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Abstract. In this paper, we study a special class of linear codes called skew constacyclic
codes over finite non-chain rings of the form Fp + vFp, where p is an odd prime and v2 = v.
We use ideal θv-constacyclic codes to define skew constacyclic codes, investigate the structural
properties of skew polynomial ring R[x, θv]/(xn − λ) and determine them.

1 Introduction

Skew polynomial ring was introduced by Ore [14]. The set of skew cyclic codes is a generaliza-
tion of cyclic codes but constructed using a non-commutative ring Fq[x, θv], where Fq is a finite
field and θv is a field automorphism of Fq.

Recently, these family of codes are first described by D. Boucher, W. Geiselmann and F. Ul-
mer in [1], and [2]. In [8], G. Zhang, B. Chen studied the structure and properties of constacyclic
codes over finite non-chain rings of the form Fp + vFp, where p is a prime number with v2 = v.
In [13], Jian Gao studied skew cyclic codes over Fp + vFp and determined their properties.
In this paper, we study skew constacyclic codes over finite non-chain rings of the form Fp+vFp,
where p is a prime number with v2 = v. We first define an automorphism over R = Fp + vFp.
Also, we determine the units in R and show that skew constacyclic codes over R of arbitrary
length are principally generated. Similar to [13], our results show that skew constacyclic code
is equivalent to a constacyclic code over R. Finally we study Euclidean dual codes of skew
constacyclic codes over R and we then give some examples to illustrated our main results.

2 Preliminaries

Let R = Fp + vFp = {a+ vb | a, b ∈ Fp}, where p is a prime number with v2 = v and Fp is a
field with p elements. The ring R has two maximal ideals which are I1 =< v >= {va | a ∈ Fp}
and I2 =< 1 − v >= {(1 − v)b | b ∈ Fp}, observe that R/ < v > and R/ < 1 − v > are
isomorphic to Fp. One can check that < v > and < 1− v > are maximal ideals in R, hence R is
not a chain ring. The next definition, gives the structure of the automorphism group Aut(R) of
Fp + vFp. By Chinese Remainder Theorem R =< 1− v > ⊕ < v > and for any element a+ vb
in R, ∃ c, d ∈ Fq such that

a+ bv = cv + d(1 − v)

for all a, b ∈ Fp. Define a ring automorphism as follows

θv : Fp + vFp −→ Fp + vFp

where
θv(vc+ (1 − v)d) = (1 − v)c+ vd.

since
1 = v + (1 − v)

then
θv(v + (1 − v)) = 1(1 − v) + v so θv(1) = 1.
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Also

θv((vc1 + (1 − v)d1)(vc2 + (1 − v)d2))

= θv(v
2c1c2 + (1 − v)2d2d1)

= (1 − v)2c1c2 + v2d1d2

= ((1 − v)c1 + vd1)((1 − v)c2 + vd2)

= θv((vc1 + (1 − v)d1))θv((vc2 + (1 − v)d2)),

and

θv((vc1 + (1 − v)d1) + (vc2 + (1 − v)d2))

= θv(v(c1 + c2) + (1 − v)(d1 + d2))

= (1 − v)(c1 + c2) + v(d1 + d2)

= ((1 − v)c1 + vd1) + ((1 − v)c2 + vd2)

= θv(vc1 + (1 − v)d1) + θv(vc2 + (1 − v)d2),

then θv is ring homomorphism.

θv(vc1 + (1 − v)d1) = θv(vc2 + (1 − v)d2)

=⇒((1 − v)c1 + vd1) = ((1 − v)c2 + vd2)

=⇒c1 − vc1 + vd1 = c2 − vc2 + vd2

=⇒c1 = c2 and d1 = d2

then θv is one-to-one. To see θv is onto
let

θv(vc1 + (1 − v)d1) = vc2 + (1 − v)d2

=⇒(1 − v)c1 + vd1 = vc2 + (1 − v)d2

=⇒ (1 − v)(c1 − d2) + v(d1 − c2) = 0

=⇒ c1 − d2 = 0 =⇒ c1 = d2

=⇒ d1 − c2 = 0 =⇒ d1 = c2

Hence (vc1 + (1 − v)d1) = θv(vc2 + (1 − v)d2)

then θv is onto, hence θv is ring automorphism and θ2
v(e) = e, for all e in R, this implies that θv

is ring automorphism with order 2.
For a given automorphism θv of R, the set R[x, θv] = a0+a1x+a2x

