type polynomials F (α)
n (x;λ;µ, ν) (α ∈ N, λ, µ, ν ∈ C) of order α, which

are de�ned by means of the generating function

( 2µ tν

λet + 1

)α

ext =
∞∑
n=0

F (α)
n (x;λ;µ, ν)

tn

n!
, |t| < |log(−λ)| (1.20)

where

F (α)
n (λ;µ, ν) := F (α)

n (0;λ;µ, ν), (1.21)

denotes the Apostol type numbers of order α, de�ned by the generating function

( 2µ tν

λet + 1

)α

=
∞∑
n=0

F (α)
n (λ;µ, ν)

tn

n!
, |t| < |log(−λ)|. (1.22)

These polynomials are viewed as a uni�cation and generalization of the polynomialsB
(α)
n (x;λ),

E
(α)
n (x;λ) and G(α)

n (x;λ). In fact, from equations (1.14), (1.16), (1.18) and (1.20), we have

(−1)αF (α)
n (x;−λ; 0, 1) = B(α)

n (x;λ), (1.23)

F (α)
n (x;λ; 1, 0) = E(α)

n (x;λ), (1.24)

F (α)
n (x;λ; 1, 1) = G(α)

n (x;λ). (1.25)
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Recently, some results for the Apostol type polynomials and their generalized forms are es-

tablished, see for example [8, 18, 19, 20, 26, 35].

The Hermite polynomials [11] are de�ned by the generating function

e2xt−t2 =
∞∑
n=0

Hn(x)
tn

n!
. (1.26)

where

Hn = Hn(0)

denotes the Hermite numbers.

The Touchard polynomials [29] are de�ned by the generating function

ex(e
t−1) =

∑
n≥0

Tn(x)
tn

n!
. (1.27)

By comparing (1.27) with the generating function of the Bell numbers given by

ee
t−1 =

∑
n≥0

Belln
tn

n!
, (1.28)

we get the following relationship between the Touchard polynomial and the Bell numbers

Tn(1) = Belln. (1.29)

Furthermore, we note that the �rst Stirling number is given by

(x)n = x(x− 1)(x− n+ 1) =
n∑
l=0

S1(n, l) x
l, (see [14, 32, 33]) (1.30)

and the second Stirling number is de�ned by the generating function

(et − 1)n = n!
∞∑
l=n

S2(l, n)
tl

l!
, (see [10, 32, 33]). (1.31)

Motivated by the above mentioned work on Apostol type polynomials and due to the im-

portance of the umbral calculus in this paper, we consider Apostol type polynomials related to

associated sequences of polynomials by the use of umbral calculus. Finally, we give some new

and interesting identities of those polynomials arising from transfer formula for the associated

sequences. Further, we establish a connection between our polynomial and several known fami-

lies of polynomials arising from umbral calculus to have alternative ways.

2 Umbral calculus and Apostol type polynomials

From (1.6), we note that

F (α)
n (x;λ;µ, ν) ∼

((λez + 1

2µ tν

)α

, t
)
. (2.1)

Thus, we get

F (α)
n (x;λ;µ, ν) =

( 2µ zν

λez + 1

)α

xn. (2.2)

Let us assume that

pn(x) ∼ (1, z(λez + 1)), qn(x) ∼
(
1,
(λez + 1

2µ zν

)α

z
)
, (α ̸= 0). (2.3)

From xn ∼ (1, z), (1.7) and (2.3), we note that

pn(x) = x
( 1

λez + 1

)n

xn−1 =
x

(2µ zν)n
F (n)

n−1
(x;λ;µ, ν) (2.4)
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and

qn(x) = x
( 2µ zν

λez + 1

)αn

xn−1 = xF (αn)
n−1

(x;λ;µ, ν). (2.5)

In view of the fact (1.7), (2.3), (2.4) and (2.5), we can derive

x

(2µ zν)n
F (n)

n−1
(x;λ;µ, ν) = x

((λez+1

2µ zν

)α

λez + 1

)n

x−1x F (αn)
n−1

(x;λ;µ, ν)

=
x

(2µ zν)
αn

(α−1)n∑
l=0

(
(α− 1)n

l

)
λlF (αn)

n−1
(x+ l;λ;µ, ν), (2.6)

where α, n ∈ N . Therefore, by (2.6), we obtain the following theorem.

