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Abstract In this paper, we consider the uniqueness problems of the q-shift difference-differential

polynomial [P (f)
d∏

j=1

f(qjz + cj)
sj ](k), where f(z) is a transcendental entire function with zero

order, P (z) is a nonzero polynomial of degree n, d, sj(j = 1, · · · , d) ∈ N+, qj ∈ C \ {0}(j =
1, · · · , d) are constants, cj(cj ̸= 0, j = 1, · · · , d) are distinct constants. The results improve
some results given by Zhang and Korhonen [14], Qi and Yang[10], Cao,Liu and Xu[3], Wang,
Xu and Zhan [11].

1 Introduction

A meromorphic function f(z) means meromorphic in the complex plane. If no poles occur,
then f(z) reduces to an entire function. We assume that the reader is familiar with the notations
and the basic results of Nevanlinna theory of meromorphic functions [13]. For any nonconstant
meromorphic function f(z), we denote by S(r, f) any quantity satisfying S(r, f) = o(T (r, f)) as
r → ∞ outside of a possible exceptional set of finite linear measure. In particular, we denote by
S1(r, f) any quantity satisfying S1(r, f) = o(T (r, f)) as r → ∞ for all r on a set of logarithmic
density 1.

Let f(z) and g(z) be two nonconstant meromorphic functions, and a ∈ C
∪
{∞}. We define

Θ(a, f) = 1 − lim sup
r→∞

N(r, 1
f−a)

T (r, f)
. We say that f(z) and g(z) share the value a CM (counting

multiplicities), provided that f − a and g − a have the same zeros with the same multiplicities.
And if we do not consider the multiplicities, then we say that f(z) and g(z) share the value a IM
(ignoring multiplicities).
Definition 1.1.[8] Let k be a nonnegative integer or infinity. For a ∈ C

∪
{∞}, we denote by

Ek(a, f) the set of all zeros of f(z) − a, where each zero of multiplicity m is counted m times
if m ≤ k and k + 1 times if m > k. If Ek(a, f) = Ek(a, g), we say that f(z) and g(z) share
the value a with weight k. Obviously, when k = 0(resp.∞), f(z) and g(z) share the value
a IM (resp.a CM ).
Definition 1.2.[13] For a ∈ C

∪
{∞} and k is a positive integer or infinity. We denote by

N (k(r,
1

f−a) the counting function of the zeros of f − a whose multiplicities are not less than k,
where each zero is countied only once. Then

Nk(r,
1

f − a
) = N(r,

1
f − a

) +N (2(r,
1

f − a
) + · · ·+N (k(r,

1
f − a

).

Clearly, N1(r,
1

f−a) = N(r, 1
f−a).

Definition 1.3.[1] Suppose that f and g share 1 IM . We denote by NL(r,
1

f−1) the reduced count-
ing function of the zeros of f − 1 whose multiplicities are greater than the zeros of g − 1, where
each zero is countied only once; similarly, we have NL(r,

1
g−1). We denote by Npq(r,

1
f−1) the

counting function of the zeros of f − 1 and g − 1 with multiplicity p and q respectively.
Recently, the difference variant of the Nevanlinna theory has been established independently

in [2, 4, 6, 7]. With the development of difference analogue of Nevanlinna theory, many authors
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paid attention to the uniqueness of difference and difference operator analogs of Nevanlinna
theory.

In [14], Zhang and Korhonen studied the uniqueness of q-difference polynomials of mero-
morphic functions and obtained the following theorems.
Theorem A.[14] Let f and g be two transcendental entire functions with zero order. Suppose
that q is a nonzero constant and n is an integer satisfying n ≥ 4. If fn(z)f(qz) and gn(z)g(qz)
share 1 CM , then f ≡ tg for tn+1 = 1.
Theorem B.[[14] Let f and g be two transcendental entire functions with zero order. Suppose
that q is a nonzero constant and n is an integer satisfying n ≥ 6. If fn(z)(f(z) − 1)f(qz) and
gn(z)(g(z)− 1)g(qz) share 1 CM , then f ≡ g.

In [10], Qi and Yang improved Theorem A,B and obtained the following theorems.
Theorem C.[10] Let f and g be two transcendental entire functions with zero order. Suppose
that q is a nonzero constant and n is an integer satisfying n ≥ 12. If fn(z)f(qz) and gn(z)g(qz)
share 1 IM , then f = t1g or fg = t2, for some constants t1 and t2 that satisfy tn+1

1 = 1 and
tn+1
2 = 1.

Theorem D.[10] Let f and g be two transcendental entire functions with zero order. Suppose
that q is a nonzero constant and n is an integer satisfying n ≥ 16. If fn(z)(f(z) − 1)f(qz) and
gn(z)(g(z)− 1)g(qz) share 1 IM , then f ≡ g.