2+...+an−1x
n−1| where ai ∈

R, n ∈ N\{0}} of formal polynomials forms a ring under usual addition of polynomial and
where multiplication is defined using the rule (axi)(bxj) = aθiv(b)x

i+j [11]. The ring R[x, θv]
is called skew polynomial ring over R. It is non-commutative unless θv is the identity automor-
phism on R[x].

Lemma 2.1. [8] Let λ = ζ + vµ be an element in R, where ζ and µ are elements in Fp. Then
λ = ζ + vµ is a unit of R if and only if ζ ̸= 0 and ζ + µ ̸= 0.

Proof. =⇒ Suppose that λ = ζ + vµ is a unit of R. Then there exists elements a, b ∈ Fp and
λ

′
= a+ vb ∈ R such that λ

′
λ = 1, that is, (ζ + vµ)(a+ vb) = ζa+ v(ζb+ µa+ µb) = 1. So

we have that ζa = 1 and (ζ + µ)b+ µa = 0, which implies that ζ ̸= 0 and ζ + µ ̸= 0.
⇐= Let λ = ζ + vµ ∈ R, where ζ ̸= 0 and ζ +µ ̸= 0. Setting λ

′
= ζ−1 + v[−1(ζ +µ)−1µζ−1].
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Then

λ
′
λ = (ζ + vµ)[ζ−1 + v(−1(ζ + µ)−1µζ−1)]

= 1 + v[ µζ−1 − µ(ζ + µ)−1 − µ(ζ + µ)−1. µζ−1]

= 1 + v[ µζ−1 − µ(ζ + µ)−1(1 + µζ−1)]

= 1 + v[ µζ−1 − µ(ζ + µ)−1(ζζ−1 + µζ−1)]

= 1 + v[ µζ−1 − µ(ζ + µ)−1(ζ + µ)ζ−1)]

= 1

3 Skew Constacyclic Codes over Fp + vFp

In this section we begin definition of λ−constacyclic codes and (θv−λ)−constacyclic codes(skew
constacyclic codes), then we will write all results of λ−constacyclic codes and (θv−λ)−constacyclic
codes.

Definition 3.1. [8] Let λ be a unit in R. A linear code C of length n over R is called λ-
constacyclic if for every (c0, c1, ..., cn−1) ∈ C, we have (λcn−1, c0, ..., cn−2) ∈ C

It is well known that a λ-constacyclic code of length n over R can be identified with an ideal
in the quotient ring R[x]/ < xn − λ > via the R-module isomorphism as follows:

Rn −→ R[x]/ < xn − λ >

(c0, c1, ..., cn−1) −→ c0, c1x, ..., cn−1x
n−1 (mod < xn − λ >).

If λ = 1, λ-constacyclic codes are just cyclic codes and while λ = −1, λ- constacyclic codes are
known as negacyclic codes.

Definition 3.2. Given an automorphism θv of R = Fp+ vFp, and a unit λ = ζ+ vµ in R, a code
C is said to be skew constacyclic, or specifically, (θv−λ)−constacyclic if C is closed under the
(θv−λ)−constacyclic shift vector ρθv,λ : Rn → Rn defined by

ρθv,λ(c0, c1, ..., cn−1) = ( θv((ζ + vµ)cn−1), θv(c0), ..., θv(cn−2)).

Analogous to the classical constacyclic codes, we characterize θv−(ζ + vµ)−constacyclic
codes in terms of left ideals in R[x, θv]/ < xn − (ζ + vµ) >.

Theorem 3.1. A code C of length n over R is θv−(ζ+ vµ)−constacyclic if and only if the skew
polynomial representation of C is a left ideal in R[x, θv]/ < xn − (ζ + vµ) > .

