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Abstract In this work, considering a subclass of analytic bi-univalent functions, we deter-
mine estimates for the general Taylor-Maclaurin coefficients of the functions in this class. For
this purpose, we use the Faber polynomial expansions. In certain cases, our estimates improve
some of those existing coeffcient bounds.

1 Introduction

Let A denote the class of all functions of the form
f2) =24 apz" (1.1)
n=2

which are analytic in the open unit disk U={z:z€ C and |z| < 1}. We also denote by S
the class of all functions in the normalized analytic function class .4 which are univalent in U.
It is well known that every function f € S has an inverse f~!, which is defined by

1) =2  (2€)
and

O R (G HNGES)

In fact, the inverse function g = f~! is given by

g(w) = ft (w) =w— aw® + (Za% — a3) w? — (5@% — Sazas + a4) w4
= w+ Y A" (1.2)
n=2

A function f € A is said to be bi-univalent in U if both f and f~! are univalent in U. Let £
denote the class of bi-univalent functions in U given by (1.1). The class of analytic bi-univalent
functions was first introduced and studied by Lewin [25], where it was proved that |a,| < 1.51.
Brannan and Clunie [5] improved Lewin’s result to |ay| < v/2 and later Netanyahu [27] proved
that |ay| < 4/3. Brannan and Taha [6] and Taha [33] also investigated certain subclasses of bi-
univalent functions and found non-sharp estimates on the first two Taylor-Maclaurin coefficients
|az| and |as| . For a brief history and interesting examples of functions in the class X, see [31] (see
also [6]). In fact, the aforecited work of Srivastava et al. [31] essentially revived the investigation
of various subclasses of the bi-univalent function class X in recent years; it was followed by such
works as those by Frasin and Aouf [17], Xu et al. [35, 36], Hayami and Owa [22], and others
(see, for example, [3, 7, 8, 9, 10, 14, 18, 26, 28, 29, 30]).

Not much is known about the bounds on the general coefficient |a,,| for n > 3. This is because
the bi-univalency requirement makes the behavior of the coefficients of the function f and f~!
unpredictable. Here, in this paper, we use the Faber polynomial expansions for a general subclass
of analytic bi-univalent functions to determine estimates for the general coefficient bounds |a,,| .
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The Faber polynomials introduced by Faber [16] play an important role in various areas of
mathematical sciences, especially in geometric function theory. The recent publications [19] and
[21] applying the Faber polynomial expansions to meromorphic bi-univalent functions motivated
us to apply this technique to classes of analytic bi-univalent functions.

In the literature, there is only a few works determined the general coefficient bounds |a,, | for
the analytic bi-univalent functions given by (1.1) using Faber polynomial expansions, [2, 11, 12,
13, 20, 23, 24, 32].

Now, we consider a subclass of analytic bi-univalent functions defined by Murugusundaramoor-
thy et al. [26].

Definition 1.1. (See [26]) A function f € X given by (1.1) is said to be in the class My (o, ) if
the following conditions are satisfied:

zf' (2)
%((I_A)f(z)—l—)\zf’(z))>a (1.3)
and
wg' (w)
3?((1A)g<w)+mgf(w>)>0‘ (1.4)

where0 <a<1;0< A< 1; z,w € Uand g = f~! is defined by (1.2).

Note that, for A = 0, the class My (a, A) reduces to Sy () bi-starlike functions of order «
0<ac<l).

Murugusundaramoorthy et al. [26] obtained the following coefficient estimates for the func-
tions belonging the class My (a, \) .