In [3], Cao et al. discussed the q-shift difference-differential polynomials and obtained the
following theorems.
Theorem E.[3] Let f and g be two transcendental entire functions with zero order. Suppose that
q is a nonzero constant and n is an integer satisfying n ≥ 2k+m+6. If [fn(z)(fm(z)−a)f(qz+
c)](k) and [gn(z)(gm(z)− a)g(qz + c)](k) share 1 CM , then f ≡ tg, where tn+1 = tm = 1.

In [11], Wang et al. discussed the q-shift difference polynomials and obtained the following
theorems.

Theorem F.[11] Let f, g be two transcendental entire functions with zero order, F (z) = P (f)
d∏

j=1

f(qjz+

cj)
sj and G(z) = P (g)

d∏
j=1

g(qjz+cj)
sj , where P (z) = anz

n+an−1z
n−1+ · · ·+a0 is a nonzero

polynomial of degree n, m1 is the number of the simple zero of P (z), m2 is the number of mul-
tiple zeros of P (z), Γ0 = m1 + 2m2. Suppose that n > max{2(Γ0 + 2d) − λ, λ}. If F (z) and
G(z) share 1 CM , then one of the following cases holds:

(I) f ≡ tg for a constant t such that tl = 1, where l = GCD{λ0 +λ, λ1 +λ, · · · , λn+λ} and

λi =

{
i+ 1, ai ̸= 0
n+ 1, ai = 0

i = 0, 1, · · · , n.

(II) f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = P (ω1)
d∏

j=1

ω1(qjz + cj)
sj − P (ω2)

d∏
j=1

ω2(qjz + cj)
sj .

Theorem G.[11] Under the assumptions of theorem F, if

El(1;P (f)
d∏

j=1

f(qjz + cj)
sj ) = El(1;P (g)

d∏
j=1

g(qjz + cj)
sj )

and l, n,m, d are integers satisfying one of the following conditions:
(I) l ≥ 3, n > max{2Γ0 + 4d− λ, λ};
(II) l = 2, n > max{2Γ0 + 5d+m− λ− dχ, λ};
(III) l = 1, n > max{2Γ0 + 6d+ 2m− λ− 2dχ, λ};
(IV) l = 0, n > max{2Γ0 + 7d+ 3m− λ− 3dχ, λ}.

Then the conclusions of Theorem F hold, where χ = min{Θ(0, f),Θ(0, g)}.
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In this paper, we assume qj ∈ C\{0}(j = 1, · · · , d) are constants, cj ∈ C\{0}(j = 1, · · · , d)
are distinct constants, n, d, sj(j = 1, · · · , d) ∈ N+. λ = s1 + · · ·+ sd. Let

F (z) = P (f)
d∏

j=1

f(qjz + cj)
sj , G(z) = P (g)

d∏
j=1

g(qjz + cj)
sj . (1.1)

where P (z) = anz
n + an−1z

n−1 + · · · + a0 is a nonzero polynomial of degree n, m1 is the
number of the simple zero of P (z), m2 is the number of multiple zeros of P (z), d1 is the number
of elements of A = {sj | sj = 1, j = 1, · · · , d}; d2 is the number of elements of B = {sj | sj ≥
2, j = 1, · · · , d}.

We consider the uniqueness problems of q-shift difference-differential polynomials F (k)(z)
and obtain the following results, which improve the above theorems.

Theorem 1.1. Let f and g be two transcendental entire functions with zero order. F (z) and G(z)
are stated as in (1.1). Suppose that n > 2m1 + 2d1 + (2k + 2)(m2 + d2)− λ. If F (k) and G(k)

share 1 CM , then one of the following cases holds:
(I) f ≡ tg for a constant t such that tl = 1, where l = GCD{λ0 + λ, λ1 + λ, · · · , λn + λ}

and

λi =

{
i, ai ̸= 0
n, ai = 0

i = 0, 1, · · · , n.

(II) f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = P (ω1)
d∏

j=1

ω1(qjz + cj)
sj − P (ω2)

d∏
j=1

ω2(qjz + cj)
sj .

Remark 1.2. When P (z) = zn, d = 1, c1 = 0, k = 0, we know that 2m1 +2d1 +(2k+2)(m2 +
d2) − λ = 3. Moreover, from R(f, g) ≡ 0, we have fn(z)f(qz) = gn(z)g(qz). Proceeding
similarly as the proof of Theorem 5.1 in [13], we get f ≡ tg. Therefore, Theorem 1.1 improves
Theorem A.

Remark 1.3. When P (z) = zn(z − 1), d = 1, c1 = 0, k = 0, we know that 2m1 + 2d1 + (2k +
2)(m2 + d2)− λ = 5. Therefore, Theorem 1.1 improves Theorem B.

Remark 1.4. When P (z) = zn(zm−a), d = 1, we know that 2m1+2d1+(2k+2)(m2+d2)−λ =
2m+ 2k + 3. Therefore, Theorem 1.1 improves Theorem E.