Proof. Since C is linear code, C is an additive group. Let a(x) = a0 + a1x+ ...+ an−1x
n−1 ∈ C.

Then xa(x) = θv((ζ + vµ)an−1) + θv(a0)x + ... + θv(an−2)xn−1 ∈ C. And by iteration and
linearity one can get h(x)a(x) ∈ C, for all h(x) ∈ Rn. This shows that C is a left ideal in Rn.

3.1 Skew constacyclic codes generated by monic right divisors of xn − (ζ + vµ)

The θv−(ζ + vµ)−constacyclic codes which are principal left ideals in R[x, θv]/ < xn − λ >
generated by monic right divisors of xn − λ, where λ = ζ + vµ. Let C be a linear code of length
n over R = Fp + vFp , define

Cv = {a ∈ Fn
p | (1 − v)a+ vb ∈ C, for some b ∈ Fn

p}, (3.1)

and
C1−v = {b ∈ Fn

p | (1 − v)a+ vb ∈ C, for some a ∈ Fn
p}, (3.2)

Obviously, Cv and C1−v are linear codes over Fp. By the definition of Cv and C1−v, we have
that C can be uniquely expressed as C = (1 − v)C1−v ⊕ vCv [19].

In the following we give some properties about skew constacyclic codes over Fp + vFp.
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Definition 3.3. The center Z[R(x, θv)] of R(x, θv) is the set of all elements that commute with
all other elements of R(x, θv). We call call an element z ∈ Z[R(x, θv)] central if z commutes
with all elements of R(x, θv).

Case 1: n is even

Proposition 3.1. Let λ = ζ + vµ be a unit in R. Then xn − λ is central in Z(R[x, θv]) if and
only if n is even.

Proof. Suppose n is even, i.e. , 2|n. Let f(x) ∈ R[x, θv] and f(x) = a0+a1x+...+amxm. Since
n is even, θnv (a) = a for any element a ∈ R. Hence, (xn − λ)f(x) = (xn − λ)a0 + a1x+ ...+
amxm = xna0+xna1x+ ...+xnamxm−λf(x) = θnv (a0)xn+θnv (a1)xnx+ ...+θnv (am)xnxm−
λf(x) = (a0 + a1x+ ...+ amxm)xn −λf(x) = f(x)xn −λf(x) = f(x)(xn −λ). Hence (xn −
λ) ∈ Z(R[x, θv]). Conversely, let xn − λ be in Z(R[x, θv]). Then xn − λ commutes with
every element in R[x, θv]. Particularly, (xn − λ)amxm = amxm(xn − λ) for some am ∈ R.
Since (xn − λ)amxm = θnv (am)xn+m − λamxm and amxm(xn − λ) = amxn+m − λamxm,
θn(am) = am. Thus n is even.

Theorem 3.2. Let n be even and C be a θv−λ−constacyclic code with length n, and f(x) be a
monic polynomial in C with minimal degree, then C =< f(x) >, where f(x) is a right divisor
of xn − λ.

Proof. Let f(x) be a polynomial of minimal degree in C. There are two unique polynomials q
and r such that

xn − λ = qf + r

where deg(r) < deg(f). Since r = (xn − 1) − qf and C is linear, r ∈ C. But f(x) is with the
minimal degree. Thus r = 0 and hence f(x) is the right divisor of xn − λ.

Case 2: n is odd

Let n be odd. Then | < θ > | - n. This implies that xn − λ is non-commutative. Therefore
the set Rn = R[x, θv]/(xn − λ) is not a ring anymore. Define the addition on Rn as usual and
multiplication from left as r(x)(g(x)+(xn−λ)) = r(x)g(x)+(xn−λ) for any r(x) ∈ R[x, θv].
We can prove that Rn is a left R[x, θv]-module where multiplication is defined as above.

Theorem 3.3. Let n be odd. Then C is a skew constacyclic code of length n over R if and only
if C is a left R[x, θv]-submodule of Rn.

