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Abstract Let R be an associative ring with identity;( R) denote the center df andg(z) be
a polynomial inC'(R)[x]. We introduce the new notion gfz)-f-clean rings, as a generalization
of g(x)-clean rings.R is calledg(z)-f-clean if every element € R can be written a8 = s + w
with ¢g(s) = 0 andw a full element ofR. In this paper, we study some general properties of
g(x)-f-clean rings.

1 Introduction

Through this paper, all rings are associative with identity. We denote thef sdl invertible
elements ink by U(R), C(R) the center of a ring? andg(z) be a polynomial inC(R)[z]. A
ring R is called clean if for every elementc R, r = e+u with e = e andu € U(R) [8]. Aring

R is calledg(z)-clean if for every element € R, r = s + u with g(s) = 0 andu € U(R) [3].

In [5, 11] Fan, Yang, Wang and Chen completely determined the relation betwesm rifgs
andg(z)-clean rings independently. It's clear thaty — 1)-clean rings are precisely the clean
rings. If V is a vector space of countable infinite dimension over a divisionEinGamillo and
Simon [3] proved that Eng (V) is g(z)-clean provided thaj(x) has two distinct roots i@ (D).
Moreover, this result has been extended as the following:

Theorem 1.1.(see P]) Let R be a ring, M be a semisimple module ov&randC' = C(R).
If g(z) € (z — a)(z — b)C[z] wherea,b € C andb,b — a are both units inR, then Eng; M is
g(x)-clean.

An elementz € R is said to be full element if there existt € R such thatszt = 1. The
set of all full elements of a rin@ will be denoted byK (R). Obviously, invertible elements and
one-sided invertible elements are alli( R). In [7], Li and Feng introduced-clean rings. A
ring R is said to bef-clean if every element ak is the sum of an idempotent and full element.
Clearly every clean ring ig-clean. We know that, the notion of purely infinite simple rings was
introduced by Ara, Goodearl and Pardg.[ A simple unital ringR is purely infinite in case
that it is not a division ring and for each non-zero element R, there exist element,t € R
such thatzaxt = 1. The class of purely infinite simple rings is quite large, one can find variou
examples inI]. We do not know whether every purely infinite simple ring is a clean ringt B
for any x in a purely infinite simple ring, we have = 0 orz € K(R). Hence, every purely
infinite simple ring is af-clean ring.

In this paper, we continue this topic. Thus we defjiie)-f-clean rings and determine some
general properties of these rings.

Throughout this paper all rings are assumed to be associative with identitynodules are
unitary. M, (R) denotes the, x n matrix ring over the ringz. 7,,(R) stands fom x n upper
triangular matrix ring. The notatioR™** always stands for the set

Ty

T1,...,Tn € R ),
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which is an( w(R), ) -bimodule. The notatio®'*" stands for the s€t(x1, . .., z,)|x1, ..., 2, €
R}, which is an(R, M,,(R))-bimodule.

2 Main Results
Firstly, we define and get some basic propertieg(af-f-clean rings.

Definition 2.1.Let g(z) be a polynomial inC'(R)[z]. An elementr € R is g(z)-f-clean if
r =s+wwith g(s) = 0andw € K(R). Ris g(x)-f-clean if every element aR is g(z)-f-clean.

Itis clear that, f-clean rings are exactly’ —x)-f-clean rings. However, there agér)-f-clean
rings which are not f-clean.

LetZ,) = {% € Q| gcdp,n) = 1,pis prime} be the localization o at the prime ideahZ
andCj3 be the cyclic group of order 3.

Example 2.2.Let R be a commutative local or commutative semiperfect ring with 2 (R).
By [11, Theorem 2.7],RC3 is (2° — 1)-f-clean. In particularZ Cs is a (z° — 1)-f-clean.
Furthermore, by§, Example 1]/, C3 is (% — 2)-f-clean. HoweverZ ) Cs is not f-clean.

We will investigate the equivalence gfz)-f-cleanness and f-cleaness.

Theorem 2.3.LetR be aring,g(z) = (z —a)(x —b) € C(R)[z] witha,b € C(R) and(b—a) €
U(R). ThenR is f-clean if and only ifR is g(x)-f-clean.

Proof. (=) Letr € R. SinceR is f-clean and(b — a) € U(R), (g:z) = ¢ + w where
e?=ec Randw € K(R). Thus,r = [e(b — a) + a] + w(b — a) wherew(b — a) € k(R) by [7,
Lemma 3.1]. Also

le(b—a) +a—a]le(b—a)+a—b] =0.
Hence,Ris (z—a)(z—b)-f-clean.(«<) Letr € R. SinceRis (z—a)(x—b)-f-clean,r(b—a)+a =
s+wwhere(s —a)(s—b) = 0andw € K(R). Thus,r = Zerb%wherebT € K(R)
by [7, Lemma 3.1]. Moreover

s—a., (s—a)(s=b+b—a) (s—a)(b—a) s—a

(b—a> N (b—a)?  (b—a)?  b—a’

ThereforeR is f-clean. O

Theorem 2.4.Let R be a(z — a)(z — b)-f-clean ring witha, b € C(R) andb — a € U(R). Then
for any central idempotentin R, eRe iS (z — ea)(x — eb)-f-clean.

