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Abstract LetR be an associative ring with identity,C(R) denote the center ofR andg(x) be
a polynomial inC(R)[x]. We introduce the new notion ofg(x)-f-clean rings, as a generalization
of g(x)-clean rings.R is calledg(x)-f-clean if every elementr ∈ R can be written asr = s+ w
with g(s) = 0 andw a full element ofR. In this paper, we study some general properties of
g(x)-f-clean rings.

1 Introduction

Through this paper, all rings are associative with identity. We denote the set of all invertible
elements inR by U(R), C(R) the center of a ringR andg(x) be a polynomial inC(R)[x]. A
ringR is called clean if for every elementr ∈ R, r = e+uwith e2 = e andu ∈ U(R) [8]. A ring
R is calledg(x)-clean if for every elementr ∈ R, r = s + u with g(s) = 0 andu ∈ U(R) [3].
In [5, 11] Fan, Yang, Wang and Chen completely determined the relation between clean rings
andg(x)-clean rings independently. It’s clear that,x(x − 1)-clean rings are precisely the clean
rings. IfV is a vector space of countable infinite dimension over a division ringD, Camillo and
Simon [3] proved that EndD(V ) is g(x)-clean provided thatg(x) has two distinct roots inC(D).
Moreover, this result has been extended as the following:

Theorem 1.1.(see [9]) Let R be a ring,RM be a semisimple module overR andC = C(R).
If g(x) ∈ (x − a)(x − b)C[x] wherea, b ∈ C and b, b − a are both units inR, then EndRM is
g(x)-clean.

An elementx ∈ R is said to be full element if there exists, t ∈ R such thatsxt = 1. The
set of all full elements of a ringR will be denoted byK(R). Obviously, invertible elements and
one-sided invertible elements are all inK(R). In [7], Li and Feng introducedf -clean rings. A
ring R is said to bef -clean if every element ofR is the sum of an idempotent and full element.
Clearly every clean ring isf -clean. We know that, the notion of purely infinite simple rings was
introduced by Ara, Goodearl and Pardo [1]. A simple unital ringR is purely infinite in case
that it is not a division ring and for each non-zero elementx ∈ R, there exist elementz, t ∈ R
such thatzxt = 1. The class of purely infinite simple rings is quite large, one can find various
examples in [1]. We do not know whether every purely infinite simple ring is a clean ring. But
for anyx in a purely infinite simple ring, we havex = 0 or x ∈ K(R). Hence, every purely
infinite simple ring is af -clean ring.

In this paper, we continue this topic. Thus we defineg(x)-f-clean rings and determine some
general properties of these rings.

Throughout this paper all rings are assumed to be associative with identityand modules are
unitary. Mn(R) denotes then × n matrix ring over the ringR. Tn(R) stands forn × n upper
triangular matrix ring. The notationRn×1 always stands for the set
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which is an(Mn(R), R)-bimodule. The notationR1×n stands for the set{(x1, . . . , xn)|x1, . . . , xn ∈
R}, which is an(R,Mn(R))-bimodule.

2 Main Results

Firstly, we define and get some basic properties ofg(x)-f-clean rings.

Definition 2.1.Let g(x) be a polynomial inC(R)[x]. An elementr ∈ R is g(x)-f-clean if
r = s+w with g(s) = 0 andw ∈ K(R). R is g(x)-f-clean if every element ofR is g(x)-f-clean.

It is clear that, f-clean rings are exactly(x2−x)-f-clean rings. However, there areg(x)-f-clean
rings which are not f-clean.
Let Z(p) = {

m

n
∈ Q | gcd(p, n) = 1, p is prime} be the localization ofZ at the prime idealpZ

andC3 be the cyclic group of order 3.

Example 2.2.Let R be a commutative local or commutative semiperfect ring with 2∈ U(R).
By [11, Theorem 2.7],RC3 is (x6 − 1)-f-clean. In particular,Z(7)C3 is a (x6 − 1)-f-clean.
Furthermore, by [5, Example 1],Z(7)C3 is (x4 − x)-f-clean. However,Z(7)C3 is not f-clean.

