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Abstract In the present paper, we investigate the convergence and the approximation order
of general Gamma type operators in LP(1 < p < oo) spaces. The results are given in terms of
some Ditzian-Totik modulus of smoothness.

1 Introduction
In [6], [zgi and Biiyiikyazici introduced the following Gamma type linear and positive operators
Ln(f;z) = /O /0 In2(z,w)gn (u, t) f(t)dudt
(2n + 3)1z"*+3 /°° "
= t)dt > 0.
W2 Jo @l W
Approximation properties of L,, were examined by several researchers (see [4], [5], [11], [12],

[13], [14], [16], [17D.
In the year 2007, Mao [21] defined the following generalized Gamma type operators

Mys(fiz) = /0 ) /O " g0 g (u, ) £ (£)dudt

2n—k+1)! e tn=k
(n!(n—k‘)!)x +1/0 Wf(t)dt, x>0, (1.1)
for any f for which the above integral is convergent.
The rate of convergence of these operators for functions with derivatives of bounded variation
were studied in [15]. Some approximation results for these operators based on g—integers were
obtained in [18]. Global approximation theorems for these operators were obtained in [8].
Recently, Alok Kumar [7] obtained the following result.

Lemma 1.1. [7] If r'" derivative ) (r = 0,1,2...) exists continuously, then we get

r n+l—r > tn—k+r r
MU (f52) = Bua™™ /0 Gl 0 € (0.00),

)

where

(2n—k+1)!

bn = =R

The Voronovskaja type theorem and local rate of convergence for the operators Mr(f,)c was

given in [7]. In [10], some approximation properties of M ™) in polynomial weighted spaces

n,
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were studied.
In this paper we shall study a global rate of convergence of MT(LT;C in LP spaces in terms of the

modulus of smoothness. We prove a direct approximation theorem for the operator ff,)c using

an equivalence between the Peetre -functional and the modulus of smoothness.
Let LP denote the set of the Lebesgue measurable functions functions f defined on (0, cc) such
that

/ F@O)Pdt <00, 1<p< o,
0

and f is bounded almost everywhere on (0, 00) if p = oo.
The weighted modulus of smoothness for f € L? is defined as

wrp (£:V5) = sup | A3, (5 )llee, 0> 0,
P o<|h|<VE

where ¢(z) = x and
Dip(fiz) = fz + he(x)) = 2f(2) + f(z = ho()), @, h € (0,00).

For AC),. (set of all locally absolutely continuous functions on (0, c0)), we consider the follow-
ing Peetre K-functional:

Kap(fi8)y = int {1 f =gl 40| &0 i}
2,¢

where § > 0 and W} = {geLr:g € ACi, ¢*g" € LP}. By Theorem 3.1.2, p. 24, [2], it
follows that

C (f;\/5>p < Ko (30), < Cung (f35) (12)

?
p
for some constant C > 0.

2 Auxiliary results

In this section we give some preliminary results which will be used in the main part of this paper.
In [7], the author defined the sequence of linear and positive operators { M , .} as

M, (gx) = Bn P /Oo ﬂg(t)dt (2.1)
n,k,r\J> b(n, k, 7‘) 0 (m + t)Zn—k+2 ’ ’
where
B (n—r)l(n—k+r)!
_ n+l—r _
b(n,k,r) = Bz /0 (z 4 t)2n—h+2 df = n!(n —k)! '

Let us consider
em(t) =", Gpm(t) =(E—2)™, m e Ny, z,t € (0,00).
Lemma 2.1. [7] For any m € Ng, m +r < nandr < n we have

(n—rfm)!(nfk—l—r—i—m)!xm
(n—r)l(n—Fk+r)! ’

M:,k,r(em; 1‘) =

and

: L m\ i r—m ) =k rm =)
b (Baimi®) = Z(_1)< >( (ni—ig!gn—kir)—:_ ) :

for each x € (0,00).
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Lemma 2.2. [7] For m = 0,1,2,3,4, one has

(l) n, k r((bw,o;m) =1
2r—k+1
(”) M kr(¢w17 )—ﬁ%
4 +4r(2 —k)+2n+k* -5k +4 ,
T
(n—r)(n—r—1) ’

N Cn,k,r 3
(iv) My . (ba3:2) = (n_r)(n—r—l)(n—r—Q)x’

(iii) My (fz237) =

dnkr 4
M = =
(v) My g (0042) (n—r)(n—r—1)(n—r—2)(n—r—3)x’
where ¢y, . = 813 +1%(36 — 2k) + (51 + 14n — 42k + 6k*) — k> + 12k — 34k —n> +n(17 —
6k — 6k> + Zkr) + 21 and
A e = 160* +73(128 —32k) + 12 (348 +48n — 216k:+24k2)+r(366+177n+l<;(6n —54n —
440) + 120k — 8k3) + k* + k3(4n — 22) + 139K — k(245 + 116n) + 24n? + 131n + 100.