Proof. By Theorem2.3 R is f-clean. ThereforesRe is f-clean by [, Proposition 2.12]. Since
eb —ea € U(eRe), theneRe is (x — ea)(z — eb)-f-clean by Theoren2.3. O

Aring R is called left quasi-duo ring if every maximal left ideal Bfis a two-sided ideal.
Commutative rings, local rings, rings in which every non-unit has agpdhat is central are all
belong to this class of ring4.§]. Aring R is said to be Dedekind finite ify = 1 always implies
yr = 1 foranyz,y € R. Aring R is called abelian if all idempotents are central.

Proposition 2.5.Let R be a left quasi-duo ring, theR is clean if and only ifR is g(z)-f-clean.
Proof. It's clear by [7, Theorem 2.9]. O
Corollary 2.6. Every abeliany(z)-f-clean ring isg(x)-f-clean.

Proof. Note that every abelian ring is Dedekind finite and so the proof is done byrtiut of
[7, Theorem 2.9]. O
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Let R and S be rings and : C(R) — C(S) be a ring homomorphism witk(1) = 1. For
g(z) =Y a;z’ € C(R)[z], letd (g(z)) = > 0(a;)x € C(S)[z]. Thend induces a mag’ from
C(R)[z] to C(S)[z]. If g(x) is a polynomial with coefficients i, thend’(g(x)) = g(z). Now,

we have the following:

Theorem 2.7.Letd : R — S be aring epimorphism. IR is g(z)-f-clean, thenS is 6’ (g(x))-f-
clean.

Proof. Letg(z) = ap + a1z + - - - + a,2™ € C(R)[z]. Then
0'(g(x)) = 6(a0) + O(az)w + -~ + 6(an)z" € C(S)[a].

For anys € S, there exists: € R such thatd(r) = s. SinceR is g(z)-f-clean, there exist
t € Randw € K(R) such that- = ¢ + w with ¢g(¢) = 0. Thens = 0(r) = 6(t) + 6(w) with
0(w) € K(S),0'(9(x)) [s=o()= 0. ThusS is ¢’ (g(x))-f-clean. i

Now by Theoren®.7, the following holds:

Corollary 2.8. If R is g(z)-f-clean, then for any ideal of R, R/I is g(x)-f-clean withg(x) €
C(R/T)lz].

Corollary 2.9. Letg(z) € Z[z] and{R;}:c; be a family of rings. Thef],_, R; is g(z)-f-clean
if and only if R; is g(z)-f-clean for each € I.

Recall that for a ringk with a ring endomorphism : R — R, the skew power series ring
R[[t; a]] of R is the ring obtained by giving the formal power series ring akerith the new
multiplicationtr = «(r)t for all r € R.

Corollary 2.10. Leta be an endomorphism éfandg(z) = fo+fiz+- - -+ fn2" € C(R|[[t, a]])[]
where f; = ag; + aoat + --- € C(R[[t,a]]). If R[[t,a]] is a g(z)-f-clean ring thenR is
aoo + agrx + - - - + ag,z"-f-clean.

Proposition 2.11.Let« be an endomorphism &. If R is g(x)-f-clean ring, then the skew power
series ringR|[t, a]] of R is ag(z)-f-clean ring.

Proof. For anyh = ap+ait+- -+ € R|[[t, ], write ag = so+wo With g(sg) = 0 andwo € k(R).
Assume thatquwoko = 1 for somely, kg € R and leth’ = h — sg = wo+ a1t + - - -. The equation
w=(lo+0+4+--- )W (ko+0+---) =1+ lpara(ko)z + - - - shows thaiv € U(R|[[t, a]]), since
U(R][t,a]]) = {ao+ a1z + -+ ap € U(R)} without any assumption on the endomorphism
Hencel’ € k(R[[t,«]]) andh = so + I/ with g(sg) = 0. i

Corollary 2.12. Let« be an endomorphism @ andg(z) € C(R)[z]. ThenR is g(x)-f-clean if
and only ifR[[t, a]] is g(x)-f-clean ring.

Li and Feng F] show that every (finite) matrix over a f-clean ring is f-clean. We retteit
foraringR, C(M,(R)) = {al,|a € C(R)} wherel, is n x n identity matrix. Now we have the
following:

Theorem 2.13.If Ris aag + a1z + - - - + an,z™-f-clean ring, thenM,, (R) is aol,, + a1l,x +
-+« + ap I, x™-f-clean ring forn > 1, wherel,, is n x n identity matrix.