Remark 1.5. Since F (0)(z) = F (z) and 2m1 + 2d1 + 2m2 + 2d2 − λ is less than max{2(Γ0 +
2d)− λ, λ}, Theorem 1.1 improves Theorem F.

Theorem 1.6. Under the assumptions of Theorem 1.1, if

El(1;F (k)) = El(1;G(k))

and l, n,m1,m2, d1, d2 are integers satisfying one of the following conditions:
(I) l ≥ 3, n > 2m1 + 2d1 + (2k + 4)(m2 + d2)− λ− (2k + 4)d2χ;
(II) l = 2, n > 3m1 + 3d1 + (3k + 5)(m2 + d2)− λ− (3k + 5)d2χ;
(III) l = 1, n > 4m1 + 4d1 + (4k + 6)(m2 + d2)− λ− (4k + 6)d2χ;
(IV) l = 0, n > 5m1 + (3k + 5)d1 + (5k + 7)(m2 + d2)− λ− [(3k + 3)d1 + (5k + 7)d2]χ.

Then the conclusions of Theorem 1.1 hold, where χ = min{Θ(0, f),Θ(0, g)}.

Remark 1.7. Since F (0)(z) = F (z) and the lower bound of n in Theorem 1.6 is not larger than
those of n in Theorem G respectively, Theorem 1.6 improves Theorem G.

Remark 1.8. When P (z) = zn, d = 1, c1 = 0, k = 0, we know that 5m1 + (3k + 5)d1 + (5k +
7)(m2 +d2)−λ− [(3k+3)d1 +(5k+7)d2]χ = 11−3χ < 12. Proceeding similarly as Remark
1.2, we get f ≡ tg. Therefore, Theorem 1.6 improves Theorem C.

Remark 1.9. When P (z) = zn(z − 1), d = 1, c1 = 0, k = 0, we know that 5m1 + (3k+ 5)d1 +
(5k+ 7)(m2 + d2)− λ− [(3k+ 3)d1 + (5k+ 7)d2]χ = 16 − 3χ ≤ 16. Therefore, Theorem 1.6
improves Theorem D.
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2 some lemmas

Next, we give some lemmas to prove the main results of this paper.

Lemma 2.1. [11] Let f be a transcendental meromorphic function with zero order and q, c be
two nonzero constants. Then

N(r, f(qz + c)) = N(r, f(z)) + S1(r, f), N(r, f(qz + c)) = N(r, f(z)) + S1(r, f),

N(r,
1

f(qz + c)
) = N(r,

1
f(z)

) + S1(r, f), N(r,
1

f(qz + c)
) = N(r,

1
f(z)

) + S1(r, f),

T (r, f(qz + c)) = T (r, f(z)) + S1(r, f).

Lemma 2.2. [11] Let f be a transcendental entire function with zero order. F (z) is defined as in
(1.1). Then

T (r, F (z)) = (n+ λ)T (r, f) + S1(r, f),

where λ = s1 + · · ·+ sd.

Lemma 2.3. [12] Let f be a nonconstant meromorphic function and k be an integer. Then

T (r, f (k)) ≤ T (r, f) + kN(r, f) + S(r, f).

Lemma 2.4. [9] Let f be a nonconstant meromorphic function and p, k be positive integers. Then

Np(r,
1

f (k)
) ≤ T (r, f (k))− T (r, f) +Np+k(r,

1
f
) + S(r, f),

Np(r,
1

f (k)
) ≤ kN(r, f) +Np+k(r,

1
f
) + S(r, f).

Lemma 2.5. [5] Let f and g be two meromorphic functions and let l be a positive integer. If
El(1; f) = El(1; g), then one of the following cases hods:

(I)T (r, f) + T (r, g) ≤ N2(r,
1
f
) +N2(r,

1
g
) +N2(r, f) +N2(r, g)

+N(r,
1

f − 1
) +N(r,

1
g − 1

)−N11(r,
1

f − 1
)

+N (l+1(r,
1

f − 1
) +N (l+1(r,

1
g − 1

) + S(r, f) + S(r, g);

(II)f = (b+1)g+(a−b−1)
bg+(a−b) , where a(̸= 0), b are two constants.

Lemma 2.6. [12] Let f and g be two nonconstant meromorphic functions. If f and g share 1 IM ,
H = f ′′

f ′ − 2 f ′

f−1 − g′′

g′ + 2 g′

g−1 ̸≡ 0. Then

T (r, f) + T (r, g) ≤ 2(N2(r,
1
f
) +N2(r,

1
g
) +N2(r, f) +N2(r, g))

+ 3(N(r, f) +N(r, g) +N(r,
1
f
) +N(r,

1
g
)) + S(r, f) + S(r, g).

From the proof of case 2 in Theorem 1.3[11], we can get the following lemma.