We will investigate the equivalence ofg(x)-f-cleanness and f-cleaness.

Theorem 2.3.LetR be a ring,g(x) = (x− a)(x− b) ∈ C(R)[x] with a, b ∈ C(R) and(b− a) ∈
U(R). ThenR is f-clean if and only ifR is g(x)-f-clean.

Proof. (⇒) Let r ∈ R. SinceR is f-clean and(b − a) ∈ U(R),
(r − a)

b− a
= e + w where

e2 = e ∈ R andw ∈ K(R). Thus,r = [e(b− a) + a] + w(b− a) wherew(b− a) ∈ k(R) by [7,
Lemma 3.1]. Also

[e(b− a) + a− a][e(b− a) + a− b] = 0.

Hence,R is (x−a)(x−b)-f-clean.(⇐) Let r ∈ R. SinceR is (x−a)(x−b)-f-clean,r(b−a)+a =

s+w where(s− a)(s− b) = 0 andw ∈ K(R). Thus,r =
s− a

b− a
+

w

b− a
where

w

b− a
∈ K(R)

by [7, Lemma 3.1]. Moreover

(
s− a

b− a
)2 =

(s− a)(s− b+ b− a)

(b− a)2 =
(s− a)(b− a)

(b− a)2 =
s− a

b− a
.

ThereforeR is f-clean.

Theorem 2.4.LetR be a(x− a)(x− b)-f-clean ring witha, b ∈ C(R) andb− a ∈ U(R). Then
for any central idempotente in R, eRe is (x− ea)(x− eb)-f-clean.

Proof. By Theorem2.3, R is f-clean. Therefore,eRe is f-clean by [7, Proposition 2.12]. Since
eb− ea ∈ U(eRe), theneRe is (x− ea)(x− eb)-f-clean by Theorem2.3.

A ring R is called left quasi-duo ring if every maximal left ideal ofR is a two-sided ideal.
Commutative rings, local rings, rings in which every non-unit has a power that is central are all
belong to this class of rings [12]. A ring R is said to be Dedekind finite ifxy = 1 always implies
yx = 1 for anyx, y ∈ R. A ring R is called abelian if all idempotents are central.

Proposition 2.5.LetR be a left quasi-duo ring, thenR is clean if and only ifR is g(x)-f-clean.

Proof. It’s clear by [7, Theorem 2.9].

Corollary 2.6. Every abeliang(x)-f-clean ring isg(x)-f-clean.

Proof. Note that every abelian ring is Dedekind finite and so the proof is done by theproof of
[7, Theorem 2.9].
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Let R andS be rings andθ : C(R) → C(S) be a ring homomorphism withθ(1) = 1. For
g(x) =

∑

aix
i ∈ C(R)[x], let θ′(g(x)) =

∑

θ(ai)xi ∈ C(S)[x]. Thenθ induces a mapθ′ from
C(R)[x] to C(S)[x]. If g(x) is a polynomial with coefficients inZ, thenθ′(g(x)) = g(x). Now,

we have the following:

Theorem 2.7.Let θ : R → S be a ring epimorphism. IfR is g(x)-f-clean, thenS is θ′(g(x))-f-
clean.

Proof. Let g(x) = a0 + a1x+ · · ·+ anx
n ∈ C(R)[x]. Then

θ′(g(x)) = θ(a0) + θ(a1)x+ · · ·+ θ(an)x
n ∈ C(S)[x].

For anys ∈ S, there existsr ∈ R such thatθ(r) = s. SinceR is g(x)-f-clean, there exist
t ∈ R andw ∈ K(R) such thatr = t + w with g(t) = 0. Thens = θ(r) = θ(t) + θ(w) with
θ(w) ∈ K(S), θ′(g(x)) |x=θ(t)= 0. ThusS is θ′(g(x))-f-clean.