Theorem 2.1. For α, n ∈ N, we have :

F (n)
n−1

(x;λ;µ, ν) =
1

(2µ zν)
(α−1)n

(α−1)n∑
l=0

(
(α− 1)n

l

)
λlF (αn)

n−1
(x+ l;λ;µ, ν). (2.7)

Further in view of relation (1.23), we deduce the following result from (2.7)

Corollary 2.2. For α, n ∈ N, we have :

B(n)
n−1

(x;λ) =
1

(z)
(α−1)n

(α−1)n∑
l=0

(
(α− 1)n

l

)
(−λ)lB(αn)

n−1
(x+ l;λ), (2.8)

Also in view of relation (1.24), we deduce the following result from (2.7)

Corollary 2.3. For α, n ∈ N, we have :

E (n)
n−1

(x;λ) =
1

(2)
(α−1)n

(α−1)n∑
l=0

(
(α− 1)n

l

)
λlE (αn)

n−1
(x+ l;λ), (2.9)

Furthermore, in view of relation (1.25), we deduce the following result from (2.7)

Corollary 2.4. For α, n ∈ N, we have :

G(n)
n−1

(x;λ) =
1

(2z)
(α−1)n

(α−1)n∑
l=0

(
(α− 1)n

l

)
λlG(αn)

n−1
(x+ l;λ). (2.10)

Further, let us consider the following associated sequences:

x

(2µ zν)n
F (n)

n−1
(x;λ;µ, ν) ∼ (1, z(λez + 1)), pn(x) ∼

(
1,
( 2µ zν

λez + 1

)α

z
)
, (α ̸= 0). (2.11)

For xn ∼ (1, z), by (1.7) and (2.11), we get

pn(x) = x
( z

z
(

2µ zν

λez+1

)α

)n

x−1x = x
(λez + 1

2µ zν

)αn

xn−1

=
x

(2µ zν)
αn

αn∑
l=0

(
αn

l

)
λl(x+ l)n−1. (2.12)
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For n ≥ 1, by (1.7) and (2.11), we get

pn(x) = x
( z(λez + 1)

z
(

2µ zν

λez+1

)α

)n

x−1
x

(2µ zν)n
F (n)

n−1
(x;λ;µ, ν)

= x
1

(2µ zν)(α+1)n
(λez + 1)(α+1)nF (n)

n−1
(x;λ;µ, ν). (2.13)

By (2.12) and (2.13), we get

αn∑
l=0

(
αn

l

)
λl(x+ l)n−1 =

1

(2µ zν)n
(λez + 1)(α+1)nF (n)

n−1
(x;λ;µ, ν). (2.14)

Therefore, by (2.14), we obtain the following theorem.

Theorem 2.5. For n ≥ 1 and α ∈ Z+ = N
∪
{0}, we have :

αn∑
l=0

(
αn

l

)
(x+ l)n−1 =

1

(2µ zν)n

(α+1)n∑
l=0

(
(α+ 1)n

l

)
F (n)

n−1
(x+ l;λ;µ, ν). (2.15)

Further in view of relation (1.23), we deduce the following result from (2.15)

Corollary 2.6. For n ≥ 1 and α ∈ Z+ = N
∪
{0}, we have :

αn∑
l=0

(
αn

l

)
(x+ l)n−1 =

1

(z)n

(α+1)n∑
l=0

(
(α+ 1)n

l

)
B(n)
n−1

(x+ l;λ). (2.16)

Also in view of relation (1.24), we deduce the following result from (2.15)

Corollary 2.7. For n ≥ 1 and α ∈ Z+ = N
∪
{0}, we have :

αn∑
l=0

(
αn

l

)
(x+ l)n−1 =

1

(2)n

(α+1)n∑
l=0

(
(α+ 1)n

l

)
E (n)
n−1

(x+ l;λ). (2.17)

Furthermore, in view of relation (1.25), we deduce the following result from (2.15)

Corollary 2.8. For n ≥ 1 and α ∈ Z+ = N
∪
{0}, we have :

αn∑
l=0

(
αn

l

)
(x+ l)n−1 =

1

(2 z)n

(α+1)n∑
l=0

(
(α+ 1)n

l

)
G(n)
n−1

(x+ l;λ). (2.18)

Let us consider the following associated sequences:

(x)n ∼ (1, ez − 1), xF (αn)
n−1

(x;λ) ∼
(
1, z

(λez + 1

2µ zν

)α)
, (α ̸= 0), (2.19)

By (1.7) and (2.19), we get

xF (αn)
n−1

(x;λ) = x
( ez − 1

z
(

λez+1

2µ zν

)α

)n

x−1(x)n, (2.20)

= x
(ez − 1

z

)n( 2µ zν

λez + 1

)αn

(x− 1)n−1.
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Replacing x by x+ 1, we have

(x+ 1)F (αn)
n−1

(x+ 1;λ) = (x+ 1)
(ez − 1

z

)n( 2µ zν

λez + 1

)αn

(x)n−1,

or

F (αn)
n−1

(x+ 1;λ) =
(ez − 1

z

)n( 2µ zν

λez + 1

)αn n−1∑
l=0

S1(n− 1, l)xl,

=
n−1∑
l=0

l∑
k=0

S1(n− 1, l)S2(k + n, n)
n!

