Coefficient estimates for a subclass of analytic bi-univalent functions by means of Faber polynomial expansions

Serap Bulut
Communicated by S.P. Goyal

MSC 2010 Classifications: Primary 30C45, 30C50.
Keywords and phrases: Analytic functions, Univalent functions, Bi-univalent functions, Taylor-Maclaurin series expansion, Coefficient bounds and coefficient estimates, Taylor-Maclaurin coefficients, Faber polynomials.

Abstract In this work, considering a subclass of analytic bi-univalent functions, we determine estimates for the general Taylor-Maclaurin coefficients of the functions in this class. For this purpose, we use the Faber polynomial expansions. In certain cases, our estimates improve some of those existing coeffcient bounds.

1 Introduction

Let \mathcal{A} denote the class of all functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z: z \in \mathbb{C}$ and $\quad|z|<1\}$. We also denote by \mathcal{S} the class of all functions in the normalized analytic function class \mathcal{A} which are univalent in \mathbb{U}.

It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

In fact, the inverse function $g=f^{-1}$ is given by

$$
\begin{align*}
g(w) & =f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \\
& =w+\sum_{n=2}^{\infty} A_{n} w^{n} \tag{1.2}
\end{align*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1.1). The class of analytic bi-univalent functions was first introduced and studied by Lewin [25], where it was proved that $\left|a_{2}\right|<1.51$. Brannan and Clunie [5] improved Lewin's result to $\left|a_{2}\right| \leq \sqrt{2}$ and later Netanyahu [27] proved that $\left|a_{2}\right| \leq 4 / 3$. Brannan and Taha [6] and Taha [33] also investigated certain subclasses of biunivalent functions and found non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. For a brief history and interesting examples of functions in the class Σ, see [31] (see also [6]). In fact, the aforecited work of Srivastava et al. [31] essentially revived the investigation of various subclasses of the bi-univalent function class Σ in recent years; it was followed by such works as those by Frasin and Aouf [17], Xu et al. [35, 36], Hayami and Owa [22], and others (see, for example, [3, 7, 8, 9, 10, 14, 18, 26, 28, 29, 30]).

Not much is known about the bounds on the general coefficient $\left|a_{n}\right|$ for $n>3$. This is because the bi-univalency requirement makes the behavior of the coefficients of the function f and f^{-1} unpredictable. Here, in this paper, we use the Faber polynomial expansions for a general subclass of analytic bi-univalent functions to determine estimates for the general coefficient bounds $\left|a_{n}\right|$.

The Faber polynomials introduced by Faber [16] play an important role in various areas of mathematical sciences, especially in geometric function theory. The recent publications [19] and [21] applying the Faber polynomial expansions to meromorphic bi-univalent functions motivated us to apply this technique to classes of analytic bi-univalent functions.

In the literature, there is only a few works determined the general coefficient bounds $\left|a_{n}\right|$ for the analytic bi-univalent functions given by (1.1) using Faber polynomial expansions, $[2,11,12$, $13,20,23,24,32]$.

Now, we consider a subclass of analytic bi-univalent functions defined by Murugusundaramoorthy et al. [26].

Definition 1.1. (See [26]) A function $f \in \Sigma$ given by (1.1) is said to be in the class $\mathcal{M}_{\Sigma}(\alpha, \lambda)$ if the following conditions are satisfied:

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}\right)>\alpha \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(\frac{w g^{\prime}(w)}{(1-\lambda) g(w)+\lambda w g^{\prime}(w)}\right)>\alpha \tag{1.4}
\end{equation*}
$$

where $0 \leq \alpha<1 ; 0 \leq \lambda<1 ; z, w \in \mathbb{U}$ and $g=f^{-1}$ is defined by (1.2).
Note that, for $\lambda=0$, the class $\mathcal{M}_{\Sigma}(\alpha, \lambda)$ reduces to $\mathcal{S}_{\Sigma}^{*}(\alpha)$ bi-starlike functions of order α $(0 \leq \alpha<1)$.

