UNIQUENESS OF Q-SHIFT DIFFERENCE-DIFFERENTIAL POLYNOMIALS OF ENTIRE FUNCTIONS

Meirong Lin, Weichuan Lin, Jie Luo
Communicated by Ayman Badawi

MSC 2010 Classifications: 30D35.
Keywords and phrases: Entire function, zero order, q-shift, difference-differential polynomial, uniqueness.

Abstract In this paper, we consider the uniqueness problems of the q-shift difference-differential polynomial $\left[P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right]^{(k)}$, where $f(z)$ is a transcendental entire function with zero order, $P(z)$ is a nonzero polynomial of degree $n, d, s_{j}(j=1, \cdots, d) \in N_{+}, q_{j} \in \mathbb{C} \backslash\{0\}(j=$ $1, \cdots, d)$ are constants, $c_{j}\left(c_{j} \neq 0, j=1, \cdots, d\right)$ are distinct constants. The results improve some results given by Zhang and Korhonen [14], Qi and Yang[10], Cao,Liu and Xu[3], Wang, Xu and Zhan [11].

1 Introduction

A meromorphic function $f(z)$ means meromorphic in the complex plane. If no poles occur, then $f(z)$ reduces to an entire function. We assume that the reader is familiar with the notations and the basic results of Nevanlinna theory of meromorphic functions [13]. For any nonconstant meromorphic function $f(z)$, we denote by $S(r, f)$ any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ outside of a possible exceptional set of finite linear measure. In particular, we denote by $S_{1}(r, f)$ any quantity satisfying $S_{1}(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ for all r on a set of logarithmic density 1.

Let $f(z)$ and $g(z)$ be two nonconstant meromorphic functions, and $a \in \mathbb{C} \bigcup\{\infty\}$. We define $\Theta(a, f)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f-a}\right)}{T(r, f)}$. We say that $f(z)$ and $g(z)$ share the value $a C M$ (counting multiplicities), provided that $f-a$ and $g-a$ have the same zeros with the same multiplicities. And if we do not consider the multiplicities, then we say that $f(z)$ and $g(z)$ share the value $a I M$ (ignoring multiplicities).
Definition 1.1. ${ }^{[8]}$ Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \bigcup\{\infty\}$, we denote by $E_{k}(a, f)$ the set of all zeros of $f(z)-a$, where each zero of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a, f)=E_{k}(a, g)$, we say that $f(z)$ and $g(z)$ share the value a with weight k. Obviously, when $k=0($ resp. $\infty), f(z)$ and $g(z)$ share the value a $I M($ resp. $a C M)$.
Definition 1.2. ${ }^{[13]}$ For $a \in \mathbb{C} \bigcup\{\infty\}$ and k is a positive integer or infinity. We denote by $\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)$ the counting function of the zeros of $f-a$ whose multiplicities are not less than k, where each zero is countied only once. Then

$$
N_{k}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right)+\cdots+\bar{N}_{(k}\left(r, \frac{1}{f-a}\right) .
$$

Clearly, $N_{1}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)$.
Definition 1.3. ${ }^{[1]}$ Suppose that f and g share $1 I M$. We denote by $\bar{N}_{L}\left(r, \frac{1}{f-1}\right)$ the reduced counting function of the zeros of $f-1$ whose multiplicities are greater than the zeros of $g-1$, where each zero is countied only once; similarly, we have $\bar{N}_{L}\left(r, \frac{1}{g-1}\right)$. We denote by $N_{p q}\left(r, \frac{1}{f-1}\right)$ the counting function of the zeros of $f-1$ and $g-1$ with multiplicity p and q respectively.

Recently, the difference variant of the Nevanlinna theory has been established independently in $[2,4,6,7]$. With the development of difference analogue of Nevanlinna theory, many authors
paid attention to the uniqueness of difference and difference operator analogs of Nevanlinna theory.

In [14], Zhang and Korhonen studied the uniqueness of q-difference polynomials of meromorphic functions and obtained the following theorems.
Theorem A. ${ }^{[14]}$ Let f and g be two transcendental entire functions with zero order. Suppose that q is a nonzero constant and n is an integer satisfying $n \geq 4$. If $f^{n}(z) f(q z)$ and $g^{n}(z) g(q z)$ share $1 C M$, then $f \equiv t g$ for $t^{n+1}=1$.
Theorem B. ${ }^{[14]}$ Let f and g be two transcendental entire functions with zero order. Suppose that q is a nonzero constant and n is an integer satisfying $n \geq 6$. If $f^{n}(z)(f(z)-1) f(q z)$ and $g^{n}(z)(g(z)-1) g(q z)$ share $1 C M$, then $f \equiv g$.

In [10], Qi and Yang improved Theorem A,B and obtained the following theorems.
Theorem C. ${ }^{[10]}$ Let f and g be two transcendental entire functions with zero order. Suppose that q is a nonzero constant and n is an integer satisfying $n \geq 12$. If $f^{n}(z) f(q z)$ and $g^{n}(z) g(q z)$ share $1 I M$, then $f=t_{1} g$ or $f g=t_{2}$, for some constants t_{1} and t_{2} that satisfy $t_{1}^{n+1}=1$ and $t_{2}^{n+1}=1$.
Theorem D. ${ }^{[10]}$ Let f and g be two transcendental entire functions with zero order. Suppose that q is a nonzero constant and n is an integer satisfying $n \geq 16$. If $f^{n}(z)(f(z)-1) f(q z)$ and $g^{n}(z)(g(z)-1) g(q z)$ share $1 I M$, then $f \equiv g$.

In [3], Cao et al. discussed the q -shift difference-differential polynomials and obtained the following theorems.
Theorem E. ${ }^{[3]}$ Let f and g be two transcendental entire functions with zero order. Suppose that q is a nonzero constant and n is an integer satisfying $n \geq 2 k+m+6$. If $\left[f^{n}(z)\left(f^{m}(z)-a\right) f(q z+\right.$ $c)]^{(k)}$ and $\left[g^{n}(z)\left(g^{m}(z)-a\right) g(q z+c)\right]^{(k)}$ share $1 C M$, then $f \equiv t g$, where $t^{n+1}=t^{m}=1$.