Lemma 2.7. [11] Let f and g be two transcendental entire functions with zero order. F (z), G(z)
are defined as in Theorem 1.1. If F (z) ≡ G(z), then the conclusions of Theorem 1.1 hold.
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Lemma 2.8. Let f and g be two transcendental entire functions with zero order. F (z), G(z) are
defined as in Theorem 1.1. Suppose that n > 2(m1 +m2 + d1 + d2)− λ− 2(d1 + d2)χ. If

(F (z))(k) ≡ (G(z))(k),

then the conclusions of Theorem 1.1 hold, where χ = min{Θ(0, f),Θ(0, g)}.

Proof. By (F (z))(k) = (G(z))(k), we get F (z) = G(z) +Q(z), where Q(z) is a polynomial of
degree at most k − 1. If Q(z) ̸≡ 0, then

P (f)
d∏

j=1

f(qjz + cj)
sj

Q(z)
=

P (g)
d∏

j=1

g(qjz + cj)
sj

Q(z)
+ 1.

By the second fundamental theorem and Lemma 2.2, we deduce that

(n+ λ)T (r, f) = T (r,

P (f)
d∏

j=1

f(qjz + cj)
sj

Q(z)
) + S(r, f)

≤ N(r,

P (f)
d∏

j=1

f(qjz + cj)
sj

Q(z)
) +N(r,

Q(z)

P (f)
d∏

j=1

f(qjz + cj)
sj

)

+N(r,
Q(z)

P (g)
d∏

j=1

g(qjz + cj)
sj

) + S(r, f)

≤ N(r,
1

P (f)
) +N(r,

1
d∏

j=1

f(qjz + cj)
sj

) +N(r,
1

P (g)
)

+N(r,
1

d∏
j=1

f(qjz + cj)
sj

) + S1(r, f) + S1(r, g)

≤ (m1 +m2)[T (r, f) + T (r, g)]

+ (d1 + d2)[N(r,
1
f
) +N(r,

1
g
)] + S1(r, f) + S1(r, g).

Similarly, we obtain

(n+ λ)T (r, g) ≤ (m1 +m2)[T (r, f) + T (r, g)]

+ (d1 + d2)[N(r,
1
f
) +N(r,

1
g
)] + S1(r, f) + S1(r, g).

So

(n+ λ)[T (r, f) + T (r, g)] ≤ 2(m1 +m2)[T (r, f) + T (r, g)]

+ 2(d1 + d2)[N(r,
1
f
) +N(r,

1
g
)] + S1(r, f) + S1(r, g).

which contradicts with the assumption that n > 2(m1 +m2 +d1 +d2)−λ−2(d1 +d2)χ. Hence
Q(z) ≡ 0. Then

P (f)
d∏

j=1

f(qjz + cj)
sj = P (g)

d∏
j=1

g(qjz + cj)
sj .

By Lemma 2.7, we get the conclusions of Lemma 2.8. 2
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3 Proof of theorem

3.1 Proof of Theorem 1.1.
By Lemma 2.3, we have

T (r, F (k)) ≤ T (r, P (f)
d∏

j=1

f(qjz + cj)
sj ) + S(r, P (f)

d∏
j=1

f(qjz + cj)
sj ).

By Lemma 2.2, we get S(r, F (k)) = S(r, f), similarly S(r,G(k)) = S(r, g), S1(r, F (k)) =
S1(r, f), S1(r,G(k)) = S1(r, g).
Since f, g are two transcendental entire functions with zero order, F (k) and G(k) share 1 CM ,
there exists a nonzero constant c such that

F (k) − 1
G(k) − 1

= c.

Rewriting the above equation, we have

cG(k) = F (k) − 1 + c.

Assume that c ̸= 1. By the second fundamental theorem and Lemma 2.4, we get

T (r, F (k)) ≤ N(r, F (k)) +N(r,
1

F (k)
) +N(r,

1
F (k) − 1 + c

) + S1(r, f)

≤ N(r,
1

F (k)
) +N(r,

1
G(k)

) + S1(r, f)

≤ T (r, F (k))− T (r, F ) +Nk+1(r,
1
F
) +N(r,

1
G(k)

) + S1(r, f) + S1(r, g)

≤ T (r, F (k))− T (r, F ) +Nk+1(r,
1
F
) +Nk+1(r,

1
G
) + S1(r, f) + S1(r, g).

So
T (r, F ) ≤ Nk+1(r,

1
F
) +Nk+1(r,

1
G
) + S1(r, f) + S1(r, g).

By the definitions of F, G and Lemma 2.2, we have

(n+ λ)T (r, f) ≤ [m1 + d1 + (k + 1)(m2 + d2)][T (r, f) + T (r, g)] + S1(r, f) + S1(r, g).

Similarly, we obtain

(n+ λ)T (r, g) ≤ [m1 + d1 + (k + 1)(m2 + d2)][T (r, f) + T (r, g)] + S1(r, f) + S1(r, g).