Proof. Let g(z) = ap + a1z + - - + anz™ and R be g(z)-f-clean ring. Given any € R, we
have somé € R andw € k(R) such that- = | + w. We writeswt = 1 for somes,¢ € R and
g(1) = 0. Assume that theorem holds for the matrix ring(R), k > 1. Let

A= <“11 “12> € My, 1(R)

az1 a2
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with a1 € R,a1p € Rle,GZJ_ S RFx1 anda22 S Mk(R) We haveall = [ + w with g(l) =0
andswt = 1 for anys,t € R. There also exist a matrix and a full matrixW such that
azy = apitsarp = L+ W, agly + arlxL + --- + a, I, L™ = 0 by hypothesis. We write
SWT = I, for someS, T € My(R). Therefore, we have

A = diag(l,L) + <“’ 12 )

a1 W + apzitsayn

Obviously,aoly.1 + a1l adiag(l, L) + - - - + amIx1(diag(l, L))™ = 0. Let

s 0 t —tsaoT
P = ,Q = € Mpi1(R
<—Sa21ts S) @ (0 T ) k+1( )

and the equation
p(" 2 Q= ! 0) _ Ijta
a1 W + azitsain 0 I

shows thal ,,, 1w taytsas, ) 1S @ full matrix, henced is ag + a1l 12 + - - - + am I 412™-f-clean,

apitsaln

as desired. |

A Morita Context(A, B, V, W, 1, ¢) consists two ringsi, B, two bimodules,Vz,5 W4 and
a pair of bimodule homomorphisngs: VoW — A, ¢ : W®4V — B, such that)(vew)v’ =
vo(w @), p(w @ v)w = wip(v@w'). we can form

M:{(a Z>|aeA,beB,veV,weW}
w

and define a multiplication of/ as follows:

a v a v\ fad + (v w) av’ + vb’

w b \w v wa’ + bw' dlwv)+bv ]’
A routine check shows that, with this multiplication (and entry-wise additidh)pecomes an
associative ring. We call/ a Morita Context ring. Obviously, the class of the rings of Morita
Contexts includes all 22 matrix rings and all formal triangular matrix rings. Note thatit= B

thenC(M) = {alzJa € C(A)} wherel, is 2 x 2 matrix identity. Our concern here is the Morita
Context rings with zero homomorphisms.

Theorem 2.14.LetM = ({ ") be the Morita Context with, ¢ = 0. ThenM is apl2+ a1 oz +
-+ ap Lrx™-f-clean if and only ifA is ag + a1z + - - - + a,x™-f-clean.

Proof. Let g(z) = ao + a1z + - -+ + ama™ and A is g(z)-f-clean. Forany = (2 }) € M,
we havea = I3 + w1 andb = I + wp with g(11) = g(l2) = 0 andwy,w, € K(A). Assume
that sywit; = 1, spwpt, = 1 for somesy, t1, s0,t, € R. Letr = diag(ll,lz) + (qu,l 7:,)2) =
diag(l1,l2) + W. Obviously,

aolz + arlhdiag(ly, 1) + - - + ama(diag(ly, 12))™ = 0

and the equation

S1 0 w1 v t1 —tisyvta | 1 0
—sowit181 S2 w wo 0 to —\o 1)’

implies thatiV is a full matrix. Hencer is g(x)-f-clean, as required. Conversely, lgtz) =
aol + a1lox + - - + ap Ioa™ and M is ¢’ (z)-f-clean. For any- € A, we have(j 9) = L+ W

’ ’

whereL = (g ), W = (%, V), ¢ (L) = 0andW € K(M). Assume thaSWT = I for

w b w' b
someS = (1), T = (u. t.) € M. Thereforey = a + o’ whereg(a) = 0 andasa’az = 1,

i.,ea’ € K(A). HenceA is g(z)-f-clean as required.
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Corollary 2.15. Foranyn > 1, Risag+ a1z + - - - + a,,z™-f-clean ring if and only if the: x n
upper triangular matrix ringl’, (R) is aol,, + a1l,x + - - - + ap Iyz™-f-clean.

Proof. Let £, A € T,,(R). Itis straightforward to calculate tha§l,, + a1, E+- - -+ ay [, E™
Oifand only ifag + a1E;; + -+ - + an Ell' = 0andA € K(T,,(R)) ifand only if A;; € K(R
Hence the corollary is straightforward.

~—

O

Finally, we give a property which has related(ta:?* — bx)-f-clean rings.

Proposition 2.16.Let R be aring andn € N. ThenR is (az?" — bz)-f-clean if and only ifR is
(ax®™ + bx)-f-clean.

Proof. Note that, for any- € R, —r = s + w with as®® — bs = 0 andw € K(R) if and only
if = (=s) + (—w) with a(—s)?" + b(—s) = 0 and—w € K(R). Therefore the proof is
complete. O
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