In [11], Wang et al. discussed the q-shift difference polynomials and obtained the following theorems.
Theorem F. ${ }^{[11]}$ Let f, g be two transcendental entire functions with zero order, $F(z)=P(f) \prod_{j=1}^{d} f\left(q_{j} z+\right.$ $\left.c_{j}\right)^{s_{j}}$ and $G(z)=P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}$, where $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ is a nonzero polynomial of degree n, m_{1} is the number of the simple zero of $P(z), m_{2}$ is the number of multiple zeros of $P(z), \Gamma_{0}=m_{1}+2 m_{2}$. Suppose that $n>\max \left\{2\left(\Gamma_{0}+2 d\right)-\lambda, \lambda\right\}$. If $F(z)$ and $G(z)$ share $1 C M$, then one of the following cases holds:
(I) $f \equiv t g$ for a constant t such that $t^{l}=1$, where $l=G C D\left\{\lambda_{0}+\lambda, \lambda_{1}+\lambda, \cdots, \lambda_{n}+\lambda\right\}$ and

$$
\lambda_{i}=\left\{\begin{array}{ll}
i+1, & a_{i} \neq 0 \\
n+1, & a_{i}=0
\end{array} i=0,1, \cdots, n\right.
$$

(II) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
R\left(\omega_{1}, \omega_{2}\right)=P\left(\omega_{1}\right) \prod_{j=1}^{d} \omega_{1}\left(q_{j} z+c_{j}\right)^{s_{j}}-P\left(\omega_{2}\right) \prod_{j=1}^{d} \omega_{2}\left(q_{j} z+c_{j}\right)^{s_{j}}
$$

Theorem G. ${ }^{[11]}$ Under the assumptions of theorem F, if

$$
E_{l}\left(1 ; P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)=E_{l}\left(1 ; P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}\right)
$$

and l, n, m, d are integers satisfying one of the following conditions:
(I) $l \geq 3, n>\max \left\{2 \Gamma_{0}+4 d-\lambda, \lambda\right\}$;
(II) $l=2, n>\max \left\{2 \Gamma_{0}+5 d+m-\lambda-d \chi, \lambda\right\}$;
(III) $l=1, n>\max \left\{2 \Gamma_{0}+6 d+2 m-\lambda-2 d \chi, \lambda\right\}$;
(IV) $l=0, n>\max \left\{2 \Gamma_{0}+7 d+3 m-\lambda-3 d \chi, \lambda\right\}$.

Then the conclusions of Theorem F hold, where $\chi=\min \{\boldsymbol{\Theta}(0, f), \Theta(0, g)\}$.

In this paper, we assume $q_{j} \in \mathbb{C} \backslash\{0\}(j=1, \cdots, d)$ are constants, $c_{j} \in \mathbb{C} \backslash\{0\}(j=1, \cdots, d)$ are distinct constants, $n, d, s_{j}(j=1, \cdots, d) \in N_{+} . \lambda=s_{1}+\cdots+s_{d}$. Let

$$
\begin{equation*}
F(z)=P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}, G(z)=P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}} \tag{1.1}
\end{equation*}
$$

where $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ is a nonzero polynomial of degree n, m_{1} is the number of the simple zero of $P(z), m_{2}$ is the number of multiple zeros of $P(z), d_{1}$ is the number of elements of $A=\left\{s_{j} \mid s_{j}=1, j=1, \cdots, d\right\} ; d_{2}$ is the number of elements of $B=\left\{s_{j} \mid s_{j} \geq\right.$ $2, j=1, \cdots, d\}$.

We consider the uniqueness problems of q-shift difference-differential polynomials $F^{(k)}(z)$ and obtain the following results, which improve the above theorems.
Theorem 1.1. Let f and g be two transcendental entire functions with zero order. $F(z)$ and $G(z)$ are stated as in (1.1). Suppose that $n>2 m_{1}+2 d_{1}+(2 k+2)\left(m_{2}+d_{2}\right)-\lambda$. If $F^{(k)}$ and $G^{(k)}$ share $1 C M$, then one of the following cases holds:
(I) $f \equiv$ tg for a constant t such that $t^{l}=1$, where $l=G C D\left\{\lambda_{0}+\lambda, \lambda_{1}+\lambda, \cdots, \lambda_{n}+\lambda\right\}$ and

$$
\lambda_{i}=\left\{\begin{array}{ll}
i, & a_{i} \neq 0 \\
n, & a_{i}=0
\end{array} i=0,1, \cdots, n\right.
$$

(II) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
R\left(\omega_{1}, \omega_{2}\right)=P\left(\omega_{1}\right) \prod_{j=1}^{d} \omega_{1}\left(q_{j} z+c_{j}\right)^{s_{j}}-P\left(\omega_{2}\right) \prod_{j=1}^{d} \omega_{2}\left(q_{j} z+c_{j}\right)^{s_{j}}
$$

Remark 1.2. When $P(z)=z^{n}, d=1, c_{1}=0, k=0$, we know that $2 m_{1}+2 d_{1}+(2 k+2)\left(m_{2}+\right.$ $\left.d_{2}\right)-\lambda=3$. Moreover, from $R(f, g) \equiv 0$, we have $f^{n}(z) f(q z)=g^{n}(z) g(q z)$. Proceeding similarly as the proof of Theorem 5.1 in [13], we get $f \equiv t g$. Therefore, Theorem 1.1 improves Theorem A.

Remark 1.3. When $P(z)=z^{n}(z-1), d=1, c_{1}=0, k=0$, we know that $2 m_{1}+2 d_{1}+(2 k+$ 2) $\left(m_{2}+d_{2}\right)-\lambda=5$. Therefore, Theorem 1.1 improves Theorem B.

Remark 1.4. When $P(z)=z^{n}\left(z^{m}-a\right), d=1$, we know that $2 m_{1}+2 d_{1}+(2 k+2)\left(m_{2}+d_{2}\right)-\lambda=$ $2 m+2 k+3$. Therefore, Theorem 1.1 improves Theorem E.
Remark 1.5. Since $F^{(0)}(z)=F(z)$ and $2 m_{1}+2 d_{1}+2 m_{2}+2 d_{2}-\lambda$ is less than $\max \left\{2\left(\Gamma_{0}+\right.\right.$ $2 d)-\lambda, \lambda\}$, Theorem 1.1 improves Theorem F .
Theorem 1.6. Under the assumptions of Theorem 1.1, if

$$
E_{l}\left(1 ; F^{(k)}\right)=E_{l}\left(1 ; G^{(k)}\right)
$$

and $l, n, m_{1}, m_{2}, d_{1}, d_{2}$ are integers satisfying one of the following conditions:

$$
\begin{aligned}
& \text { (I) } l \geq 3, n>2 m_{1}+2 d_{1}+(2 k+4)\left(m_{2}+d_{2}\right)-\lambda-(2 k+4) d_{2} \chi \\
& \text { (II) } l=2, n>3 m_{1}+3 d_{1}+(3 k+5)\left(m_{2}+d_{2}\right)-\lambda-(3 k+5) d_{2} \chi \\
& \text { (III) } l=1, n>4 m_{1}+4 d_{1}+(4 k+6)\left(m_{2}+d_{2}\right)-\lambda-(4 k+6) d_{2} \chi \\
& \text { (IV) } l=0, n>5 m_{1}+(3 k+5) d_{1}+(5 k+7)\left(m_{2}+d_{2}\right)-\lambda-\left[(3 k+3) d_{1}+(5 k+7) d_{2}\right] \chi .
\end{aligned}
$$

Then the conclusions of Theorem 1.1 hold, where $\chi=\min \{\Theta(0, f), \Theta(0, g)\}$.
Remark 1.7. Since $F^{(0)}(z)=F(z)$ and the lower bound of n in Theorem 1.6 is not larger than those of n in Theorem G respectively, Theorem 1.6 improves Theorem G.
Remark 1.8. When $P(z)=z^{n}, d=1, c_{1}=0, k=0$, we know that $5 m_{1}+(3 k+5) d_{1}+(5 k+$ 7) $\left(m_{2}+d_{2}\right)-\lambda-\left[(3 k+3) d_{1}+(5 k+7) d_{2}\right] \chi=11-3 \chi<12$. Proceeding similarly as Remark 1.2 , we get $f \equiv t g$. Therefore, Theorem 1.6 improves Theorem C.