Theorem 1.2. [26] Let f (z) given by (1.1) be in the class My (a,\),0 < a < 1and0 < A < 1.
Then

0=
jaz| < 71(7;)7 (1.5)
2
g < 0 =) 10 (1.6)

(1-x)72  1-X
Later Bulut [9] improved these results as follows:

Theorem 1.3. [9] Let the function f (z) given by the Taylor-Maclaurin series expansion (1.1)
be in the function class My (c, \) . Then

2(1—a) 1
T—x » 0<a<gy
las| <
29:;) , % <axl
and )
—a 3-)
(17}\)2 ’ 0 S @ S 4
laz| <
4(1-a) | 1-a 3-)
(1-n)? +m , T§a<1

The object of the present paper is to give an upper bound for the coefficients |a,, | of analytic
bi-univalent functions in the class My (a, A) by using Faber polynomials.
2 Coefficient estimates

Using the Faber polynomial expansion of functions f € A of the form (1.1), the coefficients of
its inverse map g = f~! may be expressed as, [1]:

=1
gw)=f"w =w+> ~K. " (a2, 0, an) W, (2.1

n=2
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where
- (-n)! -1 (—n)! 4
Lo - > n—3
n—1 (7271 + 1)' (77, — 1)!a/2 + (2 (7771 + 1))' (n — 3)'61/2 as
(7’”)‘ n—4
HCTEORCEr el 22)
<_n), n—>5 2
* 2(—n+2)! (n— 5)ga2 [aS +(—n+2) a3]
(=n)! -
+ (—2n+5)! (n— 6)!% ®ag + (—2n + 5) aza4)
I Z
327
such that V; (7 < j < n) is a homogeneous polynomial in the variables as,as3,...,an, [4]. In

particular, the first three terms of K", are
-2
Kl = —2(12,

K2_3:3(2a%—a3),
K3_4 =4 (Sag —Sapasz + a4) .
In general, forany p € Z := {0,4+1,+2,...}, an expansion of K7 is as, [1],

p!
(p—n+1)! (n-1)

p!
(p—3)!3!

where DY | = DP _, (ay,a3,...,a,), and by [34],

p (p - 1) n—
?DZH + D} 44+ D1, (2.3)

Kp_l = pa, +

n

—_— 1 —
D (azy...,apn) = E . ay
21+---Tpn—1-

and the sum is taken over all non-negative integers ¢, .. ., ¢,—1 satisfying
i1+i+--+ip1=m

i1+2i2+---+<n—1)in,1:n—].

It is clear that DZ:% (az,...,an) = a;‘*I.
Consequently, for functions f € My (a, ) of the form (1.1), we can write:
2f'(2) - 1
=1 oy (b2, by, ... by) 2L 2.4
702 + nz::z 1 (b2, b3 )z (2.4)
where

Fr(z)=(1=X)f(2)+Xzf"(2) :z+§:bnz”

with
by =14 (n—1)\a,.
So we get
n—2
Froo1 (b2, b3, bp) = (nan — by) + > K (b, b, bje1) [(n = §) an—j — buj].
j=1

Our first theorem introduces an upper bound for the coefficients |a,,| of analytic bi-univalent
functions in the class My (a, \) .
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Theorem 2.1. For 0 < A < 1 and 0 < « < 1, let the function f € My (a, \) be given by (1.1) .
Ifa,=0 2<k<n-—1),then
2(1-a)
N Pl Sk > 4).

Proof. For the function f € M5 (a, A) of the form (1.1), we have the expansion (2.4) and for
the inverse map g = f~!, considering (1.2), we obtain

U}g/ (UJ) - n—1
=1 F,_1(By,Bs,...,By 2.5
Gr () +TLZ:2 1 (B2, B3 )w (2.5)
where -
Gr (w) = (1= X) g (w) + dwg (w) =2+ Y Buw"
n=2
with

B, =[1+(n—1)\ A,
(o,

On the other hand, since f € My (a,A\) and g = f~! € My (a, \), by definition, there exist

two positive real part functions

p(2) :l—i—chz" €A

n=1
and -
q(w)=1 +Zdnw” € A,
n=1
where
R(p(z))>0 and RN(g(w)) >0
in U so that ,
L8 o - 0o
and .
qgi ((;U)) =a+(l-a)g(w). 2.7