Therefore

(n+ λ)[T (r, f) + T (r, g)]

≤ 2[m1 + d1 + (k + 1)(m2 + d2)][T (r, f) + T (r, g)] + S1(r, f) + S1(r, g),

which contradicts with the assumption that n > 2m1 + 2d1 + (2k + 2)(m2 + d2) − λ. Hence
F (k) ≡ G(k).
By Lemma 2.8, we can get the conclusions of Theorem 1.1.
This completes the proof of Theorem 1.1. 2

3.2 Proof of Theorem 1.6.
Similarly as the proof of Theorem 1.1, we have S(r, F (k)) = S(r, f), S(r,G(k)) = S(r, g),
S1(r, F (k)) = S1(r, f), S1(r,G(k)) = S1(r, g).
By Lemma 2.2 and Lemma 2.4, we get

(n+ λ)T (r, f) = T (r, F ) + S1(r, f)

≤ T (r, F (k))−N2(r,
1

F (k)
) +Nk+2(r,

1
F
) + S1(r, f). (3.1)
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By Lemma 2.4, we get

N2(r,
1

F (k)
) ≤ Nk+2(r,

1
F
) + S1(r, f)

≤ Nk+2(r,
1

P (f)
) +Nk+2(r,

1
d∏

j=1

f(qjz + cj)
sj

) + S1(r, f)

≤ [m1 + d1 + (k + 2)m2]T (r, f) + (k + 2)d2N(r,
1
f
) + S1(r, f). (3.2)

Similarly, we obtain

(n+ λ)T (r, g) ≤ T (r,G(k))−N2(r,
1

G(k)
) +Nk+2(r,

1
G
) + S1(r, g), (3.3)

N2(r,
1

G(k)
) ≤ Nk+2(r,

1
G
) + S1(r, g)

≤ [m1 + d1 + (k + 2)m2]T (r, g) + (k + 2)d2N(r,
1
g
) + S1(r, g), (3.4)

and

N(r,
1

F (k)
) ≤ Nk+1(r,

1
F
) + S1(r, f)

≤ [m1 + d1 + (k + 1)m2]T (r, f) + (k + 1)d2N(r,
1
f
) + S1(r, f), (3.5)

N(r,
1

G(k)
) ≤ Nk+1(r,

1
G
) + S1(r, g)

≤ [m1 + d1 + (k + 1)m2]T (r, g) + (k + 1)d2N(r,
1
g
) + S1(r, g). (3.6)

Next, we shall prove the theorem under the following four various conditions that l ≥ 3, l =
2, l = 1 and l = 0 respectively.

(I) l ≥ 3. Since

N(r,
1

F (k) − 1
) +N(r,

1
G(k) − 1

)−N11(r,
1

F (k) − 1
) +N (l+1(r,

1
F (k) − 1

) +N (l+1(r,
1

G(k) − 1
)

≤ 1
2
N(r,

1
F (k) − 1

) +
1
2
N(r,

1
G(k) − 1

) + S1(r, f) + S1(r, g)

≤ 1
2
T (r, F (k)) +

1
2
T (r,G(k)) + S1(r, f) + S1(r, g). (3.7)

We distinguish the following two cases to prove.
Case 1. Suppose that F (k), G(k) satisfy Lemma 2.5(i). By (3.7), we have

T (r, F (k)) + T (r,G(k)) ≤ N2(r,
1

F (k)
) +N2(r,

1
G(k)

) +N2(r, F
(k)) +N2(r,G

(k))

+N(r,
1

F (k) − 1
) +N(r,

1
G(k) − 1

)−N11(r,
1

F (k) − 1
)

+N (l+1(r,
1

F (k) − 1
) +N (l+1(r,

1
G(k) − 1

) + S1(r, f) + S1(r, g)

≤ N2(r,
1

F (k)
) +N2(r,

1
G(k)

) +
1
2
T (r, F (k))

+
1
2
T (r,G(k)) + S1(r, f) + S1(r, g),
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which means,

T (r, F (k)) + T (r,G(k)) ≤ 2N2(r,
1

F (k)
) + 2N2(r,

1
G(k)

) + S1(r, f) + S1(r, g). (3.8)

From (3.1) and (3.3), we have

T (r, F (k)) + T (r,G(k)) ≥ (n+ λ)[T (r, f) + T (r, g)] +N2(r,
1

F (k)
) +N2(r,

1
G(k)

)

−Nk+2(r,
1
F
)−Nk+2(r,

1
G
) + S1(r, f) + S1(r, g). (3.9)

By (3.2),(3.4),(3.8) and (3.9), we obtain

(n+ λ)[T (r, f) + T (r, g)] ≤ N2(r,
1

F (k)
) +N2(r,

1
G(k)

) +Nk+2(r,
1
F
)

+Nk+2(r,
1
G
) + S1(r, f) + S1(r, g)

≤ [2m1 + 2d1 + (2k + 4)m2][T (r, f) + T (r, g)]

+ (2k + 4)d2[N(r,
1
f
) +N(r,

1
g
)] + S1(r, f) + S1(r, g),

which contradicts with the assumption that n > 2m1+2d1+(2k+4)(m2+d2)−λ−(2k+4)d2χ.
Case 2. Suppose that F (k), G(k) satisfy Lemma 2.5(ii), then

F (k) =
(b+ 1)G(k) + (a− b− 1)

bG(k) + (a− b)
, (3.10)

where a(̸= 0), b are two constants.
We now consider three subcases as follows.