Remark 1.9. When $P(z)=z^{n}(z-1), d=1, c_{1}=0, k=0$, we know that $5 m_{1}+(3 k+5) d_{1}+$ $(5 k+7)\left(m_{2}+d_{2}\right)-\lambda-\left[(3 k+3) d_{1}+(5 k+7) d_{2}\right] \chi=16-3 \chi \leq 16$. Therefore, Theorem 1.6 improves Theorem D.

2 some lemmas

Next, we give some lemmas to prove the main results of this paper.
Lemma 2.1. ${ }^{[11]}$ Let f be a transcendental meromorphic function with zero order and q, c be two nonzero constants. Then

$$
\begin{aligned}
& N(r, f(q z+c))=N(r, f(z))+S_{1}(r, f), \quad \bar{N}(r, f(q z+c))=\bar{N}(r, f(z))+S_{1}(r, f), \\
& N\left(r, \frac{1}{f(q z+c)}\right)=N\left(r, \frac{1}{f(z)}\right)+S_{1}(r, f), \quad \bar{N}\left(r, \frac{1}{f(q z+c)}\right)=\bar{N}\left(r, \frac{1}{f(z)}\right)+S_{1}(r, f), \\
& T(r, f(q z+c))=T(r, f(z))+S_{1}(r, f) .
\end{aligned}
$$

Lemma 2.2. ${ }^{[1]]}$ Let f be a transcendental entire function with zero order. $F(z)$ is defined as in (1.1). Then

$$
T(r, F(z))=(n+\lambda) T(r, f)+S_{1}(r, f),
$$

where $\lambda=s_{1}+\cdots+s_{d}$.
Lemma 2.3. ${ }^{[12]}$ Let f be a nonconstant meromorphic function and k be an integer. Then

$$
T\left(r, f^{(k)}\right) \leq T(r, f)+k \bar{N}(r, f)+S(r, f) .
$$

Lemma 2.4. ${ }^{[9]}$ Let f be a nonconstant meromorphic function and p, k be positive integers. Then

$$
\begin{gathered}
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f), \\
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq k \bar{N}(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f) .
\end{gathered}
$$

Lemma 2.5. ${ }^{[5]}$ Let f and g be two meromorphic functions and let l be a positive integer. If $E_{l}(1 ; f)=E_{l}(1 ; g)$, then one of the following cases hods:

$$
\begin{aligned}
(I) T(r, f)+T(r, g) & \leq N_{2}\left(r, \frac{1}{f}\right)+N_{2}\left(r, \frac{1}{g}\right)+N_{2}(r, f)+N_{2}(r, g) \\
& +\bar{N}\left(r, \frac{1}{f-1}\right)+\bar{N}\left(r, \frac{1}{g-1}\right)-N_{11}\left(r, \frac{1}{f-1}\right) \\
& +\bar{N}_{(l+1}\left(r, \frac{1}{f-1}\right)+\bar{N}_{(l+1}\left(r, \frac{1}{g-1}\right)+S(r, f)+S(r, g) ;
\end{aligned}
$$

(II) $f=\frac{(b+1) g+(a-b-1)}{b g+(a-b)}$, where $a(\neq 0), b$ are two constants.

Lemma 2.6. ${ }^{[12]}$ Let f and g be two nonconstant meromorphic functions. If f and g share 1 IM, $H=\frac{f^{\prime \prime}}{f^{\prime}}-2 \frac{f^{\prime}}{f-1}-\frac{g^{\prime \prime}}{g^{\prime}}+2 \frac{g^{\prime}}{g-1} \not \equiv 0$. Then

$$
\begin{aligned}
T(r, f)+T(r, g) & \leq 2\left(N_{2}\left(r, \frac{1}{f}\right)+N_{2}\left(r, \frac{1}{g}\right)+N_{2}(r, f)+N_{2}(r, g)\right) \\
& +3\left(\bar{N}(r, f)+\bar{N}(r, g)+\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right)+S(r, f)+S(r, g)
\end{aligned}
$$

From the proof of case 2 in Theorem 1.3[11], we can get the following lemma.
Lemma 2.7. ${ }^{[11]}$ Let f and g be two transcendental entire functions with zero order. $F(z), G(z)$ are defined as in Theorem 1.1. If $F(z) \equiv G(z)$, then the conclusions of Theorem 1.1 hold.

Lemma 2.8. Let f and g be two transcendental entire functions with zero order. $F(z), G(z)$ are defined as in Theorem 1.1. Suppose that $n>2\left(m_{1}+m_{2}+d_{1}+d_{2}\right)-\lambda-2\left(d_{1}+d_{2}\right) \chi$. If

$$
(F(z))^{(k)} \equiv(G(z))^{(k)}
$$

then the conclusions of Theorem 1.1 hold, where $\chi=\min \{\Theta(0, f), \Theta(0, g)\}$.
Proof. By $(F(z))^{(k)}=(G(z))^{(k)}$, we get $F(z)=G(z)+Q(z)$, where $Q(z)$ is a polynomial of degree at most $k-1$. If $Q(z) \not \equiv 0$, then

$$
\frac{P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}{Q(z)}=\frac{P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}}{Q(z)}+1
$$

By the second fundamental theorem and Lemma 2.2, we deduce that

$$
\begin{aligned}
(n+\lambda) T(r, f) & =T\left(r, \frac{P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}{Q(z)}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}{Q(z)}\right)+\bar{N}\left(r, \frac{Q(z)}{P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}\right) \\
& +\bar{N}\left(r, \frac{P(z)}{P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{P(f)}\right)+\bar{N}\left(r, \frac{1}{\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}\right)+\bar{N}\left(r, \frac{1}{P(g)}\right) \\
& +\bar{N}\left(r, \frac{1}{\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}\right)+S_{1}(r, f)+S_{1}(r, g) \\
& \leq\left(m_{1}+m_{2}\right)[T(r, f)+T(r, g)] \\
& +\left(d_{1}+d_{2}\right)\left[\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right]+S_{1}(r, f)+S_{1}(r, g) .
\end{aligned}
$$