Note that, by the Caratheodory lemma (e.g., [15]), |c,| <2 and |d,| <2 (n e N:={1,2,...}).
Comparing the corresponding coefficients of (2.4) and (2.6), for any n > 2, yields

n—2
(nan —bn) + > K (b, bs, . bjg) [(n = §) @nej — buj] = (1 — @) ey (2.8)
j=1

and similarly, from (2.5) and (2.7) we find

n—2
(nAn — Bn)+ Y K;'(By,Bs,...,Bj1) [(n—§) An—j = Bnjl = (1 —a)dn_1.  (29)

j=1
Note that fora;, =0 (2 < k <n —1), we have A, = —a,, and so
na, —bp,=Mm—-1)(1-XNa,=(1-a)cy_1,
nA,—B,=—-n-1)(1=XNa,=(1—-a)d,_1.
Taking the absolute values of the above equalities, we obtain

(I—a)lenn| _ (1 =a)ldn

lan| = _ 2(1 —a)
o= =X) (n=1)(1-N)

(11—’

<

which completes the proof of the Theorem 2.1. O
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The following corollary is immediate consequence of the above theorem.

Corollary 2.2. Let the function f € S5 () (0 < o < 1) begivenby (1.1) . Ifa, =0 2<k<n-1),

then
2(1-a)

n—1

Theorem 2.3. For 0 < A < 1 and 0 < « < 1, let the function f € My (a, \) be given by (1.1).
Then one has the following

lan| < (n>4).

2(_1_a) , 0<a<t
las| < : (2.10)
2(11:;) , 3<a<l
a= , 0<a<3p
Jas| < . @.11)
M) flze | A <acl

Proof. If we setn =2 and n = 3 in (2.8) and (2.9), respectively, we get

(1-Na=(1-a)e, (2.12)
(1-=X)[2a3— (1+XN)a3] =(1—a)e, (2.13)
—(1=Nax = (1 —a)d, (2.14)
(1-X)[B=Na;—2a3] =(1—a)d. (2.15)

From (2.12) and (2.14) , we find (by the Caratheodory lemma)

|a2| _ (170‘) |61| _ (170‘) |d1‘ < 2(1

—
1 —A e S
Also from (2.13) and (2.15) , we obtain

). (2.16)

2(1=N’a3=(1-0a)(c2+da). (2.17)
Using the Caratheodory lemma, we get

2(1 —a)

< X -~ 7
e T

and combining this with the inequality (2.16) , we obtain the desired estimate on the coefficient
|az| as asserted in (2.10).

Next, in order to find the bound on the coefficient |as|, we subtract (2.15) from (2.13). We
thus get

2, (I—a) (e —dy)

= R 2.1

Upon substituting the value of a3 from (2.12) into (2.18), it follows that
_(-a)d  (1-a)(e-d)

(1-))° 4(1-2)

We thus find (by the Caratheodory lemma) that
2
gy < 2L=0)”  1-a (2.19)

(1-x)7%  1-X
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On the other hand, upon substituting the value of a3 from (2.17) into (2.18) , it follows that

11—«
a3:m[(3—/\)62+(1+/\)d2}-

Consequently, (by the Caratheodory lemma) we have

2(1-a)

a3§ .
|as| 0

(2.20)

Combining (2.19) and (2.20) , we get the desired estimate on the coefficient |a3| as asserted in
(2.11) . This evidently completes the proof of Theorem 2.3. |

Note that, Theorem 2.3 gives another proof of Theorem 1.3.
By setting A = 0 in Theorem 2.3, we obtain the following consequence.

Corollary 2.4. Let the function [ € S5 (a) (0 <« < 1) be given by (1.1). Then one has the
following

21—-a) , 0<a<}i

‘a2| S )
2(1—a) , 3<ax<l
2(1—a) , 0<a<s
las] <
4(1—a)+(1-a) , 3<a<l1
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