(k + n)!
(l)kF (αn)

l−k (x, λ;µ; ν)zk. (2.21)

Therefore by (2.21), we obtain the following theorem

Theorem 2.9. For n ≥ 1 and α ∈ Z+, we have :

F (αn)
n−1

(x+ 1;λ) =
n−1∑
l=0

l∑
k=0

S1(n− 1, l)S2(k + n, n)
( lk)

((k+n)
n )

F (αn)
l−k (x, λ;µ; ν). (2.22)

Further in view of relation (1.23), we deduce the following result from (2.22)

Corollary 2.10. For n ≥ 1 and α ∈ Z+, we have :

B(αn)
n−1

(x+ 1;λ) =
n−1∑
l=0

l∑
k=0

S1(n− 1, l)S2(k + n, n)
( lk)

((k+n)
n )

B(αn)
l−k (x, λ). (2.23)

Also in view of relation (1.24), we deduce the following result from (2.22)

Corollary 2.11. For n ≥ 1 and α ∈ Z+, we have :

E (αn)
n−1

(x+ 1;λ) =
n−1∑
l=0

l∑
k=0

S1(n− 1, l)S2(k + n, n)
( lk)

((k+n)
n )

E (αn)
l−k (x, λ). (2.24)

Furthermore, in view of relation (1.25), we deduce the following result from (2.22)

Corollary 2.12. For n ≥ 1 and α ∈ Z+, we have :

G(αn)
n−1

(x+ 1;λ) =
n−1∑
l=0

l∑
k=0

S1(n− 1, l)S2(k + n, n)
( lk)

((k+n)
n )

G(αn)
l−k (x, λ). (2.25)

Let

xF (αn)
n−1

(x;λ;µ; ν) ∼
(
1, z

(λez + 1

2µ zν

)α)
, (α ̸= 0)

(x)n ∼ (1, ez − 1), (2.26)

Then we have

(x)n = x
(z(λez+1

2µ zν

)α

ez − 1

)n

x−1 x F (αn)
n−1

(x;λ;µ; ν)

= x
( z

ez − 1

)n(λez + 1

2µ zν

)αn

F (αn)
n−1

(x;λ;µ; ν), (2.27)

= xB
(n)
n−1

(x).

and

(x)n =
n∑
l=0

S1(n, l)x
l = x

n−1∑
l=0

S1(n, l+ 1)xl, (n ≥ 1). (2.28)

Therefore by (2.27) and (2.28), we get the following theorem
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Theorem 2.13. For n ≥ 1 and 0 ≤ l ≤ n− 1, we have :

S1(n, l+ 1) =

(
n− 1

l

)
B(n)
n−l−1

. (2.29)

Also from (2.27), we note that(ez − 1

z

)n

(x− 1)n−1 = (λez + 1)αn(2µ zν)−αnF (αn)
n−1

(x;λ;µ; ν), (n ≥ 1). (2.30)

L.H.S. of (2.30)

=
(ez − 1

z

)n n−1∑
l=0

S1(n− 1, l)(x− 1)l

=
n−1∑
l=0

S1(n− 1, l)
l∑

k=0

( lk)

((k+n)
n )

S2(k + n, n)(x− 1)l−k . (2.31)

and R.H..S of (2.30).

= (2µ zν)−αn
αn∑
l=0

(
αn

l

)
λlF (αn)

n−1
(x+ l;λ;µ; ν) . (2.32)

Therefore, by (2.30), (2.31) and (2.32), we obtain the following theorem.

Theorem 2.14. For n ≥ 1 and α ∈ Z+, we have :

(2µ zν)−αn
αn∑
l=0

(
αn

l

)
λlF (αn)

n−1
(x+l;λ;µ; ν) =

n−1∑
l=0

l∑
k=0

( lk)

((k+n)
n )

S1(n−1, l)S2(k+n, n)(x−1)l−k

(2.33)

Further in view of relation (1.23), we deduce the following result from (2.33)

Corollary 2.15. For n ≥ 1 and α ∈ Z+, we have :

z−αn
αn∑
l=0

(
αn

l

)
(−λ)lB(αn)

n−1
(x+l;λ) =

n−1∑
l=0

l∑
k=0

( lk)

((k+n)
n )

S1(n−1, l)S2(k+n, n)(x−1)l−k (2.34)