Similarly, we obtain

$$
\begin{aligned}
(n+\lambda) T(r, g) & \leq\left(m_{1}+m_{2}\right)[T(r, f)+T(r, g)] \\
& +\left(d_{1}+d_{2}\right)\left[\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right]+S_{1}(r, f)+S_{1}(r, g)
\end{aligned}
$$

So

$$
\begin{aligned}
(n+\lambda)[T(r, f)+T(r, g)] & \leq 2\left(m_{1}+m_{2}\right)[T(r, f)+T(r, g)] \\
& +2\left(d_{1}+d_{2}\right)\left[\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right]+S_{1}(r, f)+S_{1}(r, g)
\end{aligned}
$$

which contradicts with the assumption that $n>2\left(m_{1}+m_{2}+d_{1}+d_{2}\right)-\lambda-2\left(d_{1}+d_{2}\right) \chi$. Hence $Q(z) \equiv 0$. Then

$$
P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}=P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}
$$

By Lemma 2.7, we get the conclusions of Lemma 2.8.

3 Proof of theorem

3.1 Proof of Theorem 1.1.

By Lemma 2.3, we have

$$
T\left(r, F^{(k)}\right) \leq T\left(r, P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)+S\left(r, P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)
$$

By Lemma 2.2, we get $S\left(r, F^{(k)}\right)=S(r, f)$, similarly $S\left(r, G^{(k)}\right)=S(r, g), S_{1}\left(r, F^{(k)}\right)=$ $S_{1}(r, f), S_{1}\left(r, G^{(k)}\right)=S_{1}(r, g)$.
Since f, g are two transcendental entire functions with zero order, $F^{(k)}$ and $G^{(k)}$ share $1 C M$, there exists a nonzero constant c such that

$$
\frac{F^{(k)}-1}{G^{(k)}-1}=c
$$

Rewriting the above equation, we have

$$
c G^{(k)}=F^{(k)}-1+c
$$

Assume that $c \neq 1$. By the second fundamental theorem and Lemma 2.4, we get

$$
\begin{aligned}
T\left(r, F^{(k)}\right) & \leq \bar{N}\left(r, F^{(k)}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-1+c}\right)+S_{1}(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, f) \\
& \leq T\left(r, F^{(k)}\right)-T(r, F)+N_{k+1}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, f)+S_{1}(r, g) \\
& \leq T\left(r, F^{(k)}\right)-T(r, F)+N_{k+1}\left(r, \frac{1}{F}\right)+N_{k+1}\left(r, \frac{1}{G}\right)+S_{1}(r, f)+S_{1}(r, g)
\end{aligned}
$$

So

$$
T(r, F) \leq N_{k+1}\left(r, \frac{1}{F}\right)+N_{k+1}\left(r, \frac{1}{G}\right)+S_{1}(r, f)+S_{1}(r, g)
$$

By the definitions of F, G and Lemma 2.2, we have

$$
(n+\lambda) T(r, f) \leq\left[m_{1}+d_{1}+(k+1)\left(m_{2}+d_{2}\right)\right][T(r, f)+T(r, g)]+S_{1}(r, f)+S_{1}(r, g)
$$

Similarly, we obtain

$$
(n+\lambda) T(r, g) \leq\left[m_{1}+d_{1}+(k+1)\left(m_{2}+d_{2}\right)\right][T(r, f)+T(r, g)]+S_{1}(r, f)+S_{1}(r, g)
$$

Therefore

$$
\begin{aligned}
& (n+\lambda)[T(r, f)+T(r, g)] \\
& \leq 2\left[m_{1}+d_{1}+(k+1)\left(m_{2}+d_{2}\right)\right][T(r, f)+T(r, g)]+S_{1}(r, f)+S_{1}(r, g)
\end{aligned}
$$

which contradicts with the assumption that $n>2 m_{1}+2 d_{1}+(2 k+2)\left(m_{2}+d_{2}\right)-\lambda$. Hence $F^{(k)} \equiv G^{(k)}$.
By Lemma 2.8, we can get the conclusions of Theorem 1.1.
This completes the proof of Theorem 1.1.

3.2 Proof of Theorem 1.6.

Similarly as the proof of Theorem 1.1, we have $S\left(r, F^{(k)}\right)=S(r, f), S\left(r, G^{(k)}\right)=S(r, g)$, $S_{1}\left(r, F^{(k)}\right)=S_{1}(r, f), S_{1}\left(r, G^{(k)}\right)=S_{1}(r, g)$.
By Lemma 2.2 and Lemma 2.4, we get

$$
\begin{align*}
(n+\lambda) T(r, f) & =T(r, F)+S_{1}(r, f) \\
& \leq T\left(r, F^{(k)}\right)-N_{2}\left(r, \frac{1}{F^{(k)}}\right)+N_{k+2}\left(r, \frac{1}{F}\right)+S_{1}(r, f) \tag{3.1}
\end{align*}
$$

By Lemma 2.4, we get

$$
\begin{align*}
N_{2}\left(r, \frac{1}{F^{(k)}}\right) & \leq N_{k+2}\left(r, \frac{1}{F}\right)+S_{1}(r, f) \\
& \leq N_{k+2}\left(r, \frac{1}{P(f)}\right)+N_{k+2}\left(r, \frac{1}{\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}\right)+S_{1}(r, f) \\
& \leq\left[m_{1}+d_{1}+(k+2) m_{2}\right] T(r, f)+(k+2) d_{2} \bar{N}\left(r, \frac{1}{f}\right)+S_{1}(r, f) \tag{3.2}
\end{align*}
$$

Similarly, we obtain

$$
\left.\begin{array}{rl}
(n+\lambda) T(r, g) \leq T\left(r, G^{(k)}\right)-N_{2}\left(r, \frac{1}{G^{(k)}}\right)+N_{k+2}\left(r, \frac{1}{G}\right)+S_{1}(r, g)
\end{array}\right) \begin{aligned}
N_{2}\left(r, \frac{1}{G^{(k)}}\right) & \leq N_{k+2}\left(r, \frac{1}{G}\right)+S_{1}(r, g) \\
& \leq\left[m_{1}+d_{1}+(k+2) m_{2}\right] T(r, g)+(k+2) d_{2} \bar{N}\left(r, \frac{1}{g}\right)+S_{1}(r, g),
\end{aligned}
$$

and

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{F^{(k)}}\right) & \leq N_{k+1}\left(r, \frac{1}{F}\right)+S_{1}(r, f) \\
& \leq\left[m_{1}+d_{1}+(k+1) m_{2}\right] T(r, f)+(k+1) d_{2} \bar{N}\left(r, \frac{1}{f}\right)+S_{1}(r, f) \tag{3.5}\\
\bar{N}\left(r, \frac{1}{G^{(k)}}\right) & \leq N_{k+1}\left(r, \frac{1}{G}\right)+S_{1}(r, g) \\
& \leq\left[m_{1}+d_{1}+(k+1) m_{2}\right] T(r, g)+(k+1) d_{2} \bar{N}\left(r, \frac{1}{g}\right)+S_{1}(r, g) \tag{3.6}
\end{align*}
$$

