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Abstract. Forty years ago, Hartwig and Luh proved in (Pac. J. Math., 1977) that a unit-

regular ring having unique inner inverse unit for each its element is either a boolean ring or a

division ring, and vice versa. Extending their result, we de�ne and explore certain other varia-

tions of uniquely elements in von Neumann regular rings.

1 Introduction and Background

Everywhere in the text of the present paper all our rings are assumed to be associative, containing

the identity element 1 which differs from the zero element 0. Our terminology and notations are

mainly in agreement with those from [3] and [10]. For instance, the following three classical

concepts are well-known and stated in [2] (all of them being equivalent in the commutative

case).

We will hereafter use for simpleness the term "regular" instead of "von Neumann regular".

De�nition 1.1. A ring R is called regular if, for any r ∈ R, there is an element a ∈ R such that

r = rar.

More restrictive properties are due to the following.

De�nition 1.2. A ring R is called unit-regular if, for any r ∈ R, there is a unit u ∈ R such that

r = rur.

It is a long time known that unit-regular rings are always regular, but this cannot be reversed

in the non-commutative case, however. Likewise, a ringR is unit-regular if, and only if, every its

element r can be written as r = ve for some unit v and idempotent e. Indeed, it is elementarily to

verify that the element ur is an idempotent, say e, and consequently r = u−1e setting u−1 = v.
Little more restrictive properties can be viewed by the following.

De�nition 1.3. A ring R is called strongly regular if, for any r ∈ R, there is an element a ∈ R
such that r = r2a.

As it is known, a can be chosen to be a unit with ar = ra, so that r = ar2 (that is, the initial
equality r = r2a is left-right symmetric) and thus strongly regular rings are unit-regular, but the

converse fails in general. Actually, strongly regular rings are precisely the reduced regular rings,

i.e., exactly the abelian regular rings. Also, in a more concrete �avor, every strongly regular ring

is a subdirect product (sum) of division rings, and visa versa (cf. [3], [6] and [7]).

The leitmotif of this article is to examine in different aspects the existence of unique elements

in the de�ned above three classes of regular rings.

2 Uniqueness in Regular Rings

The next notion, which corresponds to De�nition 1.1, is pivotal for our further work.
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De�nition 2.1. A ring R is said to be uniquely regular if, for any non-zero r ∈ R, there is a

unique element a ∈ R such that r = rar.

We are now ready to proceed by proving with the following assertion.

Theorem 2.2. A ring R is uniquely regular if, and only if, R is a division ring.

Proof. Let r ∈ R be an arbitrary element and let there exist a unique element a ∈ R with

r = rar. Since it is readily checked that r2ar = r2 = rar2, it follows that we can write

r(a(1− r(1− ra)))r = rar = r((1− (1− ar)r)a)r.

Utilizing the uniqueness, we therefore deduce that

a− ar(1− ra) = a = a− (1− ar)ra.

This allows us to derive that ar = ar2a = ra. Hence it follows at once that r = rar = r2a
and thus R is strongly regular. This means that any element r in R can be written as r = ue for
some unit u and idempotent e (with ue = eu). But R does not possess non-trivial idempotents

as well. In fact, if e is a non-zero idempotent, then e = e.1.e = e.e.e which forces that e = 1.

So, this arbitrary element r of R is either 0 or u, which substantiates our claim after all.

Reciprocally, suppose now thatR is a division ring. Given 0 ̸= r ∈ R, it follows that r inverts
in R and thus r = rr−1r seeing that r−1 is unique for r, as needed.

Remark 2.3. Another argument to show that R is a division ring could be like this: For all

0 ̸= r ∈ R, the equality r = rar is tantamount to r = r(a+(1−ar))r = r(a+(1−ra))r = rar.
Hence the uniqueness gives that a+ 1− ar = a+ 1− ra = a, that is, ar = 1 = ra, i.e., all r are
invertible elements, as required.

3 Uniqueness in Unit-Regular Rings

The next notion, which corresponds to De�nition 1.2, is key for our further work.

De�nition 3.1. A ring R is said to be uniquely unit-regular if, for any non-zero r ∈ R, there is a
unique unit u ∈ R such that r = rur.

This is obviously tantamount to the following: A ring R is uniquely unit-regular if, for any

non-zero r ∈ R, there is a unique unit v ∈ R with r = ve for some idempotent e ∈ R. In fact,

v = u−1 and e = ur.
Nevertheless, the situation is rather complicated when we ask for the uniqueness of the exist-

ing idempotent. Speci�cally, one can state the following:

De�nition 3.2. A ring R is said to be pseudo uniquely unit-regular if, for each non-zero r ∈ R,
there is a unique idempotent e such that r = ue for some unit u ∈ R.

We now come to the following principal known statement ([5, Theorem 4]).