Murugusundaramoorthy et al. [26] obtained the following coefficient estimates for the functions belonging the class $\mathcal{M}_{\Sigma}(\alpha, \lambda)$.

Theorem 1.2. [26] Let $f(z)$ given by (1.1) be in the class $\mathcal{M}_{\Sigma}(\alpha, \lambda), 0 \leq \alpha<1$ and $0 \leq \lambda<1$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{\sqrt{2(1-\alpha)}}{1-\lambda} \tag{1.5}\\
\left|a_{3}\right| \leq \frac{4(1-\alpha)^{2}}{(1-\lambda)^{2}}+\frac{1-\alpha}{1-\lambda} . \tag{1.6}
\end{gather*}
$$

Later Bulut [9] improved these results as follows:
Theorem 1.3. [9] Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the function class $\mathcal{M}_{\Sigma}(\alpha, \lambda)$. Then

$$
\left|a_{2}\right| \leq\left\{\begin{array}{cl}
\frac{\sqrt{2(1-\alpha)}}{1-\lambda} & , \quad 0 \leq \alpha \leq \frac{1}{2} \\
\frac{2(1-\alpha)}{1-\lambda} & , \quad \frac{1}{2} \leq \alpha<1
\end{array}\right.
$$

and

$$
\left|a_{3}\right| \leq\left\{\begin{array}{cc}
\frac{2(1-\alpha)}{(1-\lambda)^{2}} & , \quad 0 \leq \alpha \leq \frac{3-\lambda}{4} \\
\frac{4(1-\alpha)^{2}}{(1-\lambda)^{2}}+\frac{1-\alpha}{1-\lambda} & , \quad \frac{3-\lambda}{4} \leq \alpha<1
\end{array}\right.
$$

The object of the present paper is to give an upper bound for the coefficients $\left|a_{n}\right|$ of analytic bi-univalent functions in the class $\mathcal{M}_{\Sigma}(\alpha, \lambda)$ by using Faber polynomials.

2 Coefficient estimates

Using the Faber polynomial expansion of functions $f \in \mathcal{A}$ of the form (1.1), the coefficients of its inverse map $g=f^{-1}$ may be expressed as, [1]:

$$
\begin{equation*}
g(w)=f^{-1}(w)=w+\sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots, a_{n}\right) w^{n} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{align*}
K_{n-1}^{-n}= & \frac{(-n)!}{(-2 n+1)!(n-1)!} a_{2}^{n-1}+\frac{(-n)!}{(2(-n+1))!(n-3)!} a_{2}^{n-3} a_{3} \\
& +\frac{(-n)!}{(-2 n+3)!(n-4)!} a_{2}^{n-4} a_{4} \tag{2.2}\\
& +\frac{(-n)!}{(2(-n+2))!(n-5)!} a_{2}^{n-5}\left[a_{5}+(-n+2) a_{3}^{2}\right] \\
& +\frac{(-n)!}{(-2 n+5)!(n-6)!} a_{2}^{n-6}\left[a_{6}+(-2 n+5) a_{3} a_{4}\right] \\
& +\sum_{j \geq 7} a_{2}^{n-j} V_{j},
\end{align*}
$$

such that $V_{j}(7 \leq j \leq n)$ is a homogeneous polynomial in the variables $a_{2}, a_{3}, \ldots, a_{n}$, [4]. In particular, the first three terms of K_{n-1}^{-n} are

$$
\begin{gathered}
K_{1}^{-2}=-2 a_{2}, \\
K_{2}^{-3}=3\left(2 a_{2}^{2}-a_{3}\right), \\
K_{3}^{-4}=-4\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) .
\end{gathered}
$$