Next, we shall prove the theorem under the following four various conditions that $l \geq 3, l=$ $2, l=1$ and $l=0$ respectively.
(I) $l \geq 3$. Since

$$
\begin{align*}
& \bar{N}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}-1}\right)-N_{11}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}_{(l+1}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}_{(l+1}\left(r, \frac{1}{G^{(k)}-1}\right) \\
& \leq \frac{1}{2} N\left(r, \frac{1}{F^{(k)}-1}\right)+\frac{1}{2} N\left(r, \frac{1}{G^{(k)}-1}\right)+S_{1}(r, f)+S_{1}(r, g) \\
& \leq \frac{1}{2} T\left(r, F^{(k)}\right)+\frac{1}{2} T\left(r, G^{(k)}\right)+S_{1}(r, f)+S_{1}(r, g) \tag{3.7}
\end{align*}
$$

We distinguish the following two cases to prove.
Case 1. Suppose that $F^{(k)}, G^{(k)}$ satisfy Lemma 2.5(i). By (3.7), we have

$$
\begin{aligned}
T\left(r, F^{(k)}\right)+T\left(r, G^{(k)}\right) & \leq N_{2}\left(r, \frac{1}{F^{(k)}}\right)+N_{2}\left(r, \frac{1}{G^{(k)}}\right)+N_{2}\left(r, F^{(k)}\right)+N_{2}\left(r, G^{(k)}\right) \\
& +\bar{N}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}-1}\right)-N_{11}\left(r, \frac{1}{F^{(k)}-1}\right) \\
& +\bar{N}_{(l+1}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}_{(l+1}\left(r, \frac{1}{G^{(k)}-1}\right)+S_{1}(r, f)+S_{1}(r, g) \\
& \leq N_{2}\left(r, \frac{1}{F^{(k)}}\right)+N_{2}\left(r, \frac{1}{G^{(k)}}\right)+\frac{1}{2} T\left(r, F^{(k)}\right) \\
& +\frac{1}{2} T\left(r, G^{(k)}\right)+S_{1}(r, f)+S_{1}(r, g)
\end{aligned}
$$

which means,

$$
\begin{equation*}
T\left(r, F^{(k)}\right)+T\left(r, G^{(k)}\right) \leq 2 N_{2}\left(r, \frac{1}{F^{(k)}}\right)+2 N_{2}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, f)+S_{1}(r, g) \tag{3.8}
\end{equation*}
$$

From (3.1) and (3.3), we have

$$
\begin{align*}
T\left(r, F^{(k)}\right)+T\left(r, G^{(k)}\right) & \geq(n+\lambda)[T(r, f)+T(r, g)]+N_{2}\left(r, \frac{1}{F^{(k)}}\right)+N_{2}\left(r, \frac{1}{G^{(k)}}\right) \\
& -N_{k+2}\left(r, \frac{1}{F}\right)-N_{k+2}\left(r, \frac{1}{G}\right)+S_{1}(r, f)+S_{1}(r, g) \tag{3.9}
\end{align*}
$$

By (3.2),(3.4),(3.8) and (3.9), we obtain

$$
\begin{aligned}
(n+\lambda)[T(r, f)+T(r, g)] & \leq N_{2}\left(r, \frac{1}{F^{(k)}}\right)+N_{2}\left(r, \frac{1}{G^{(k)}}\right)+N_{k+2}\left(r, \frac{1}{F}\right) \\
& +N_{k+2}\left(r, \frac{1}{G}\right)+S_{1}(r, f)+S_{1}(r, g) \\
& \leq\left[2 m_{1}+2 d_{1}+(2 k+4) m_{2}\right][T(r, f)+T(r, g)] \\
& +(2 k+4) d_{2}\left[\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right]+S_{1}(r, f)+S_{1}(r, g)
\end{aligned}
$$

which contradicts with the assumption that $n>2 m_{1}+2 d_{1}+(2 k+4)\left(m_{2}+d_{2}\right)-\lambda-(2 k+4) d_{2} \chi$.
Case 2. Suppose that $F^{(k)}, G^{(k)}$ satisfy Lemma 2.5(ii), then

$$
\begin{equation*}
F^{(k)}=\frac{(b+1) G^{(k)}+(a-b-1)}{b G^{(k)}+(a-b)} \tag{3.10}
\end{equation*}
$$

where $a(\neq 0), b$ are two constants.
We now consider three subcases as follows.
Subcase 2.1. $b \neq 0,-1$.
If $a-b-1 \neq 0$, then $\bar{N}\left(r, \frac{1}{F^{(k)}}\right)=\bar{N}\left(r, \frac{1}{G^{(k)+\frac{a-b-1}{b+1}}}\right)$.
Using the second fundamental theorem, by Lemma 2.4 and (3.4), (3.5), we have

$$
\begin{aligned}
T(r, G) & \leq T\left(r, G^{(k)}\right)+N_{k+2}\left(r, \frac{1}{G}\right)-N_{2}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, g) \\
& \leq \bar{N}\left(r, G^{(k)}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}+\frac{a-b-1}{b+1}}\right) \\
& +N_{k+2}\left(r, \frac{1}{G}\right)-N_{2}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, g) \\
& \leq \bar{N}\left(r, \frac{1}{F^{(k)}}\right)+N_{k+2}\left(r, \frac{1}{G}\right)+S_{1}(r, f)+S_{1}(r, g) \\
& \leq\left[m_{1}+d_{1}+(k+1) m_{2}\right] T(r, f)+(k+1) d_{2} \bar{N}\left(r, \frac{1}{f}\right) \\
& +\left[m_{1}+d_{1}+(k+2) m_{2}\right] T(r, g)+(k+2) d_{2} \bar{N}\left(r, \frac{1}{g}\right)+S_{1}(r, f)+S_{1}(r, g)
\end{aligned}
$$

which means

$$
\begin{align*}
(n+\lambda) T(r, g) & \leq\left[m_{1}+d_{1}+(k+1) m_{2}\right] T(r, f)+(k+1) d_{2} \bar{N}\left(r, \frac{1}{f}\right) \\
& {\left[m_{1}+d_{1}+(k+2) m_{2}\right] T(r, g)+(k+2) d_{2} \bar{N}\left(r, \frac{1}{g}\right)+S_{1}(r, f)+S_{1}(r, g) } \tag{3.11}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
(n+\lambda) T(r, f) & \leq\left[m_{1}+d_{1}+(k+1) m_{2}\right] T(r, g)+(k+1) d_{2} \bar{N}\left(r, \frac{1}{g}\right) \\
& \quad\left[m_{1}+d_{1}+(k+2) m_{2}\right] T(r, f)+(k+2) d_{2} \bar{N}\left(r, \frac{1}{f}\right)+S_{1}(r, f)+S_{1}(r, g) . \tag{3.12}
\end{align*}
$$