Subcase 2.1. b ̸= 0,−1.
If a− b− 1 ̸= 0, then N(r, 1

F (k) ) = N(r, 1
G(k)+ a−b−1

b+1
).

Using the second fundamental theorem, by Lemma 2.4 and (3.4), (3.5), we have

T (r,G) ≤ T (r,G(k)) +Nk+2(r,
1
G
)−N2(r,

1
G(k)

) + S1(r, g)

≤ N(r,G(k)) +N(r,
1

G(k)
) +N(r,

1
G(k) + a−b−1

b+1

)

+Nk+2(r,
1
G
)−N2(r,

1
G(k)

) + S1(r, g)

≤ N(r,
1

F (k)
) +Nk+2(r,

1
G
) + S1(r, f) + S1(r, g)

≤ [m1 + d1 + (k + 1)m2]T (r, f) + (k + 1)d2N(r,
1
f
)

+ [m1 + d1 + (k + 2)m2]T (r, g) + (k + 2)d2N(r,
1
g
) + S1(r, f) + S1(r, g),

which means

(n+ λ)T (r, g) ≤ [m1 + d1 + (k + 1)m2]T (r, f) + (k + 1)d2N(r,
1
f
)

[m1 + d1 + (k + 2)m2]T (r, g) + (k + 2)d2N(r,
1
g
) + S1(r, f) + S1(r, g).

(3.11)
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Similarly, we have

(n+ λ)T (r, f) ≤ [m1 + d1 + (k + 1)m2]T (r, g) + (k + 1)d2N(r,
1
g
)

[m1 + d1 + (k + 2)m2]T (r, f) + (k + 2)d2N(r,
1
f
) + S1(r, f) + S1(r, g).

(3.12)

By (3.11) and (3.12), we get

(n+ λ)[T (r, f) + T (r, g)] ≤ [2m1 + 2d1 + (2k + 3)m2][T (r, f) + T (r, g)]

+ (2k + 3)d2[N(r,
1
f
) +N(r,

1
g
)] + S1(r, f) + S1(r, g),

which contradicts with the assumption that n > 2m1+2d1+(2k+4)(m2+d2)−λ−(2k+4)d2χ.
Hence a− b− 1 = 0, from(3.10), we get

F (k) =
(b+ 1)G(k)

bG(k) + 1
.

Since f is an entire function, we have N(r, 1
G(k)+ 1

b

) = 0.
Using the same method as above, we get

(n+ λ)T (r, g) ≤ T (r,G(k)) +Nk+2(r,
1
G
)−N2(r,

1
G(k)

) + S1(r, g)

≤ Nk+2(r,
1
G
) +N(r,

1
G(k) + 1

b

) + S1(r, g)

≤ Nk+2(r,
1
G
) + S1(r, f) + S1(r, g)

≤ [m1 + d1 + (k + 2)m2]T (r, g) + (k + 2)d2N(r,
1
g
) + S1(r, f) + S1(r, g),

which contradicts with the assumption that n > 2m1+2d1+(2k+4)(m2+d2)−λ−(2k+4)d2χ.
Subcase 2.2. b = 0.

From (3.10), we have

F (k) =
G(k) + a− 1

a
.

If a ̸= 1, then N(r, 1
F (k) ) = N(r, 1

G(k)+a−1). Similarly, we can also get a contradiction. Then
a = 1, thus, we have F (k) ≡ G(k). By Lemma 2.8, we get the conclusions of Theorem 1.6.

Subcase 2.3. b = −1.
From (3.10), we have

F (k) =
a

a+ 1 −G(k)
.

If a ̸= −1, then N(r, 1
G(k)−(a+1)) = N(r, F (k)) = 0. Similarly, we can also get a contradiction.

Then a = −1, thus, we have F (k)G(k) = 1.
Since f, g be transcendental entire functions, we get F (k) and G(k) have no zeros. Then F (k) =
es(z), G(k) = et(z), where s(z), t(z) are nonzero polynomials. Since the order of f, g be zero,
we get s(z), t(z) are constants. So F (z), G(z) be polynomials of degree at most k − 1, which
contradicts with the assumption that f, g be transcendental entire functions.