In general, for any $p \in \mathbb{Z}:=\{0, \pm 1, \pm 2, \ldots\}$, an expansion of K_{n}^{p} is as, [1],

$$
\begin{equation*}
K_{n-1}^{p}=p a_{n}+\frac{p(p-1)}{2} D_{n-1}^{2}+\frac{p!}{(p-3)!3!} D_{n-1}^{3}+\cdots+\frac{p!}{(p-n+1)!(n-1)!} D_{n-1}^{n-1}, \tag{2.3}
\end{equation*}
$$

where $D_{n-1}^{p}=D_{n-1}^{p}\left(a_{2}, a_{3}, \ldots, a_{n}\right)$, and by [34],

$$
D_{n-1}^{m}\left(a_{2}, \ldots, a_{n}\right)=\sum \frac{m!}{i_{1}!\ldots i_{n-1}!} a_{2}^{i_{1}} \ldots a_{n}^{i_{n-1}}
$$

and the sum is taken over all non-negative integers i_{1}, \ldots, i_{n-1} satisfying

$$
\begin{gathered}
i_{1}+i_{2}+\cdots+i_{n-1}=m \\
i_{1}+2 i_{2}+\cdots+(n-1) i_{n-1}=n-1 .
\end{gathered}
$$

It is clear that $D_{n-1}^{n-1}\left(a_{2}, \ldots, a_{n}\right)=a_{2}^{n-1}$.
Consequently, for functions $f \in \mathcal{M}_{\Sigma}(\alpha, \lambda)$ of the form (1.1), we can write:

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{\mathcal{F}_{\lambda}(z)}=1+\sum_{n=2}^{\infty} F_{n-1}\left(b_{2}, b_{3}, \ldots, b_{n}\right) z^{n-1} \tag{2.4}
\end{equation*}
$$

where

$$
\mathcal{F}_{\lambda}(z)=(1-\lambda) f(z)+\lambda z f^{\prime}(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

with

$$
b_{n}=[1+(n-1) \lambda] a_{n} .
$$

So we get

$$
F_{n-1}\left(b_{2}, b_{3}, \ldots, b_{n}\right)=\left(n a_{n}-b_{n}\right)+\sum_{j=1}^{n-2} K_{j}^{-1}\left(b_{2}, b_{3}, \ldots, b_{j+1}\right)\left[(n-j) a_{n-j}-b_{n-j}\right] .
$$

Our first theorem introduces an upper bound for the coefficients $\left|a_{n}\right|$ of analytic bi-univalent functions in the class $\mathcal{M}_{\Sigma}(\alpha, \lambda)$.

Theorem 2.1. For $0 \leq \lambda<1$ and $0 \leq \alpha<1$, let the function $f \in \mathcal{M}_{\Sigma}(\alpha, \lambda)$ be given by (1.1). If $a_{k}=0(2 \leq k \leq n-1)$, then

$$
\left|a_{n}\right| \leq \frac{2(1-\alpha)}{(n-1)(1-\lambda)} \quad(n \geq 4)
$$

Proof. For the function $f \in \mathcal{M}_{\Sigma}(\alpha, \lambda)$ of the form (1.1), we have the expansion (2.4) and for the inverse map $g=f^{-1}$, considering (1.2), we obtain

$$
\begin{equation*}
\frac{w g^{\prime}(w)}{\mathcal{G}_{\lambda}(w)}=1+\sum_{n=2}^{\infty} F_{n-1}\left(B_{2}, B_{3}, \ldots, B_{n}\right) w^{n-1} \tag{2.5}
\end{equation*}
$$

where

$$
\mathcal{G}_{\lambda}(w)=(1-\lambda) g(w)+\lambda w g^{\prime}(w)=z+\sum_{n=2}^{\infty} B_{n} w^{n}
$$

with

$$
B_{n}=[1+(n-1) \lambda] A_{n} .
$$

On the other hand, since $f \in \mathcal{M}_{\Sigma}(\alpha, \lambda)$ and $g=f^{-1} \in \mathcal{M}_{\Sigma}(\alpha, \lambda)$, by definition, there exist two positive real part functions

$$
p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \in \mathcal{A}
$$

and

$$
q(w)=1+\sum_{n=1}^{\infty} d_{n} w^{n} \in \mathcal{A}
$$

where

$$
\Re(p(z))>0 \quad \text { and } \quad \Re(q(w))>0
$$

in \mathbb{U} so that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{\mathcal{F}_{\lambda}(z)}=\alpha+(1-\alpha) p(z) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w g^{\prime}(w)}{\mathcal{G}_{\lambda}(w)}=\alpha+(1-\alpha) q(w) \tag{2.7}
\end{equation*}
$$