Proof. Suppose c(x) = c0 + c1x + ... + cn−1x
n−1 be any codeword in C. Since C is a skew

constacyclic code, xic(x) ∈ C. Since C is linear, it follows that r(x)c(x) ∈ C for any r(x) ∈
R[x, θv]. Therefore C is an R[x, θv]-submodule of Rn.

Theorem 3.4. Let n be odd and C be a skew constacyclic code with length n, and f(x) be
a polynomial in C with minimal degree, then C =< f(x) >, where f(x) is a right divisor of
xn − λ.

Proof. Similar to Theorem (3.2).

Theorem 3.5. Let n be odd and C be a skew λ−constacyclic code of length n. Then C is
equivalent to a λ−constacyclic code of length n over Rn.

Proof. Since n is odd, it follows that gcd(2, n) = 1. Therefore there exist integers a, b such that
2a + bn = 1. Thus 2a = 1 − bn = 1 + ln, where l > 0. Let c = c0 + c1 + ... + cn−1x

n−1 be
a codeword in C. Note that x2ac(x) = θ2a(λc0)x1+ln + θ2a(c1)x2+ln + ...+ θ2a(cn−1)xn+ln =
λ1+lncn−1 + c0x+ ...+ cn−2x

n−1 ∈ C. Thus C is a λ−constacyclic code of length n.

Theorem 3.6. Let C = (1 − v)C1−v ⊕ vCv be a linear code of length n over R. Then C
is a θv−λ−constacyclic code of length n over R if and only if Cv and C1−v are θv−(ζ +
µ)−constacyclic and θv−ζ−constacyclic codes of length n over Fp, respectively.
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Proof. =⇒ Let (m0,m1, ...,mn−1) be an arbitrary element in C1−v, and let (r0, r1, ..., rn−1) be
an arbitrary element in Cv. We assume that ci = vmi + (1 − v)ri, i = 0, 1, ..., n − 1; hence we
get that (c0, c1, ..., cn−1) ∈ C. Since C is a θv−λ−constacyclic code of length n over R, then
θv((λcn−1), (c0), ..., (cn−2)) ∈ C. Note that

θv(λcn−1) = θv((ζ + vµ)[vmn−1 + (1 − v)rn−1])

= θv(v[(ζ + µ)mn−1] + (1 − v)[ζrn−1])

then

(θv(λcn−1), θv(c0), ..., θv(cn−2)) = θv(v[(ζ + µ)mn−1,m0, ...,mn−2)]

+ (1 − v)[(ζrn−1, r0, ..., rn−2)]) ∈ C,

hence θv((ζ+µ)mn−1,m0, ...,mn−2)) ∈ C1−v and θv((ζrn−1, r0, ..., rn−2)) ∈ Cv, which implies
that Cv and C1−v are θv−(ζ + µ)−constacyclic and θv−ζ−constacyclic codes of length n over
Fp, respectively.
⇐= Suppose that Cv and C1−v are θv−(ζ + µ)−constacyclic and θv−ζ−constacyclic codes of
length n over Fp, respectively. Let (c0, c1, ..., cn−1) ∈ C, where ci = vmi + (1 − v)ri, i =
0, 1, ..., n− 1. It follows that (m0,m1, ...,mn−1) ∈ C1−v and (r0, r1, ..., rn−1) ∈ Cv. Note that

θv((λcn−1), (c0), ..., (cn−2)) = θv(v[(ζ + µ)mn−1,m0, ...,mn−2)]

+ (1 − v)(ζ + µ)rn−1, r0, ..., rn−2)]) ∈ (1 − v)C1−v ⊕ vCv = C,

hence C is a θv−λ-constacyclic code of length n over R.

The next theorem is classical λ−constacyclic codes to determine the generators for codes.

Theorem 3.7. [8] Let C = vC1−v ⊕ (1 − v)Cv be a (ζ + vµ)−constacyclic code of length n over
R. Then C =< vg1−v, (1 − v)gv >, where g1−v and gv are the generator polynomials of C1−v

and Cv, respectively.

Proposition 3.2. [8] Let C = vC1−v ⊕ (1 − v)Cv be a (ζ + vµ)−constacyclic code of length
n over R and g1−v(x), gv(x) are the generator polynomials of C1−v and Cv respectively. Then
| C |= p2−deg(g1−v(x)−deg(gv(x)).