Also in view of relation (1.24), we deduce the following result from (2.33)

Corollary 2.16. For n ≥ 1 and α ∈ Z+, we have :

2−αn
αn∑
l=0

(
αn

l

)
λlE (αn)

n−1
(x+ l;λ) =

n−1∑
l=0

l∑
k=0

( lk)

((k+n)
n )

S1(n− 1, l)S2(k+ n, n)(x− 1)l−k (2.35)

Furthermore, in view of relation (1.25), we deduce the following result from (2.33)

Corollary 2.17. For n ≥ 1 and α ∈ Z+, we have :

(2z)−αn
αn∑
l=0

(
αn

l

)
(λ)lG(αn)

n−1
(x+ l;λ) =

n−1∑
l=0

l∑
k=0

( lk)

((k+n)
n )

S1(n− 1, l)S2(k + n, n)(x− 1)l−k

(2.36)
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Let

pn(x) ∼
(
1,
( 2µ zν

λez + 1

)α

z
)
, (x)n ∼ (1, ez − 1), (α ̸= 0). (2.37)

By (2.12), we have

pn(x) =
x

(2µ zν)αn

αn∑
l=0

(
αn

l

)
(x+ l)n−1

=
1

(2µ zν)αn
x

αn∑
k=0

(
αn

k

) n−1∑
l=0

(
n− 1

l

)
kn−1−l(x)1. (2.38)

From (1.7) and (2.37), we have

(x)n = x
(z(λez+1

2µ zν

)α

ez − 1

)n

x−1pn(x)

= x
( z

λez + 1

)n(λez + 1

2µ zν

)αn( 1

2µ zν

)αn αn∑
k=0

n−1∑
l=0

(
αn

k

)(
n− 1

l

)
kn−1−l(x)1

=
( 1

2µ zν

)αn

x

n−1∑
p=0

( αn∑
k=0

n−1∑
l=p

l∑
m=p

(
αn

k

)(
n− 1

l

)(
l

m

)(
m

p

)
kn−1−lF (αn)

l−m (x;λ;µ; ν)B(n)
m−p

)
xp.

(2.39)
Therefore, by (2.28) and (2.39), we obtain the following theorem.

Theorem 2.18. For n ≥ 1, α ∈ Z+ and 0 ≤ l ≤ n− 1 we have :

S1(n, p+1) =
( 1

2µ zν

)αn αn∑
k=0

n−1∑
l=p

l∑
m=p

(
αn

k

)(
n− 1

l

)(
l

m

)(
m

p

)
kn−1−lF (αn)

l−m (x;λ;µ; ν)B(n)
m−p.

(2.40)

Further in view of relation (1.23), we deduce the following result from (2.40)

Corollary 2.19. For n ≥ 1, α ∈ Z+ and 0 ≤ l ≤ n− 1 we have :

S1(n, p+1) =
(1
z

)αn αn∑
k=0

n−1∑
l=p

l∑
m=p

(
αn

k

)(
n− 1

l

)(
l

m

)(
m

p

)
kn−1−lB(αn)

l−m(x;λ)B(n)
m−p. (2.41)

Also in view of relation (1.24), we deduce the following result from (2.40)

Corollary 2.20. For n ≥ 1, α ∈ Z+ and 0 ≤ l ≤ n− 1 we have :

S1(n, p+1) =
(1
2

)αn αn∑
k=0

n−1∑
l=p

l∑
m=p

(
αn

k

)(
n− 1

l

)(
l

m

)(
m

p

)
kn−1−lE (αn)

l−m (x;λ)B(n)
m−p. (2.42)

Furthermore, in view of relation (1.25), we deduce the following result from (2.40)

Corollary 2.21. For n ≥ 1, α ∈ Z+ and 0 ≤ l ≤ n− 1 we have :

S1(n, p+ 1) =
( 1

2 z

)αn αn∑
k=0

n−1∑
l=p

l∑
m=p

(
αn

k

)(
n− 1

l

)(
l

m

)(
m

p

)
kn−1−lG(αn)

l−m(x;λ)B(n)
m−p.

(2.43)

In the next section, we use alternating ways to get new identities for the Apostol type poly-

nomials.
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3 Connections with families of polynomials

In this section, we present several identities involving the Apostol type polynomials and some

other families of polynomials. In order to established these identities we use umbral calculus to

have alternative ways. For instance, we obtain the connection of Apostol type polynomials with

Hermite and Touchard polynomials.