Note that, by the Caratheodory lemma (e.g., [15]), $\left|c_{n}\right| \leq 2$ and $\left|d_{n}\right| \leq 2(n \in \mathbb{N}:=\{1,2, \ldots\})$. Comparing the corresponding coefficients of (2.4) and (2.6), for any $n \geq 2$, yields

$$
\begin{equation*}
\left(n a_{n}-b_{n}\right)+\sum_{j=1}^{n-2} K_{j}^{-1}\left(b_{2}, b_{3}, \ldots, b_{j+1}\right)\left[(n-j) a_{n-j}-b_{n-j}\right]=(1-\alpha) c_{n-1} \tag{2.8}
\end{equation*}
$$

and similarly, from (2.5) and (2.7) we find

$$
\begin{equation*}
\left(n A_{n}-B_{n}\right)+\sum_{j=1}^{n-2} K_{j}^{-1}\left(B_{2}, B_{3}, \ldots, B_{j+1}\right)\left[(n-j) A_{n-j}-B_{n-j}\right]=(1-\alpha) d_{n-1} \tag{2.9}
\end{equation*}
$$

Note that for $a_{k}=0(2 \leq k \leq n-1)$, we have $A_{n}=-a_{n}$ and so

$$
\begin{aligned}
n a_{n}-b_{n} & =(n-1)(1-\lambda) a_{n}=(1-\alpha) c_{n-1} \\
n A_{n}-B_{n} & =-(n-1)(1-\lambda) a_{n}=(1-\alpha) d_{n-1}
\end{aligned}
$$

Taking the absolute values of the above equalities, we obtain

$$
\left|a_{n}\right|=\frac{(1-\alpha)\left|c_{n-1}\right|}{(n-1)(1-\lambda)}=\frac{(1-\alpha)\left|d_{n-1}\right|}{(n-1)(1-\lambda)} \leq \frac{2(1-\alpha)}{(n-1)(1-\lambda)}
$$

which completes the proof of the Theorem 2.1.

The following corollary is immediate consequence of the above theorem.
Corollary 2.2. Let the function $f \in \mathcal{S}_{\Sigma}^{*}(\alpha)(0 \leq \alpha<1)$ be given by (1.1). If $a_{k}=0(2 \leq k \leq n-1)$, then

$$
\left|a_{n}\right| \leq \frac{2(1-\alpha)}{n-1} \quad(n \geq 4)
$$

Theorem 2.3. For $0 \leq \lambda<1$ and $0 \leq \alpha<1$, let the function $f \in \mathcal{M}_{\Sigma}(\alpha, \lambda)$ be given by (1.1). Then one has the following

$$
\begin{gather*}
\left|a_{2}\right| \leq\left\{\begin{array}{cc}
\frac{\sqrt{2(1-\alpha)}}{1-\lambda} & , \quad 0 \leq \alpha<\frac{1}{2} \\
\frac{2(1-\alpha)}{1-\lambda} & , \\
\frac{1}{2} \leq \alpha<1
\end{array}\right. \tag{2.10}\\
\left|a_{3}\right| \leq\left\{\begin{array}{cc}
\frac{2(1-\alpha)}{(1-\lambda)^{2}} & , \quad 0 \leq \alpha \leq \frac{3-\lambda}{4} \\
\frac{4(1-\alpha)^{2}}{(1-\lambda)^{2}}+\frac{1-\alpha}{1-\lambda} & , \quad \frac{3-\lambda}{4} \leq \alpha<1
\end{array}\right. \tag{2.11}
\end{gather*}
$$