Let C be a non-zero left ideal in Fp + vFp[x]/ < xn −λ > and let f1(x) and f2(x) denote the
set of all non-zero skew polynomials of minimal degree in Fp.

Theorem 3.8. Let C = vC1−v ⊕ (1 − v)Cv be a (ζ + vµ)−constacyclic code of length n over R.
If C =< vf1(x), (1 − v)f2(x) >, where f1(x) and f2(x) ∈ Fp are monic skew polynomials with
f1(x) | (xn − (ζ + µ)) and f2(x) | (xn − ζ), then C1−v = [f1(x)] and Cv = [f2(x)], that is, f1(x)
and f2(x) are the generator polynomials of constacyclic codes C1−v and Cv, respectively.

Example 3.1. Let R = F3 + vF3[x], n = 10, and

(x10 − 1) = (x− 1)(x+ 1)(x4 + x3 − x+ 1)(x4 − x3 + x+ 1).

Then the constacyclic code of length 10 over R = F3 + vF3[x] with generating polynomial
f1(x) = (x4 − x3 + x+ 1) and f2(x) = (x4 + x3 + x− 1), is

C =< v(x4 − x3 + x+ 1), (1 − v)(x4 + x3 − x+ 1) > .

If R = F3 + vF3[x, θv] and n = 10. Then the skew constacyclic code of lenght 10 over R =
F3+vF3[x, θv] with generating polynomial f1(x) = (x4−x3+x+1) and f2(x) = (x4+x3+x−1),
is

C =< (1 − v)(x4 − x3 + x+ 1), v(x4 + x3 − x+ 1) > .
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4 Euclidean Dual Codes of Skew Constacyclic Codes over Fp + vFp

We study Euclidean dual codes of θv−(ζ + vµ)−constacyclic codes over R. Their characteriza-
tion is given in the next lemma.

Lemma 4.1. Let C be a θv−(ζ + vµ)-constacyclic code of length n over R. Then the dual code
C⊥ for C is a θv−(ζ + vµ)−1-constacyclic code of length n over R.

Proof. For each unit λ = ζ+vµ in R = Fp+vFp, then λ−1 in R. Let u = (u0, u1, ..., un−1) ∈ C
and v = (v0, v1, ..., vn−1) ∈ C⊥.
Since (θn−1

v (λu1), θn−1
v (λu2), ..., θn−1

v (λun−1), θn−1
v (u0)) = ρn−1

θv,λ
(u) ∈ C, we have

0 =< ρn−1
θv,λ

(u), v >

=< (θn−1
v (λu1), θ

n−1
v (λu2), ..., θ

n−1
v (λun−1), θ

n−1
v (u0)), (v0, v1, ..., vn−1) >

= λ < (θn−1
v (u1), θ

n−1
v (u2), ..., θ

n−1
v (un−1), θ

n−1
v (λ−1u0)), (v0, v1, ..., vn−1) >

= λ(θn−1
v (λ−1u0)vn−1 +

n−1∑
i=1

θn−1
v (ui)vi−1).

As n is a multiple of the order of θv and λ−1 is fixed by θv, it follows that

0 = θv(0)

= θv(λ(θ
n−1
v (λ−1u0)vn−1 +

n−1∑
i=1

θn−1
v (ui)vi−1)

= λ(u0θ
n
v (λ

−1)vn−1) +
n−1∑
i=1

uiθ
n
v vi−1)

= λ < ρθv,λ−1(v), u >

Therefore, ρθv,λ−1(v) ∈ C⊥.

Let g1−v(x)h1−v(x) = xn−ζ, gv(x)hv(x) = xn−(ζ+µ). Let h̃1−v(x) = xdeg(h1−v(x))h1−v(
1
x)

and h̃v(x) = xdeg(hv(x))hv(
1
x) be the reciprocal polynomials of h1−v and hv, respectively. We

write h∗
1−v(x) =

1
h1−v(0)

h̃1−v(x) and h∗
v(x) =

1
hv(0)

h̃v(x).