3.1 Connections to the Hermite polynomials

Let us consider the following Sheffer sequences:

F (α)
n (x;λ;µ; ν) ∼

((λez + 1

2µ zν

)α

, z
)
, Hn(x) ∼ (e

z2

4 ,
z

2
). (3.1.1)

Then, by (1.8), we assume that

F (α)
n (x;λ;µ; ν) =

n∑
k=0

Cn,kHk(x). (3.1.2)

From (1.9) and (3.1.2), we have

Cn,k =
1

k!
⟨ e

z2

4(
λez+1

2µ zν

)α

(z
2

)k

|xn⟩

=
1

k!2k
⟨e z2

4

( 2µ zν

λez + 1

)α

| zkxn⟩

= 2−k

(
n

k

) n−k
2∑

l=0

1

22ll!
(n− k)2lF (α)

n−k−2l(0;λ;µ; ν). (3.1.3)

Therefore, by (3.1.2) and (3.1.3), we obtain the following theorem

Theorem 3.1. For n ≥ 0, we have :

F (α)
n (x;λ;µ; ν) = n!

n∑
k=0

∑
0≤l≤n−k,l:even

F (α)
n−k−l(λ;µ; ν)

k!(n− k − l)!2k+l( l
2
)!
Hk(x). (3.1.4)

Further in view of relation (1.23), we deduce the following result from (3.1.4)

Corollary 3.2. For n ≥ 0, we have :

B(α)
n (x;λ) = n!

n∑
k=0

∑
0≤l≤n−k,l:even

B(α)
n−k−l(λ)

k!(n− k − l)!2k+l( l
2
)!
Hk(x). (3.1.5)

which for λ = 1 gives the result of [16; Theo. 2.2].

Also in view of relation (1.24), we deduce the following result from (3.1.4)

Corollary 3.3. For n ≥ 0, we have :

E (α)
n (x;λ) = n!

n∑
k=0

∑
0≤l≤n−k,l:even

E (α)
n−k−l(λ)

k!(n− k − l)!2k+l( l
2
)!
Hk(x). (3.1.6)

which for λ = 1 gives the result of [16; Theo. 2.1].
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Furthermore, in view of relation (1.25), we deduce the following result from (3.1.4)

Corollary 3.4. For n ≥ 0, we have :

G(α)
n (x;λ) = n!

n∑
k=0

∑
0≤l≤n−k,l:even

F (α)
n−k−l(λ)

k!(n− k − l)!2k+l( l
2
)!
Hk(x). (3.1.7)

Further, note that

Hn(x) ∼ (e
z2

4 ,
z

2
).

Thus we have

e
z2

4 Hn(x) ∼ (1,
z

2
) and (2x)n ∼ (1,

z

2
). (3.1.8)

From (3.1.8), we have

e
z2

4 Hn(x) = (2x)n ⇐⇒ Hn(x) = e−
z2

4 (2x)n. (3.1.9)

Also let us assume that

Hn(x) =
n∑

k=0

Cn,kF (α)
k (x;λ;µ; ν). (3.1.10)

From (1.9), (3.1.9) and (3.1.10), we get

Cn,k =
1

k!
⟨

(
λe2z+1

2µ+ν zν

)α

e
(2z)2

4

(2z)k|xn⟩

=
1

k!
⟨
(λez + 1

2µ zν

)α

(z)k|e− (z)2

4
(2x)n⟩

Cn,k =
1

2µrk!
⟨(λez + 1)α(z)k−νr|Hn(x)⟩

=
1

2µr

(
n

k

)
2k−νr

r∑
j=0

(
r

j

)
λj⟨ejz|Hn−k+νr(x)⟩. (3.1.11)

Therefore, by (3.1.10) and (3.1.11), we obtain the following theorem

Theorem 3.5. For n ≥ 0, we have :

Hn(x) =
1

2(µ+ν)r

n∑
k=0

(
n

k

)
2k

r∑
j=0

(
r

j

)
λjHn−k+νr(j)F (α)

k (x;λ;µ; ν). (3.1.12)

Further in view of relation (1.23), we deduce the following result from (3.1.12)

Corollary 3.6. For n ≥ 0, we have :

Hn(x) =
1

2r

n∑
k=0

(
n

k

)
2k

r∑
j=0

(
r

j

)
λj Hn−k+r(j)B(α)

k (x;λ). (3.1.13)

Also in view of relation (1.24), we deduce the following result from (3.1.12)
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Corollary 3.7. For n ≥ 0, we have :

Hn(x) =
1

2r

n∑
k=0

(
n

k

)
2k

r∑
j=0

(
r

j

)
λj Hn−k(j)E (α)

k (x;λ). (3.1.14)

which for λ = 1 gives the result of [16; Theo. 2.5].