Now by Theorem2.7, the following holds:

Corollary 2.8. If R is g(x)-f-clean, then for any idealI of R, R/I is ḡ(x)-f-clean withḡ(x) ∈
C(R/I)[x].

Corollary 2.9. Let g(x) ∈ Z[x] and{Ri}i∈I be a family of rings. Then
∏

i∈I Ri is g(x)-f-clean
if and only ifRi is g(x)-f-clean for eachi ∈ I.

Recall that for a ringR with a ring endomorphismα : R → R, the skew power series ring
R[[t;α]] of R is the ring obtained by giving the formal power series ring overR with the new
multiplication tr = α(r)t for all r ∈ R.

Corollary 2.10. Letα be an endomorphism ofR andg(x) = f0+f1x+· · ·+fnxn ∈ C(R[[t, α]])[x]
where fi = a0i + a01t + · · · ∈ C(R[[t, α]]). If R[[t, α]] is a g(x)-f-clean ring thenR is
a00 + a01x+ · · ·+ a0nx

n-f-clean.

Proposition 2.11.Letα be an endomorphism ofR. If R is g(x)-f-clean ring, then the skew power
series ringR[[t, α]] ofR is a g(x)-f-clean ring.

Proof. For anyh = a0+a1t+ · · · ∈ R[[t, α]], writea0 = s0+w0 with g(s0) = 0 andw0 ∈ k(R).
Assume thatl0w0k0 = 1 for somel0, k0 ∈ R and leth′ = h− s0 = w0 + a1t+ · · · . The equation
w = (l0 + 0+ · · · )h′(k0 + 0+ · · · ) = 1+ l0a1α(k0)x+ · · · shows thatw ∈ U(R[[t, α]]), since
U(R[[t, α]]) = {a0 + a1x+ · · · a0 ∈ U(R)} without any assumption on the endomorphismα.
Henceh′ ∈ k(R[[t, α]]) andh = s0 + h′ with g(s0) = 0.

Corollary 2.12. Letα be an endomorphism ofR andg(x) ∈ C(R)[x]. ThenR is g(x)-f-clean if
and only ifR[[t, α]] is g(x)-f-clean ring.

Li and Feng [7] show that every (finite) matrix over a f-clean ring is f-clean. We recallthat
for a ringR, C(Mn(R)) = {aIn|a ∈ C(R)} whereIn is n×n identity matrix. Now we have the
following:

Theorem 2.13.If R is a a0 + a1x + · · · + amx
m-f-clean ring, thenMn(R) is a0In + a1Inx +

· · ·+ amInx
m-f-clean ring forn ≥ 1, whereIn is n× n identity matrix.

Proof. Let g(x) = a0 + a1x + · · · + amx
m andR beg(x)-f-clean ring. Given anyr ∈ R, we

have somel ∈ R andw ∈ k(R) such thatr = l + w. We writeswt = 1 for somes, t ∈ R and
g(l) = 0. Assume that theorem holds for the matrix ringMk(R), k ≥ 1. Let

A =

(

a11 a12

a21 a22

)

∈Mk+1(R)
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with a11 ∈ R, a12 ∈ R1×k, a21 ∈ Rk×1 anda22 ∈ Mk(R). We havea11 = l + w with g(l) = 0
and swt = 1 for any s, t ∈ R. There also exist a matrixL and a full matrixW such that
a22 = a21tsa12 = L + W , a0Ik + a1IkL + · · · + amIkL

m = 0 by hypothesis. We write
SWT = Ik for someS, T ∈Mk(R). Therefore, we have

A = diag(l, L) +

(

w a12

a21 W + a21tsa12

)

.

Obviously,a0Ik+1 + a1Ik+1diag(l, L) + · · ·+ amIk+1(diag(l, L))m = 0. Let

P =

(

s 0
−Sa21ts S

)

, Q =

(

t −tsa12T

0 T

)

∈Mk+1(R)

and the equation

P

(

w a12

a21 W + a21tsa12

)

Q =

(

1 0
0 Ik

)

= Ik+1

shows that
( w a12
a21 W+a21tsa12

)

is a full matrix, henceA is a0+ a1Ik+1x+ · · ·+ amIk+1x
m-f-clean,

as desired.