By (3.11) and (3.12), we get

$$
\begin{aligned}
(n+\lambda)[T(r, f)+T(r, g)] & \leq\left[2 m_{1}+2 d_{1}+(2 k+3) m_{2}\right][T(r, f)+T(r, g)] \\
& +(2 k+3) d_{2}\left[\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right]+S_{1}(r, f)+S_{1}(r, g),
\end{aligned}
$$

which contradicts with the assumption that $n>2 m_{1}+2 d_{1}+(2 k+4)\left(m_{2}+d_{2}\right)-\lambda-(2 k+4) d_{2} \chi$. Hence $a-b-1=0$, from(3.10), we get

$$
F^{(k)}=\frac{(b+1) G^{(k)}}{b G^{(k)}+1} .
$$

Since f is an entire function, we have $\bar{N}\left(r, \frac{1}{G^{(k)}+\frac{1}{b}}\right)=0$.
Using the same method as above, we get

$$
\begin{aligned}
(n+\lambda) T(r, g) & \leq T\left(r, G^{(k)}\right)+N_{k+2}\left(r, \frac{1}{G}\right)-N_{2}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, g) \\
& \leq N_{k+2}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}+\frac{1}{b}}\right)+S_{1}(r, g) \\
& \leq N_{k+2}\left(r, \frac{1}{G}\right)+S_{1}(r, f)+S_{1}(r, g) \\
& \leq\left[m_{1}+d_{1}+(k+2) m_{2}\right] T(r, g)+(k+2) d_{2} \bar{N}\left(r, \frac{1}{g}\right)+S_{1}(r, f)+S_{1}(r, g),
\end{aligned}
$$

which contradicts with the assumption that $n>2 m_{1}+2 d_{1}+(2 k+4)\left(m_{2}+d_{2}\right)-\lambda-(2 k+4) d_{2} \chi$.
Subcase 2.2. $b=0$.
From (3.10), we have

$$
F^{(k)}=\frac{G^{(k)}+a-1}{a} .
$$

If $a \neq 1$, then $\bar{N}\left(r, \frac{1}{F^{(k)}}\right)=\bar{N}\left(r, \frac{1}{G^{(k)}+a-1}\right)$. Similarly, we can also get a contradiction. Then $a=1$, thus, we have $F^{(k)} \equiv G^{(k)}$. By Lemma 2.8, we get the conclusions of Theorem 1.6.

Subcase 2.3. $b=-1$.
From (3.10), we have

$$
F^{(k)}=\frac{a}{a+1-G^{(k)}} .
$$

If $a \neq-1$, then $\bar{N}\left(r, \frac{1}{G^{(k)}-(a+1)}\right)=\bar{N}\left(r, F^{(k)}\right)=0$. Similarly, we can also get a contradiction. Then $a=-1$, thus, we have $F^{(k)} G^{(k)}=1$.
Since f, g be transcendental entire functions, we get $F^{(k)}$ and $G^{(k)}$ have no zeros. Then $F^{(k)}=$ $e^{s(z)}, G^{(k)}=e^{t(z)}$, where $s(z), t(z)$ are nonzero polynomials. Since the order of f, g be zero, we get $s(z), t(z)$ are constants. So $F(z), G(z)$ be polynomials of degree at most $k-1$, which contradicts with the assumption that f, g be transcendental entire functions.
(II) $l=2$. Since

$$
\begin{align*}
& \bar{N}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}-1}\right)-N_{11}\left(r, \frac{1}{F^{(k)}-1}\right) \\
& \leq \frac{1}{2} T\left(r, F^{(k)}\right)+\frac{1}{2} T\left(r, G^{(k)}\right)+S_{1}(r, f)+S_{1}(r, g), \tag{3.13}
\end{align*}
$$

and

$$
\begin{align*}
\bar{N}_{(l+1}\left(r, \frac{1}{F^{(k)}-1}\right) & \leq \frac{1}{2} N\left(r, \frac{F^{(k)}}{F^{(k+1)}}\right)=\frac{1}{2} N\left(r, \frac{F^{(k+1)}}{F^{(k)}}\right)+S_{1}(r, f) \\
& \leq \frac{1}{2} \bar{N}\left(r, \frac{1}{F^{(k)}}\right)+S_{1}(r, f) \tag{3.14}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\bar{N}_{(l+1}\left(r, \frac{1}{G^{(k)}-1}\right) \leq \frac{1}{2} \bar{N}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, g) \tag{3.15}
\end{equation*}
$$

We distinguish the following two cases to prove.
Case 1. Suppose that $F^{(k)}, G^{(k)}$ satisfy Lemma 2.5(i). By (3.13),(3.14) and (3.15), we have

$$
\begin{aligned}
T\left(r, F^{(k)}\right)+T\left(r, G^{(k)}\right) & \leq N_{2}\left(r, \frac{1}{F^{(k)}}\right)+N_{2}\left(r, \frac{1}{G^{(k)}}\right)+N_{2}\left(r, F^{(k)}\right)+N_{2}\left(r, G^{(k)}\right) \\
& +\bar{N}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}-1}\right)-N_{11}\left(r, \frac{1}{F^{(k)}-1}\right) \\
& +\bar{N}_{(l+1}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}_{(l+1}\left(r, \frac{1}{G^{(k)}-1}\right)+S_{1}(r, f)+S_{1}(r, g) \\
& \leq N_{2}\left(r, \frac{1}{F^{(k)}}\right)+N_{2}\left(r, \frac{1}{G^{(k)}}\right)+\frac{1}{2} T\left(r, F^{(k)}\right)+\frac{1}{2} T\left(r, G^{(k)}\right) \\
& +\frac{1}{2} \bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\frac{1}{2} \bar{N}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, f)+S_{1}(r, g)
\end{aligned}
$$

which means,

$$
\begin{align*}
T\left(r, F^{(k)}\right)+T\left(r, G^{(k)}\right) & \leq 2 N_{2}\left(r, \frac{1}{F^{(k)}}\right)+2 N_{2}\left(r, \frac{1}{G^{(k)}}\right) \\
& +\bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, f)+S_{1}(r, g) \tag{3.16}
\end{align*}
$$