Furthermore, in view of relation (1.25), we deduce the following result from (3.1.12)

Corollary 3.8. For n ≥ 0, we have :

Hn(x) =
1

22r

n∑
k=0

(
n

k

)
2k

r∑
j=0

(
r

j

)
λj Hn−k+r(j)G(α)

k (x;λ). (3.1.15)

Again let us assume that

Hn(x) =
n∑

k=0

Cn,kF (α)
k (x;λ;µ; ν). (3.1.16)

From (1.9), (3.1.9) and (3.1.16), we get

Cn,k =
1

k!
⟨

(
λe2z+1

2µ+ν zν

)α

e
(2z)2

4

(2z)k|xn⟩

=
1

k!
2n⟨

(λez + 1

2µ zν

)α

e−
(z)2

|
4 (z)kxn⟩

Cn,k = 2n−r

(
n

k − r

)
⟨(λez + 1)α|

∞∑
l=0

(−1)l z2l

l!22l
xn−k−r⟩

=
1

2r

r∑
j=0

n−k−r
2∑

l=0

2k−r

(
n

k − r

) (
r

j

)
(−1)l(n− k + r)!

l!(n− k + r − 2l)!
λj |(2j)n−k+r−2l. (3.1.17)

Therefore, by (3.1.16) and (3.1.17), we obtain the following theorem

Theorem 3.9. For n ≥ 0, we have :

Hn(x) =
1

2r

n∑
k=0

r∑
j=0

n−k−r
2∑

l=0

2k−r

(
n

k − r

) (
r

j

)
(−1)l(n− k + r)!

l!(n− k + r − 2l)!
λj(2j)n−k+r−2lF (α)

k (x;λ;µ; ν).

(3.1.18)

Further in view of relation (1.23), we deduce the following result from (3.1.18)

Corollary 3.10. For n ≥ 0, we have :

Hn(x) =
1

2r

n∑
k=0

r∑
j=0

n−k−r
2∑

l=0

2k−r

(
n

k − r

) (
r

j

)
(−1)l(n− k + r)!

l!(n− k + r − 2l)!
(−λ)j(2j)n−k+r−2lB(α)

k (x;λ).

(3.1.19)

Also in view of relation (1.24), we deduce the following result from (3.1.18)
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Corollary 3.11. For n ≥ 0, we have :

Hn(x) =
1

2r

r∑
j=0

n−k−r
2∑

l=0

2k−r

(
n

k − r

) (
r

j

)
(−1)l(n− k + r)!

l!(n− k + r − 2l)!
λj(2j)n−k+r−2lE (α)

k (x;λ).

(3.1.20)

Furthermore, in view of relation (1.25), we deduce the following result from (3.1.18)

Corollary 3.12. For n ≥ 0, we have :

Hn(x) =
1

2r

r∑
j=0

n−k−r
2∑

l=0

2k−r

(
n

k − r

) (
r

j

)
(−1)l(n− k + r)!

l!(n− k + r − 2l)!
λj(2j)n−k+r−2lG(α)

k (x;λ).

(3.1.21)

3.2 Connections to the Touchard polynomials

Using Similar technique used in previous theorems, we can express our 2-variable Apostol type

polynomials in terms of other families. For instance we can obtain Apostol type polynomials in

terms of Touchard polynomials Tn(x) Using the facts that Tn(x) ∼ (1, log(t+ 1)) and

F (α)
n (x;λ;µ; ν) =

n∑
k=0

Cn,kTk(x). (3.2.1)

with (2.1) and (1.9) we obtain the following result

Theorem 3.13. For n ≥ 0, we have :

F (α)
n (x;λ;µ; ν) =

n∑
k=0

n∑
l=k

(
n

l

)
F (α)

n−l S1(l, k) Tk(x). (3.2.2)

Further in view of relation (1.23), we deduce the following result from (3.2.2)

Corollary 3.14. For n ≥ 0, we have :

B(α)
n (x;λ) =

n∑
k=0

n∑
l=k

(
n

l

)
B(α)
n−lS1(l, k) Tk(x). (3.2.3)

which for λ = α = 1 gives the result of [12; p.42(Theo. 3.1)].

Also in view of relation (1.24), we deduce the following result from (3.2.2)

Corollary 3.15. For n ≥ 0, we have :

E (α)
n (x;λ) =

n∑
k=0

n∑
l=k

(
n

l

)
E (α)
n−l S1(l, k) Tk(x). (3.2.4)

which for λ = α = 1 gives the result of [12; p.43(Theo. 3.3)].