Theorem 4.1. Let C = (1 − v)C1−v ⊕ vCv be a θv−(ζ + vµ)-constacyclic code of length n over
R. Then C⊥ = (1 − v)C⊥

1−v ⊕ vC⊥
v .

Proof. From Theorem (3.6) C1−v and Cv in (3.1) and (3.2) are θv−constacyclic codes over Fp,
then C⊥

1−v and C⊥
v are also θv−constacyclic codes Fp. Let g1−v(x) and gv(x) are generator

polynomials for C1−v and Cv, respectively. Then C⊥
1−v = [h∗

1−v(x)] and C⊥
v = [h∗

v(x)]. Thus
we have that | C⊥

1−v |= pdeg(g1−v(x)) and | C⊥
v |= pdeg(gv(x)). For any a ∈ C⊥

1−v, b ∈ C⊥
v and

c = (1− v)r+ vq ∈ C, where r ∈ C1−v, q ∈ Cv, we have θv(c.((1− v)a+ vb)) = θv(((1− v)r+
vq).((1 − v)a+ vb)) = θv((1 − v)(r.a) + (v)(q.b)) = 0, and hence (1 − v)C⊥

1−v ⊕ vC⊥
v ⊆ C⊥.

Similarly we get C⊥ ⊆ (1 − v)C⊥
1−v ⊕ vC⊥

v .

According to the above results and their proofs, we can carry out the results regarding skew
constacyclic codes corresponding to their dual codes.

Theorem 4.2. Then the Euclidean dual code of a left ideal in (Fp + vFp)[x, θv]/ < xn − (ζ +
vµ) > is also a left ideal in (Fp + vFp)[x, θv]/ < xn − (ζ + vµ) > determined as follows, if C =
(1 − v)C1−v ⊕ vCv, then C⊥ =< (1 − v)h∗

1−v(x), vh
∗
v(x) >, and | C⊥ |= pdeg(g1−v(x))+deg(gv(x))

Proof. Since C⊥ is a θv − (ζ + vµ)−1−constacyclic code over R, and C⊥ = (1− v)C⊥
1−v ⊕ vC⊥

v ,

where C⊥
1−v and C⊥

v are two θv−constacyclic codes over Fp. Since h∗
1−v and h∗

v are generator
polynomials for C⊥

v−1 and C⊥
v , respectively, we have that {(v − 1)h∗

1−v(x), vh
∗
v(x)} is the gen-

erating set in C⊥ so C⊥ =< (1 − v)h∗
1−v(x), vh

∗
v(x) >. In addition, | C⊥ |=| C⊥

1−v || C⊥
v |=

pdeg(g1−v(x))pdeg(gv(x)) = pdeg(g1−v(x))+deg(gv(x))



102 AL-Ashker and Abu-Jazar

Example 4.1. From previous example 3.1 Let R = F3 + vF3, n = 10, and

(x10 − 1) = (x− 1)(x+ 1)(x4 + x3 − x+ 1)(x4 − x3 + x+ 1).

Let
h0 = x+ 1, h1 = x+ 1, h2 = x4 + x3 − x+ 1, h3 = x4 − x3 + x+ 1.

Then we have

h∗
0 = x+ 1 = h0, h

∗
1 = x− 1 = h1, h

∗
2 = x4 − x3 + x+ 1 = h3, h

∗
3 = x4 + x3 − x+ 1 = h2.

Since
C =< (1 − v)(x4 − x3 + x+ 1), v(x4 + x3 − x+ 1) >,

Hence
C⊥ =< (1 − v)(x4 + x3 − x+ 1), v(x4 − x3 + x+ 1) > .

5 Conclusion

In this thesis we have defined skew polynomial rings, also studied skew constacyclic codes over
finite non-chain rings of the form Fp + vFp, where p is a prime number with v2 = v and study
Euclidean dual codes of skew constacyclic codes over Fp + vFp.
For future research one can extended this study to rings such as Fq + uFq + vFq + uvFq or
Fq + vFq + v2Fq where q is a power of prime number p.
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