Theorem 3.3. A ring R is uniquely unit-regular if, and only if, R is either a boolean ring or a

division ring.

We may sharp this to the following.

Theorem 3.4. A ring R is pseudo uniquely unit-regular if, and only if, R is a subdirect product

of division rings.

Proof. Suppose �rst that R is pseudo uniquely unit-regular. As above, for an arbitrary r ∈ R,
we write

r(u(1− r(1− ru)))r = rur = r((1− (1− ur)r)u)r,
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where u is a unit. It is not too hard to be checked that u(1− r(1− ru)) is a unit with the inverse
(1+ r(1− ru))u−1 and (1− (1− ur)r)u is a unit with the inverse u−1(1+ (1− ur)r).

Since ur, u(1−r(1−ru))r and (1−(1−ur)r)ur are idempotents, say e, f and g, respectively,
it follows directly that r = u−1e = (1 + r(1 − ru))u−1f = u−1(1 + (1 − ur)r)g. Thus the

idempotent's uniqueness implies that e = f = g, i.e.,

u(1− r(1− ru))r = ur = (1− (1− ur)r)ur.

Canceling by u the �rst equality, we infer that (1 − r(1 − ru))r = r which amounts to

r(1− ru)r = 0, that is, r2− rrur = r2− r2 = 0 which is always ful�lled and so there is nothing

new.

As treating the second equality, it leads to (1− ur)rur = (1− ur)r = 0, i.e., r = ur2. This
shows that R has to be a strongly regular ring. We furthermore apply [3] or [10] to get that R is

a subdirect product of division rings, indeed.

Suppose conversely that R is a subdirect product of division rings. This again in view of [3]

or [10] means that R is a strongly regular ring, that is, every element r ∈ R can be written as

r = ue = eu, where u is a unit and e is an idempotent. We shall show now that e is unique. To
that goal, writing r = ue = vf for some unit v and idempotent f with vf = fv, it follows that
e = f . In fact, denoting v−1u = w, we have that we = f . Thus wewe = we, i.e., ewe = e which
enables us that ev−1ue = e, that is, ev−1vf = e and ef = e. A similar trick with e = w−1f
insures that w−1fw−1f = w−1f is amounting to fw−1f = f , i.e., fu−1vf = f which assures

that fu−1ue = f and so fe = f . But all idempotents in strongly regular rings are central, so that

ef = fe which �nally ensures that e = f , as wanted.

Actually, the last af�rmation states that a ring is pseudo uniquely unit-regular if, and only if,

it is strongly regular.

4 Uniqueness in Strongly Regular Rings

The next notion, which corresponds to De�nition 1.3, is basic for our further work.

De�nition 4.1. A ring R is said to be uniquely strongly regular if, for any non-zero r ∈ R, there
is a unique unit u ∈ R such that r = r2u.

Certainly, since such a ring is strongly regular, it must be that ru = ur and so this ring is

de�nitely uniquely unit-regular. It is also elementarily seen that boolean rings and division rings

are themselves uniquely strongly regular.

De�nition 4.2. A ringR is said to be pseudo uniquely strongly regular if, for any non-zero r ∈ R,
there is a unique idempotent e such that r = ue for some unit u ∈ R with ue = eu.

This makes such a ring pseudo uniquely unit-regular. It is also routinely observed that the

direct product of division rings is pseudo uniquely strongly regular.

We have now all the ingredients necessary to establish the following.

Theorem 4.3. A ring R is uniquely strongly regular if, and only if, R is either a boolean ring or

a division ring.

Proof. It follows immediately from the proof of the aforementioned [5, Lemma 4 and Theorem

4].

We may now sharpen this to the following.

Theorem 4.4. A ring R is pseudo uniquely strongly regular if, and only if, R is a subdirect

product of division rings.

Proof. It follows in the same manner as that of Theorem 3.4 alluded to above.
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5 Concluding Discussion

It is worthwhile noticing that our results quoted above could be generalized in the class of π-
regular rings, but we leave that for the interested reader.

We also state here some more fundamentals: A ring R is called clean if each its element is

the sum of a unit and an idempotent; if these two elements do commute, the clean ring is said

to be strongly clean. It was proved in [1] that unit-regular rings are clean. Very optimistically,

it was asked in [8] whether or not unit-regular rings are even strongly clean. However, recently

was constructed a counter-example in [9] that there exists a special unit-regular ring which is not

strongly clean. On the other vein, it was shown in [4] that there is a regular ring which need not

be clean.

In conclusion, all of the considered above (pseudo) uniquely (unit-) regular rings are neces-

sarily strongly regular, that is, a subdirect product of division rings, and hence they are strongly

clean. This adequately leads us to the following:

Conjecture. If R is a unit-regular ring with a �nite number of unit inner inverses for each its

element, then R is strongly clean. In particular, unit-regular rings with a �nite number of units

are strongly clean.
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