Furthermore, in view of relation (1.25), we deduce the following result from (3.2.2)
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Corollary 3.16. For n ≥ 0, we have :

G(α)
n (x;λ) =

n∑
k=0

n∑
l=k

(
n

l

)
G(α)
n−l S1(l, k) Tk(x). (3.2.5)

Next, let us assume that

Tk(x) =
n∑

k=0

Cn,kF (α)
n (x;λ;µ, ν). (3.2.6)

From (1.9) and (3.2.6), we have

Cn,k =
1

k!
⟨
( λee

t−1 + 1

2µ (et − 1)ν

)α

(et − 1)k|xn⟩

=
1

2µα
⟨
(λeet−1 + 1

(et − 1)ν

)α n∑
l=k

(
n

l

)
S2(l, k)|xn−l⟩

=
n−k∑
m=0

(
n

m

)
S2(n−m, k)⟨(λe

et−1 + 1)α

tνα
|

m∑
j=0

Bνα
j

tj

j!
xm⟩

=
n−k∑
m=0

m∑
j=0

(
n

m

) (
m

j

)
S2(n−m, k)Bνα

m−j⟨
α∑

p=0

(
α

p

)
(−λ)α−p(ee

t−1)p|xj⟩

=
n−k∑
m=0

m∑
j=0

α∑
p=0

(
n

m

) (
m

j

) (
α

p

)
(−λ)α−p S2(n−m, k) Bνα

m−j

∞∑
l=0

Bell
(p)
j+να

1

(j + να)!
.

(3.2.7)
Therefore, by (3.2.6) and (3.2.7), we obtain the following theorem

Theorem 3.17. For n ≥ 0, we have :

Tk(x) =
n∑

k=0

n−k∑
m=0

m∑
j=0

α∑
p=0

(
n

m

)(
m

j

)(
α

p

)
(−λ)α−pS2(n−m, k)

(j + να)!
Bνα

m−jBell
(p)
j+ναF

(α)
n (x;λ;µ, ν).

(3.2.8)

Further in view of relation (1.23), we deduce the following result from (3.2.8)

Corollary 3.18. For n ≥ 0, we have :

Tk(x) =
n∑

k=0

n−k∑
m=0

m∑
j=0

α∑
p=0

(
n

m

)(
m

j

)(
α

p

)
(λ)α−pS2(n−m, k)

(j + α)!
Bα

m−jBell
(p)
j+αB

(α)
n (x;λ).

(3.2.9)
which for λ = α = 1 gives the result of [12; p.43(Theo. 3.2)].

Also in view of relation (1.24), we deduce the following result from (3.2.8)

Corollary 3.19. For n ≥ 0, we have :

Tk(x) =
n∑

k=0

n−k∑
m=0

m∑
j=0

α∑
p=0

(
n

m

)(
m

j

)(
α

p

)
(−λ)α−pS2(n−m, k)

j!
Bell

(p)
j E (α)

n (x;λ). (3.2.10)

Furthermore, in view of relation (1.25), we deduce the following result from (3.2.8)
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Corollary 3.20. For n ≥ 0, we have :

Tk(x) =
n∑

k=0

n−k∑
m=0

m∑
j=0

α∑
p=0

(
n

m

)(
m

j

)(
α

p

)
(−λ)α−pS2(n−m, k)

(j + α)!
Bα

m−jBell
(p)
j+αG

(α)
n (x;λ).

(3.2.11)

In the next section, certain results related to some mixed form of Apostol type polynomials

are explored.

4 Concluding Remarks

As a remark, in this section we consider recently introduced mixed form of Apostol type poly-

nomials de�ned as Hermite Apostol type polynomials (HATP) and investigate the properties of

these polynomials which are derived from umbral calculus. We can establish connection between

our polynomials and several known families of polynomials. For example we explore the rela-

tion involving Hermite Apostol type polynomials with Apostol type polynomials and Bernoulli

polynomials.

The HATP HF (α)
n (x;λ;µ; ν) are de�ned by the generating function [13]

( 2µ tν

λet + 1

)α

e2xt−t2 =
∞∑
n=0

HF (α)
n (x;λ;µ, ν)

tn

n!
. (4.1)

where HF (α)
n (λ;µ, ν) = HF (α)

n (0;λ;µ, ν) denotes the Hermite Apostol type numbers de�ned

by.