Proof. If we set $n=2$ and $n=3$ in (2.8) and (2.9), respectively, we get

$$
\begin{gather*}
(1-\lambda) a_{2}=(1-\alpha) c_{1} \tag{2.12}\\
(1-\lambda)\left[2 a_{3}-(1+\lambda) a_{2}^{2}\right]=(1-\alpha) c_{2} \tag{2.13}\\
-(1-\lambda) a_{2}=(1-\alpha) d_{1} \tag{2.14}\\
(1-\lambda)\left[(3-\lambda) a_{2}^{2}-2 a_{3}\right]=(1-\alpha) d_{2} \tag{2.15}
\end{gather*}
$$

From (2.12) and (2.14), we find (by the Caratheodory lemma)

$$
\begin{equation*}
\left|a_{2}\right|=\frac{(1-\alpha)\left|c_{1}\right|}{1-\lambda}=\frac{(1-\alpha)\left|d_{1}\right|}{1-\lambda} \leq \frac{2(1-\alpha)}{1-\lambda} \tag{2.16}
\end{equation*}
$$

Also from (2.13) and (2.15), we obtain

$$
\begin{equation*}
2(1-\lambda)^{2} a_{2}^{2}=(1-\alpha)\left(c_{2}+d_{2}\right) \tag{2.17}
\end{equation*}
$$

Using the Caratheodory lemma, we get

$$
\left|a_{2}\right| \leq \frac{\sqrt{2(1-\alpha)}}{1-\lambda}
$$

and combining this with the inequality (2.16) , we obtain the desired estimate on the coefficient $\left|a_{2}\right|$ as asserted in (2.10) .

Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (2.15) from (2.13). We thus get

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{(1-\alpha)\left(c_{2}-d_{2}\right)}{4(1-\lambda)} \tag{2.18}
\end{equation*}
$$

Upon substituting the value of a_{2}^{2} from (2.12) into (2.18), it follows that

$$
a_{3}=\frac{(1-\alpha)^{2} c_{1}^{2}}{(1-\lambda)^{2}}+\frac{(1-\alpha)\left(c_{2}-d_{2}\right)}{4(1-\lambda)}
$$

We thus find (by the Caratheodory lemma) that

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4(1-\alpha)^{2}}{(1-\lambda)^{2}}+\frac{1-\alpha}{1-\lambda} \tag{2.19}
\end{equation*}
$$

On the other hand, upon substituting the value of a_{2}^{2} from (2.17) into (2.18), it follows that

$$
a_{3}=\frac{1-\alpha}{4(1-\lambda)^{2}}\left[(3-\lambda) c_{2}+(1+\lambda) d_{2}\right] .
$$

Consequently, (by the Caratheodory lemma) we have

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2(1-\alpha)}{(1-\lambda)^{2}} \tag{2.20}
\end{equation*}
$$

Combining (2.19) and (2.20), we get the desired estimate on the coefficient $\left|a_{3}\right|$ as asserted in (2.11). This evidently completes the proof of Theorem 2.3.

Note that, Theorem 2.3 gives another proof of Theorem 1.3.
By setting $\lambda=0$ in Theorem 2.3, we obtain the following consequence.
Corollary 2.4. Let the function $f \in \mathcal{S}_{\Sigma}^{*}(\alpha)(0 \leq \alpha<1)$ be given by (1.1). Then one has the following

$$
\begin{gathered}
\left|a_{2}\right| \leq\left\{\begin{array}{cc}
\sqrt{2(1-\alpha)} & , \quad 0 \leq \alpha<\frac{1}{2} \\
2(1-\alpha) & , \\
\frac{1}{2} \leq \alpha<1
\end{array}\right. \\
\left|a_{3}\right| \leq\left\{\begin{array}{cc}
2(1-\alpha) & , \quad 0 \leq \alpha \leq \frac{3}{4} \\
4(1-\alpha)^{2}+(1-\alpha) & , \quad \frac{3}{4} \leq \alpha<1
\end{array} .\right.
\end{gathered}
$$