(II) l = 2. Since

N(r,
1

F (k) − 1
) +N(r,

1
G(k) − 1

)−N11(r,
1

F (k) − 1
)

≤ 1
2
T (r, F (k)) +

1
2
T (r,G(k)) + S1(r, f) + S1(r, g), (3.13)
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and

N (l+1(r,
1

F (k) − 1
) ≤ 1

2
N(r,

F (k)

F (k+1) ) =
1
2
N(r,

F (k+1)

F (k)
) + S1(r, f)

≤ 1
2
N(r,

1
F (k)

) + S1(r, f). (3.14)

Similarly, we have

N (l+1(r,
1

G(k) − 1
) ≤ 1

2
N(r,

1
G(k)

) + S1(r, g). (3.15)

We distinguish the following two cases to prove.
Case 1. Suppose that F (k), G(k) satisfy Lemma 2.5(i). By (3.13),(3.14) and (3.15), we have

T (r, F (k)) + T (r,G(k)) ≤ N2(r,
1

F (k)
) +N2(r,

1
G(k)

) +N2(r, F
(k)) +N2(r,G

(k))

+N(r,
1

F (k) − 1
) +N(r,

1
G(k) − 1

)−N11(r,
1

F (k) − 1
)

+N (l+1(r,
1

F (k) − 1
) +N (l+1(r,

1
G(k) − 1

) + S1(r, f) + S1(r, g)

≤ N2(r,
1

F (k)
) +N2(r,

1
G(k)

) +
1
2
T (r, F (k)) +

1
2
T (r,G(k))

+
1
2
N(r,

1
F (k)

) +
1
2
N(r,

1
G(k)

) + S1(r, f) + S1(r, g),

which means,

T (r, F (k)) + T (r,G(k)) ≤ 2N2(r,
1

F (k)
) + 2N2(r,

1
G(k)

)

+N(r,
1

F (k)
) +N(r,

1
G(k)

) + S1(r, f) + S1(r, g). (3.16)

By (3.1)—(3.6) and (3.16), we obtain

(n+ λ)[T (r, f) + T (r, g)] ≤ N2(r,
1

F (k)
) +N2(r,

1
G(k)

) +Nk+2(r,
1
F
)

+Nk+2(r,
1
G
) +N(r,

1
F (k)

) +N(r,
1

G(k)
) + S1(r, f) + S1(r, g)

≤ [3m1 + 3d1 + (3k + 5)m2][T (r, f) + T (r, g)]

+ (3k + 5)d2[N(r,
1
f
) +N(r,

1
g
)] + S1(r, f) + S1(r, g),

which contradicts with the assumption that n > 3m1+3d1+(3k+5)(m2+d2)−λ−(3k+5)d2χ.
Case 2. Suppose that F (k), G(k) satisfy Lemma 2.5(ii), similar to the proof of Case 2 in (I),

we get the conclusions of Theorem 1.6.
(III) l = 1. Since

N(r,
1

F (k) − 1
) +N(r,

1
G(k) − 1

)−N11(r,
1

F (k) − 1
)

≤ 1
2
N(r, F (k)) +

1
2
N(r,G(k)) + S1(r, f) + S1(r, g)

≤ 1
2
T (r, F (k)) +

1
2
T (r,G(k)) + S1(r, f) + S1(r, g), (3.17)

and
N (2(r,

1
F (k)

) ≤ N(r,
1

F (k)
) + S1(r, f), (3.18)

N (2(r,
1

F (k)
) ≤ N(r,

1
G(k)

) + S1(r, g). (3.19)
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We distinguish the following two cases to prove.
Case 1. Suppose that F (k), G(k) satisfy Lemma 2.5(i). By (3.17),(3.18) and (3.19), we have

T (r, F (k)) + T (r,G(k)) ≤ N2(r,
1

F (k)
) +N2(r,

1
G(k)

) +N2(r, F
(k)) +N2(r,G

(k))

+N(r,
1

F (k) − 1
) +N(r,

1
G(k) − 1

)−N11(r,
1

F (k) − 1
)

+N (l+1(r,
1

F (k) − 1
) +N (l+1(r,

1
G(k) − 1

) + S1(r, f) + S1(r, g)

≤ N2(r,
1

F (k)
) +N2(r,

1
G(k)

) +
1
2
T (r, F (k)) +

1
2
T (r,G(k))

+N(r,
1

F (k)
) +N(r,

1
G(k)

) + S1(r, f) + S1(r, g),

which means,

T (r, F (k)) + T (r,G(k)) ≤ 2N2(r,
1

F (k)
) + 2N2(r,

1
G(k)

)

+ 2N(r,
1

F (k)
) + 2N(r,

1
G(k)

) + S1(r, f) + S1(r, g). (3.20)

By (3.1)—(3.6) and (3.20), we obtain

(n+ λ)[T (r, f) + T (r, g)] ≤ N2(r,
1

F (k)
) +N2(r,

1
G(k)

) +Nk+2(r,
1
F
)

+Nk+2(r,
1
G
) + 2N(r,

1
F (k)

) + 2N(r,
1

G(k)
) + S1(r, f) + S1(r, g)

≤ [4m1 + 4d1 + (4k + 6)m2][T (r, f) + T (r, g)]