( 2µ tν

λet + 1

)α

e−t2 =
∞∑
n=0

HF (α)
n (λ;µ, ν)

tn

n!
. (4.2)

From (4.1) and (1.6), we note that

HF (α)
n (x;λ;µ, ν) ∼

(
e

t2

4

(λez + 1

2µ tν

)α

,
t

2

)
. (4.3)

Also, by (1.2), (4.1)and (4.3), we have

HF (α)
n (x;λ;µ, ν) = e−

t2

4

( 2µ tν

λez + 1

)α

(2x)n

=
e−

t2

4

2n
F (α)

n (x;λ;µ, ν)

=

[n
4
]∑

m=0

1

m!2n

(−1

2

)2m

(n)2mF (α)
n−2m(x;λ;µ, ν)

HF (α)
n (x;λ;µ, ν) =

[n
4
]∑

m=0

(
n

2m

)
(−1)m (2m)!

m! 2n−2m
F (α)

n−2m(x;λ;µ, ν). (4.4)

Further in view of relation (1.23), we deduce the following result from (4.4)

Corollary 4.1. For n ≥ 0, we have :

HB(α)
n (x;λ) =

[n
4
]∑

m=0

(
n

2m

)
(−1)m (2m)!

m! 2n−2m
B(α)
n−2m(x;λ). (4.5)
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Also in view of relation (1.24), we deduce the following result from (4.4)

Corollary 4.2. For n ≥ 0, we have :

HE (α)
n (x;λ) =

[n
4
]∑

m=0

(
n

2m

)
(−1)m (2m)!

m! 2n−2m
E (α)
n−2m(x;λ). (4.6)

Furthermore, in view of relation (1.25), we deduce the following result from (4.4)

Corollary 4.3. For n ≥ 0, we have :

HG(α)
n (x;λ) =

[n
4
]∑

m=0

(
n

2m

)
(−1)m (2m)!

m! 2n−2m
G(α)
n−2m(x;λ). (4.7)

Let us consider the following two Sheffer sequences:

F (α)
n (x;λ;µ, ν) ∼

(
e

t2

4

(λez + 1

2µ tν

)α

,
t

2

)
.

and

B(r)
n (x) ∼

((λez − 1

z

)r

, z
)
. (4.8)

Let us assume that

HF (α)
n (x;λ;µ, ν) =

n∑
k=0

Cn,kB(r)
n (x). (4.9)

Then, by (1.8) and (1.9), we get

Cn,k =
1

m!
⟨
(ez − 1

z

)r

zm|e− z2

4

( 2µ zν

λez + 1

)α

(x)n⟩

=

(
n

m

) n−m∑
l=0

(n−m
l )

l+r
r

S2(l+ r, r)HF (α)
n−m−l. (4.10)

Therefore, by (4.9) and (4.10), we obtain the following theorem.

Theorem 4.4. For n ≥ 1 and α ∈ Z+, we have :

HF (α)
n (x;λ;µ, ν) =

n∑
k=0

(
n

m

) n−m∑
l=0

(n−m
l )

l+r
r

S2(l+ r, r)HF (α)
n−m−lB

(r)
n (x). (4.11)

Further, we can derive other identities involving HATP and other families of polynomials.

In our next investigation we established certain properties of other polynomials using umbral

techniques.

References

[1] J. Agapito Ruiz, Riordan arrays from an umbral symbolic viewpoint, Bol. Soc. Port. Mater. 58 (2012)(spe-

cial issue).

[2] T.M. Apostol, On the Lerch Zeta function, Paci�c J. Math. 1 (1951) 161-167.

[3] S. Araci, Novel identities involving Genocchi numbers and polynomials arising from applications of um-

bral calculus, Appl. Math. Comput. 233 (2014) 599-607.

[4] A. Bayad, Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials,

Math. Comp. 80 (2011) 2219-2221.



SOME IDENTITIES OF THE APOSTOL TYPE POLYNOMIALS ... 51

[5] L.C. Biedenharn, R.A. Gustafson, M.A. Lohe, J.D. Louck, S.C. Milne, Special functions and group theory

in theoretical physics, in: Special Functions: Group Theoretical Aspects and Applications, 1984, 129�

162.

[6] L.C. Biedenharn, R.A. Gustafson, S.C. Milne, An umbral calculus for polynomials characterizing u(n)

tensor products, Adv. Math. 51 (1984) 36�90.

[7] A. Di Bucchianico, D. Loeb, A selected survey of umbral calculus, Electron. J. Combin. 2 (2000) DS3.

[8] S. Chen, Y. Cai, Q.M. Luo, An extension of generalized Apostol-Euler polynomials, Adv. Difference Equ.

(2013) 61. 10 pp.

[9] G. Dattoli, D. Levi, p. Winternitz, Heisenberg algebra, umbral calculus and orthogonal polynomials, J.

Math. Phys. 49 (5) (2008):053509.

[10] R. Dere, Y. Simsek, Application of umbral algebra to some special polynomials, Adv. Stud. Contemp.

Math. 22(3) (2012) 433-438.
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