3 Main Results

In this section we give a theorem on the degree of approximation of the function f € LP, 1 <
p < oo by the operators M *

n,k,r*

Theorem 3.1. Let f € LP, 1 < p < oo. Then, there exists a positive constant C such that

1My e (D)l < CIF o

Proof. Let f € LP, 1 <p < oc0. Forp =1, we have

. Bn i /oo tn— k+r
M . — n s
‘ n,k,r(f’x” ‘b(n, ]{,’,T‘)x 0 (1, + t)Zn k+2 f( )
ﬂn /OO InJrl rgn— k+r
< .
= b(n,k,r) Jo () k+2‘f( ldt
Then
Dl = [ (i)l
ﬁn 0o 0o xn+17rtnfk+r
< il ([ Gt
Using
* 2 ldr (b= 1)l(c—1)!
/0 (Fan)™ ~ albte1r a,b,c € (0,00), (3.1
we obtain
/OO x"+1_rt"_k+rdx _(n+1-mln—k+r—-1)!
o (x+t)2n—kt2 2n—k+1)!
Then, we get
. Bn (n+1-r)n—k+r—1)
M 1 < 1
|| n,k,r(f)HL = b(n,k,r) X (2n—k+1)‘ Hf”L
n+ 1
< ”.f”L] Cllflle

n—
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where C is a positive constant.
Let p = oo. Observe that

v ﬁ e} xn+1 r¢n— k+r
* . < n
| n,k,r(f’$)| = b(n7k7?ﬁ)/0 (l,_|_t)2n k+2 |f( )ldt
6 oo l,n-‘rlfrtnfk:-&-r
< Wl gpiiy | Tt = Il

$+t)2" k+2

Then, we have

M, g ()l = sup ess| My, (fr2)] < || fllzee.

z€(0,00)
Thus, by applying the Riesz-Thorin theorem (see [1]), we get the required result. O

Lemma 3.2. [2] Let g € W7 o 1 < p < . Then, there exists a positive constant C such that

leg lle < C (lgllzr + lle*g"llzr) -

Lemma 3.3. Let £(f; z)(t) = /t(t —v)f(w)dv. If f € LP,1 < p < oo, then

. C
M5 1 (€CF3 ) Mee < 1 fll o,
where C is a positive constant independent of f.

Proof. For 1 < p < oo, proof is follows by the Riesz-Thorin theorem.
Let p = 1. Using the Fubini theorem, we obtain

1M s €D, < /0 Mz () e)da
/0"0 </0w b(n,ﬁz,r) Zit;n_:; ( /t I(v -t)If (v)ldv> dt> dz
/ </ b(n, k r) ;J: t;: :«Z (/;(” —t)|f(v)|dv> dt) dx

= [T
0

</ / //) nkr Zitgﬁz ]’:;( — t)dtdz.

IA

where

Observe that

W (v)
VN S T W O ok e e

/ / n+1 rgn— k-‘rr / / 7) _ t 6 l.n—&-l Tgn— k+r dtd
= (E.
bnkr ) (z +t)2n- wzd b(n,k,r) (z+t)n—Fk+2

Therefore, using (3.1) we get

)
n

2 g 2
W(v) = v 2n + 4r kr — 39k + 21 _CU—
2n—r)(n—k+r)
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where C is a positive constant.
Consequently

C [ C
I €D < & [ Rl = S .

If p = oo, then using Lemma 9.6.1, [2] we can write

[ wse

E(f2)(0)] =

|t—x|<1 1)
< — 4=
- T x t

e (14 ).

T t

[ P s

IA

Then, we have

My g (§(fro)io)] <0 My (1E(f:2) ] 2)

1 * 1 * ¢w,2
< 1o (M nia) + 1007, (22252) )

Using Cauchy-Schwarz inequality, we get

1
| )‘<||§0f||L°° <.’L‘ nkr ¢12’ \/ nk?" ¢I4a nkr )

From Lemma 2.2, we get

2
xT
M* k,r(qﬁaz;x) S Clz, Cl > 0,

n)

4
* X
Mn,k,r(¢w,4;x) < Czﬁ’ C, > 0.

By elementary calculation we obtain

(n+1—=r)(n+2-r) 2 G

* —

1
M, (—ia) =
kT (62,x> (n—k‘+7‘)(n—k‘+r—1)x - g2’

where C3 > 0. From the above, we have
C 1 x4 C
2 1 3
My €| < Sl (N\/C; J;)

Cs
< =,
n

where C4 > 0, which gives the result for p = cc. O
Now, we can formulate the following approximation theorem.

Theorem 3.4. Let f € LP, 1 < p < oo. Then, there exists a positive constant C such that

1
1M (1) = Sl <€ (s (F3n72) 20 )
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Proof. Letg € Wy . For every x € (0,00), we have

[ My (f320) = f(@)] < M3 (F = g3 )| 4+ (M (g50) = My (9(2)s )] + [g() — f(=)]-

From this and by Theorem 3.1, we have

1My 5o, (F) = Fllee < NIMy (9 = () )lle + Callg = fllzr, (3.2)

where C; is some positive constant.
Using Taylor’s theorem we get

g9(t) = g(x) = (t — 2)g'(x) + £(g": 2) (1),

t
where £(g";2)(t) = / (t —v)g" (v)dv is integral remainder.
Then, we get ’

My (g = g(x)i2) = g'(2) My, o (du32) + My (60975 2)5 ). (3.3)
By Lemma 2.2, we have

. 2r—k+1 x
Mn,k:,'r(¢at,l;x) = ﬁx < 0257

where C, > 0.
Using (3.3), Lemma 3.2 and Lemma 3.3, we obtain

* &) *
M h.-(9) = gller < ;ng'llm+||Mn,k,7-(§(9";-))llm

Cs
< —(lgller + %" 12s)
for some C3 > 0. Together with (3.2) this leads to

* C3
1M e (f) = fllze < Callg = fllw + == (g = fllze + 1 fllze + lg" [ 0

where C4 > 0. Taking the infimum over all g € W£ , We get

X 1 1
903 10 () — Flle < Cs (/c (r7) + n||f||Lp>
p
for some C5 > 0. Using (1.2), we get

1
Mz () = Tl <€ (s (Fin™ )+ 2l )

Hence, the proof is completed. O

Lemma 3.5. [f r'" derivative f)(r = 0,1,2...) exists continuously and ') € L?,1 < p < oo,
there exists a positive constant C such that

1 . . - e
sk =1 < (v (57) #1170l ).
Lp p N

b(n, k,r)
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