+ (4k + 6)d2][N(r,
1
f
) +N(r,

1
g
)] + S1(r, f) + S1(r, g),

which contradicts with the assumption that n > 4m1+4d1+(4k+6)(m2+d2)−λ−(4k+6)d2]χ.
Case 2. Suppose that F (k), G(k) satisfy Lemma 2.5(ii), similar to the proof of Case 2 in (I),

we get the conclusions of Theorem 1.6.
(IV) l = 0, that is F (k), G(k) share 1 IM . Suppose that H = F (k+2)

F (k+1) − 2 F (k+1)

F (k)−1 − G(k+2)

G(k+1) +

2 G(k+1)

G(k)−1 ̸≡ 0, by Lemma 2.6, we get

T (r, F (k)) + T (r,G(k)) ≤ 2(N2(r,
1

F (k)
) +N2(r,

1
G(k)

) +N2(r, F
(k)) +N2(r,G

(k)))

+ 3(N(r, F (k)) +N(r,G(k)) +N(r,
1

F (k)
) +N(r,

1
G(k)

))

+ S1(r, f) + S1(r, g). (3.21)

By (3.1)—(3.4) and (3.21), we obtain

(n+ λ)[T (r, f) + T (r, g)] ≤ N2(r,
1

F (k)
) +N2(r,

1
G(k)

) +Nk+2(r,
1
F
) +Nk+2(r,

1
G
)

+ 3N(r,
1

F (k)
) + 3N(r,

1
G(k)

) + S1(r, f) + S1(r, g)

≤ 2[m1 + d1 + (k + 2)m2][T (r, f) + T (r, g)]

+ (2k + 4)d2[N(r,
1
f
) +N(r,

1
g
)]

+ 3[m1 + (k + 1)m2][T (r, f) + T (r, g)]

+ 3(k + 1)(d1 + d2)[N(r,
1
f
) +N(r,

1
g
)] + S1(r, f) + S1(r, g),



FRATTINI SUBSEMIGROUP OF A PRINCIPAL IDEAL RING 115

which contradicts with the assumption that n > 5m1 + (3k + 5)d1 + (5k + 7)(m2 + d2)− λ−
[(3k + 3)d1 + (5k + 7)d2]χ, then H ≡ 0.
By integration for H twice, we can get (3.10).
Proceeding similarly as the proof of Case 2 in (I), we get the conclusions of Theorem 1.6.
Thus, the proof of Theorem 1.6 is completed. 2

4 Remarks

In Theorem1.1 and Theorem1.6, we mainly discuss the q-shift difference-differential polynomial
of entire functions. It is natural to propose the following question: What happens to Theorem1.1
and Theorem1.6 if f is meromorphic? In this paper, we get the result related to Theorem 1.1 as
follows.

Theorem 4.1. Let f and g be two transcendental meromorphic functions with zero order. F (z)
and G(z) are defined as in Theorem 1.1. Suppose that n > 2m1 + (2k + 2)m2 + 3d1 + (2k +
3)d2 + 1 − λ. If F (k) and G(k) share 1,∞ CM , then F (k) = G(k).

Proof. Since f, g are two transcendental meromorphic functions with zero order, F (k) and G(k)

share 1,∞ CM , there exists a nonzero constant c such that

F (k) − 1
G(k) − 1

= c.

Rewriting the above equation, we have

cG(k) = F (k) − 1 + c.

Assume that c ̸= 1. Using the second fundamental theorem, by Lemma 2.2 and Lemma 2.4, we
get

T (r, F (k)) ≤ N(r, F (k)) +N(r,
1

F (k)
) +N(r,

1
F (k) − 1 + c

) + S1(r, f)

≤ N(r, F ) +N(r,
1

F (k)
) +N(r,

1
G(k)

) + S1(r, f)

≤ (d1 + d2 + 1)T (r, f) + T (r, F (k))− T (r, F )

+Nk+1(r,
1
F
) +Nk+1(r,

1
G
) + S1(r, f) + S1(r, g).

So

(n+ λ)T (r, f) ≤ (d1 + d2 + 1)T (r, f)+

[m1 + d1 + (k + 1)(m2 + d2)][T (r, f) + T (r, g)] + S1(r, f) + S1(r, g).

Similarly, we obtain

(n+ λ)T (r, g) ≤ (d1 + d2 + 1)T (r, g)+

[m1 + d1 + (k + 1)(m2 + d2)][T (r, f) + T (r, g)] + S1(r, f) + S1(r, g).

So

(n+ λ)[T (r, f) + T (r, g)]

≤ [2m1 + 3d1 + (2k + 2)m2 + (2k + 3)d2 + 1][T (r, f) + T (r, g)] + S1(r, f) + S1(r, g),

which contradicts with the assumption that n > 2m1 + 3d1 + (2k+ 2)m2 + (2k+ 3)d2 + 1− λ.
Then c = 1, thus, we have F (k) ≡ G(k).
This completes the proof of Theorem 4.1. 2
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