By (3.1)—(3.6) and (3.16), we obtain

$$
\begin{aligned}
(n+\lambda)[T(r, f)+T(r, g)] & \leq N_{2}\left(r, \frac{1}{F^{(k)}}\right)+N_{2}\left(r, \frac{1}{G^{(k)}}\right)+N_{k+2}\left(r, \frac{1}{F}\right) \\
& +N_{k+2}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, f)+S_{1}(r, g) \\
& \leq\left[3 m_{1}+3 d_{1}+(3 k+5) m_{2}\right][T(r, f)+T(r, g)] \\
& +(3 k+5) d_{2}\left[\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right]+S_{1}(r, f)+S_{1}(r, g)
\end{aligned}
$$

which contradicts with the assumption that $n>3 m_{1}+3 d_{1}+(3 k+5)\left(m_{2}+d_{2}\right)-\lambda-(3 k+5) d_{2} \chi$.
Case 2. Suppose that $F^{(k)}, G^{(k)}$ satisfy Lemma 2.5(ii), similar to the proof of Case 2 in (I), we get the conclusions of Theorem 1.6.
(III) $l=1$. Since

$$
\begin{align*}
& \bar{N}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}-1}\right)-N_{11}\left(r, \frac{1}{F^{(k)}-1}\right) \\
& \leq \frac{1}{2} N\left(r, F^{(k)}\right)+\frac{1}{2} N\left(r, G^{(k)}\right)+S_{1}(r, f)+S_{1}(r, g) \\
& \leq \frac{1}{2} T\left(r, F^{(k)}\right)+\frac{1}{2} T\left(r, G^{(k)}\right)+S_{1}(r, f)+S_{1}(r, g) \tag{3.17}
\end{align*}
$$

and

$$
\begin{align*}
& \bar{N}_{(2}\left(r, \frac{1}{F^{(k)}}\right) \leq \bar{N}\left(r, \frac{1}{F^{(k)}}\right)+S_{1}(r, f) \tag{3.18}\\
& \bar{N}_{(2}\left(r, \frac{1}{F^{(k)}}\right) \leq \bar{N}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, g) \tag{3.19}
\end{align*}
$$

We distinguish the following two cases to prove.
Case 1. Suppose that $F^{(k)}, G^{(k)}$ satisfy Lemma 2.5(i). By (3.17),(3.18) and (3.19), we have

$$
\begin{aligned}
T\left(r, F^{(k)}\right)+T\left(r, G^{(k)}\right) & \leq N_{2}\left(r, \frac{1}{F^{(k)}}\right)+N_{2}\left(r, \frac{1}{G^{(k)}}\right)+N_{2}\left(r, F^{(k)}\right)+N_{2}\left(r, G^{(k)}\right) \\
& +\bar{N}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}-1}\right)-N_{11}\left(r, \frac{1}{F^{(k)}-1}\right) \\
& +\bar{N}_{(l+1}\left(r, \frac{1}{F^{(k)}-1}\right)+\bar{N}_{(l+1}\left(r, \frac{1}{G^{(k)}-1}\right)+S_{1}(r, f)+S_{1}(r, g) \\
& \leq N_{2}\left(r, \frac{1}{F^{(k)}}\right)+N_{2}\left(r, \frac{1}{G^{(k)}}\right)+\frac{1}{2} T\left(r, F^{(k)}\right)+\frac{1}{2} T\left(r, G^{(k)}\right) \\
& +\bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, f)+S_{1}(r, g)
\end{aligned}
$$

which means,

$$
\begin{align*}
T\left(r, F^{(k)}\right)+T\left(r, G^{(k)}\right) & \leq 2 N_{2}\left(r, \frac{1}{F^{(k)}}\right)+2 N_{2}\left(r, \frac{1}{G^{(k)}}\right) \\
& +2 \bar{N}\left(r, \frac{1}{F^{(k)}}\right)+2 \bar{N}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, f)+S_{1}(r, g) \tag{3.20}
\end{align*}
$$

By (3.1)-(3.6) and (3.20), we obtain

$$
\begin{aligned}
(n+\lambda)[T(r, f)+T(r, g)] & \leq N_{2}\left(r, \frac{1}{F^{(k)}}\right)+N_{2}\left(r, \frac{1}{G^{(k)}}\right)+N_{k+2}\left(r, \frac{1}{F}\right) \\
& +N_{k+2}\left(r, \frac{1}{G}\right)+2 \bar{N}\left(r, \frac{1}{F^{(k)}}\right)+2 \bar{N}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, f)+S_{1}(r, g) \\
& \leq\left[4 m_{1}+4 d_{1}+(4 k+6) m_{2}\right][T(r, f)+T(r, g)] \\
& \left.+(4 k+6) d_{2}\right]\left[\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right]+S_{1}(r, f)+S_{1}(r, g),
\end{aligned}
$$

which contradicts with the assumption that $\left.n>4 m_{1}+4 d_{1}+(4 k+6)\left(m_{2}+d_{2}\right)-\lambda-(4 k+6) d_{2}\right] \chi$.
Case 2. Suppose that $F^{(k)}, G^{(k)}$ satisfy Lemma 2.5(ii), similar to the proof of Case 2 in (I), we get the conclusions of Theorem 1.6.
(IV) $l=0$, that is $F^{(k)}, G^{(k)}$ share $1 I M$. Suppose that $H=\frac{F^{(k+2)}}{F^{(k+1)}}-2 \frac{F^{(k+1)}}{F^{(k)}-1}-\frac{G^{(k+2)}}{G^{(k+1)}}+$ $2 \frac{G^{(k+1)}}{G^{(k)}-1} \not \equiv 0$, by Lemma 2.6, we get

$$
\begin{align*}
T\left(r, F^{(k)}\right)+T\left(r, G^{(k)}\right) & \leq 2\left(N_{2}\left(r, \frac{1}{F^{(k)}}\right)+N_{2}\left(r, \frac{1}{G^{(k)}}\right)+N_{2}\left(r, F^{(k)}\right)+N_{2}\left(r, G^{(k)}\right)\right) \\
& +3\left(\bar{N}\left(r, F^{(k)}\right)+\bar{N}\left(r, G^{(k)}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}}\right)\right) \\
& +S_{1}(r, f)+S_{1}(r, g) \tag{3.21}
\end{align*}
$$

By (3.1)—(3.4) and (3.21), we obtain

$$
\begin{aligned}
(n+\lambda)[T(r, f)+T(r, g)] & \leq N_{2}\left(r, \frac{1}{F^{(k)}}\right)+N_{2}\left(r, \frac{1}{G^{(k)}}\right)+N_{k+2}\left(r, \frac{1}{F}\right)+N_{k+2}\left(r, \frac{1}{G}\right) \\
& +3 \bar{N}\left(r, \frac{1}{F^{(k)}}\right)+3 \bar{N}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, f)+S_{1}(r, g) \\
& \leq 2\left[m_{1}+d_{1}+(k+2) m_{2}\right][T(r, f)+T(r, g)] \\
& +(2 k+4) d_{2}\left[\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right] \\
& +3\left[m_{1}+(k+1) m_{2}\right][T(r, f)+T(r, g)] \\
& +3(k+1)\left(d_{1}+d_{2}\right)\left[\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)\right]+S_{1}(r, f)+S_{1}(r, g)
\end{aligned}
$$

which contradicts with the assumption that $n>5 m_{1}+(3 k+5) d_{1}+(5 k+7)\left(m_{2}+d_{2}\right)-\lambda-$ $\left[(3 k+3) d_{1}+(5 k+7) d_{2}\right] \chi$, then $H \equiv 0$.
By integration for H twice, we can get (3.10).
Proceeding similarly as the proof of Case 2 in (I), we get the conclusions of Theorem 1.6.
Thus, the proof of Theorem 1.6 is completed.