References

[1] H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math. 130, 179-222 (2006).
[2] G. Akın and S. Sümer Eker, Coefficient estimates for a certain class of analytic and bi-univalent functions defined by fractional derivative, C. R. Acad. Sci. Paris, Ser. I 352, 1005-1010 (2014).
[3] M. K. Aouf, R. M. El-Ashwah and A. M. Abd-Eltawab, New subclasses of biunivalent functions involving Dziok-Srivastava operator, ISRN Math. Anal. 2013, Art. ID 387178, 5 pp.
[4] H. Airault and J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126, 343-367 (2002).
[5] D. A. Brannan, J. G. Clunie (Eds.), Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1 20, 1979), Academic Press, New York and London (1980).
[6] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babeş-Bolyai Math. 31, 70-77 (1986)
[7] S. Bulut, Coefficient estimates for initial Taylor-Maclaurin coefficients for a subclass of analytic and biunivalent functions defined by Al-Oboudi differential operator, Sci. World J. 2013, Art. ID 171039, 6 pp.
[8] S. Bulut, Coefficient estimates for new subclasses of analytic and bi-univalent functions defined by AlOboudi differential operator, J. Funct. Spaces Appl. 2013, Art. ID 181932, 7 pp.
[9] S. Bulut, Coefficient estimates for a new subclass of analytic and bi-univalent functions, An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.) 62, 305-311 (2016).
[10] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43, 59-65 (2013).
[11] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I 352, 479-484 (2014).
[12] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat 30, 1567-1575 (2016).
[13] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions defined by Salagean differential operator, Mat. Vesnik 67, 185-193 (2015).
[14] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27, 1165-1171 (2013).
[15] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, (1983).
[16] G. Faber, Über polynomische Entwickelungen, Math. Ann. 57, 389-408 (1903).
[17] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24, 1569-1573 (2011).
[18] S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc. 20, 179-182 (2012).
[19] S. G. Hamidi, S. A. Halim and J. M. Jahangiri, Coefficient estimates for a class of meromorphic biunivalent functions, C. R. Acad. Sci. Paris, Ser. I 351, 349-352 (2013).
[20] S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I 352, 17-20 (2014).
[21] S. G. Hamidi, T. Janani, G. Murugusundaramoorthy and J. M. Jahangiri, Coefficient estimates for certain classes of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I352, 277-282 (2014).
[22] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J. 22, 15-26 (2012).
[23] J. M. Jahangiri and S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. 2013, Art. ID 190560, 4 pp.
[24] J. M. Jahangiri, S. G. Hamidi and S. A. Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Sci. Soc. (2) 37, 633-640 (2014).
[25] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18, 63-68 (1967).
[26] G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent function, Abstr. Appl. Anal. 2013, Art. ID 573017, 3 pp.
[27] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32, 100-112 (1969).
[28] S. Porwal and M. Darus, On a new subclass of bi-univalent functions, J. Egyptian Math. Soc. 21, 190-193 (2013).
[29] S. Prema and B. S. Keerthi, Coefficient bounds for certain subclasses of analytic functions, J. Math. Anal. 4, 22-27 (2013).
[30] H. M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27, 831-842 (2013).
[31] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23, 1188-1192 (2010).
[32] H. M. Srivastava, S. Sümer Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29, 1839-1845 (2015).
[33] T. S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, (1981).
[34] P. G. Todorov, On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl. 162, 268-276 (1991).
[35] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25, 990-994 (2012).
[36] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218, 11461-11465 (2012).

Author information

Serap Bulut, Faculty of Aviation and Space Sciences, Kocaeli University, Arslanbey Campus, 41285 Kartepe, Kocaeli, TURKEY.
E-mail: serap.bulut@kocaeli.edu.tr
Received: October 24, 2016.
Accepted: February 19, 2017.