4 Remarks

In Theorem1.1 and Theorem1.6, we mainly discuss the q -shift difference-differential polynomial of entire functions. It is natural to propose the following question: What happens to Theorem1.1 and Theorem 1.6 if f is meromorphic? In this paper, we get the result related to Theorem 1.1 as follows.

Theorem 4.1. Let f and g be two transcendental meromorphic functions with zero order. $F(z)$ and $G(z)$ are defined as in Theorem 1.1. Suppose that $n>2 m_{1}+(2 k+2) m_{2}+3 d_{1}+(2 k+$ 3) $d_{2}+1-\lambda$. If $F^{(k)}$ and $G^{(k)}$ share $1, \infty C M$, then $F^{(k)}=G^{(k)}$.

Proof. Since f, g are two transcendental meromorphic functions with zero order, $F^{(k)}$ and $G^{(k)}$ share $1, \infty C M$, there exists a nonzero constant c such that

$$
\frac{F^{(k)}-1}{G^{(k)}-1}=c .
$$

Rewriting the above equation, we have

$$
c G^{(k)}=F^{(k)}-1+c .
$$

Assume that $c \neq 1$. Using the second fundamental theorem, by Lemma 2.2 and Lemma 2.4, we get

$$
\begin{aligned}
T\left(r, F^{(k)}\right) & \leq \bar{N}\left(r, F^{(k)}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{F^{(k)}-1+c}\right)+S_{1}(r, f) \\
& \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F^{(k)}}\right)+\bar{N}\left(r, \frac{1}{G^{(k)}}\right)+S_{1}(r, f) \\
& \leq\left(d_{1}+d_{2}+1\right) T(r, f)+T\left(r, F^{(k)}\right)-T(r, F) \\
& +N_{k+1}\left(r, \frac{1}{F}\right)+N_{k+1}\left(r, \frac{1}{G}\right)+S_{1}(r, f)+S_{1}(r, g) .
\end{aligned}
$$

So

$$
\begin{aligned}
(n+\lambda) T(r, f) \leq & \left(d_{1}+d_{2}+1\right) T(r, f)+ \\
& {\left[m_{1}+d_{1}+(k+1)\left(m_{2}+d_{2}\right)\right][T(r, f)+T(r, g)]+S_{1}(r, f)+S_{1}(r, g) }
\end{aligned}
$$

Similarly, we obtain

$$
\begin{aligned}
(n+\lambda) T(r, g) \leq & \left(d_{1}+d_{2}+1\right) T(r, g)+ \\
& {\left[m_{1}+d_{1}+(k+1)\left(m_{2}+d_{2}\right)\right][T(r, f)+T(r, g)]+S_{1}(r, f)+S_{1}(r, g) . }
\end{aligned}
$$

So

$$
\begin{aligned}
& (n+\lambda)[T(r, f)+T(r, g)] \\
& \leq\left[2 m_{1}+3 d_{1}+(2 k+2) m_{2}+(2 k+3) d_{2}+1\right][T(r, f)+T(r, g)]+S_{1}(r, f)+S_{1}(r, g),
\end{aligned}
$$

which contradicts with the assumption that $n>2 m_{1}+3 d_{1}+(2 k+2) m_{2}+(2 k+3) d_{2}+1-\lambda$.
Then $c=1$, thus, we have $F^{(k)} \equiv G^{(k)}$.
This completes the proof of Theorem 4.1.

References

[1] A. Banerjee, Weighted sharing of a small function by a meromorphic function and its derivative,Comput.Math.Appl. 53,1750-1761(2007).
[2] D.C.Barnett, R.G.Halburd, W.Morgan, Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc.Roy.Soc.Edinburgh. 137, 457-474 (2007).
[3] T.B.Cao, K.Liu, N.Xu, Zeros and uniqueness of q-difference polynomials of meromorphic functions with zero order,Proc.Indian Acad.Sci. 124,553-549(2014).
[4] Y.M.Chiang and S.J.Feng, On the Nevanlinna characteristic $f(z+c)$ and difference equations in the complex plane,Ramanujan.J. 16,105-129(2008).
[5] C.Y.Fang and M.L.Fang,Uniqueness of meromorphic functions and differential polynomials,Comput.Math.Appl. 44,607-617(2002).
[6] R.G.Halburd and R.J.Korhonen, Nevanlinna theory for the difference operator,Ann.Acad.Sci. 31,463478(2006).
[7] R.G.Halburd and R.J.Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J.Math.Anal.Appl. 314,477-487(2006).
[8] I.Lahiri, Value distribution of certain differential polynomials, Int.J.Math.Sci. 28,83-91(2001).
[9] I.Lahiri and A.Sarkar, Uniqueness of meromorphic function and its derivative, J.Inequal.Pure.Appl.Math 5,1-20(2004).
[10] X.G.Qi and L.Z.Yang, Sets and value sharing of q-differences of meromorphic functions, Bull.Korean Math.Soc. 377,441-449(2013).
[11] X. L.Wang, H.Y. Xu, T. S.Zhan, Properties of q-shift difference-differential polynomials of meromorphic functions, Adv.Differ.Equ. 249,1-16(2014).
[12] J.F.Xu and H.X.Yi, Uniqueness of entire functions and differential polynomials,Bull. Korean Math.Soc. 44,623-629(2007).
[13] H. X. Yi and C.C.Yang, Uniqueness theory of meromorphic functions, Science Press, Beijing (2003).
[14] J.L.Zhang and R.J.Korhonen,On the Nevanlinna characteristic $f(q z)$ and its applications, J.Math.Anal.Appl. 50,731-745(2010).

Author information

Meirong Lin, Weichuan Lin, Jie Luo, Information Technology College of Fujian Normal University, Fuzhou, China.
E-mail: fzlinmr@163.com

Received: May 28, 2015.

Accepted: Nvember 22, 2015.