A Morita Context(A,B, V,W,ψ, φ) consists two ringsA,B, two bimodulesAVB,B WA and
a pair of bimodule homomorphismsψ : V ⊗BW → A, φ : W⊗AV → B, such thatψ(v⊗w)v′ =
vφ(w ⊗ v′), φ(w ⊗ v)w′ = wψ(v ⊗ w′). we can form

M =

{(

a v

w b

)

| a ∈ A, b ∈ B, v ∈ V,w ∈W

}

and define a multiplication onM as follows:
(

a v

w b

)(

a′ v′

w′ b′

)

=

(

aa′ + ψ(v ⊗ w′) av′ + vb′

wa′ + bw′ φ(w ⊗ v′) + bb′

)

.

A routine check shows that, with this multiplication (and entry-wise addition),M becomes an
associative ring. We callM a Morita Context ring. Obviously, the class of the rings of Morita
Contexts includes all 2×2 matrix rings and all formal triangular matrix rings. Note that ifA = B
thenC(M) = {aI2|a ∈ C(A)} whereI2 is 2× 2 matrix identity. Our concern here is the Morita
Context rings with zero homomorphisms.

Theorem 2.14.LetM = ( A V
W A ) be the Morita Context withψ, φ = 0. ThenM is a0I2+a1I2x+

· · ·+ amI2x
m-f-clean if and only ifA is a0 + a1x+ · · ·+ amx

m-f-clean.

Proof. Let g(x) = a0 + a1x + · · · + amx
m andA is g(x)-f-clean. For anyr = ( a v

w b ) ∈ M ,
we havea = l1 + w1 andb = l2 + w2 with g(l1) = g(l2) = 0 andw1, w2 ∈ K(A). Assume
that s1w1t1 = 1, s2w2t2 = 1 for somes1, t1, s2, t2 ∈ R. Let r = diag(l1, l2) + (w1 v

w w2 ) =
diag(l1, l2) +W . Obviously,

a0I2 + a1I2diag(l1, l2) + · · ·+ amI2(diag(l1, l2))
m = 0

and the equation
(

s1 0
−s2wt1s1 s2

)(

w1 v

w w2

)(

t1 −t1s1vt2

0 t2

)

=

(

1 0
0 1

)

,

implies thatW is a full matrix. Hencer is g(x)-f-clean, as required. Conversely, letg′(x) =
a0I2 + a1I2x+ · · ·+ amI2x

m andM is g′(x)-f-clean. For anyr ∈ A, we have
(

r 0
0 0

)

= L+W

whereL = ( a v
w b ), W =

(

a′ v′

w′ b′

)

, g′(L) = 0 andW ∈ K(M). Assume thatSWT = I2 for
someS =

( a1 v1
w1 b1

)

, T =
( a2 v2
w2 b2

)

∈ M . Therefore,r = a+ a′ whereg(a) = 0 anda1a
′a2 = 1,

i.e a′ ∈ K(A). HenceA is g(x)-f-clean as required.
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Corollary 2.15. For anyn ≥ 1, R is a0 + a1x+ · · ·+ amx
m-f-clean ring if and only if then× n

upper triangular matrix ringTn(R) is a0In + a1Inx+ · · ·+ amInx
m-f-clean.

Proof. LetE,A ∈ Tn(R). It is straightforward to calculate thata0In+a1InE+· · ·+amInEm =
0 if and only if a0 + a1Eii + · · ·+ amE

m
ii = 0 andA ∈ K(Tn(R)) if and only if Aii ∈ K(R).

Hence the corollary is straightforward.

Finally, we give a property which has related to(ax2n − bx)-f-clean rings.

Proposition 2.16.LetR be a ring andn ∈ N. ThenR is (ax2n − bx)-f-clean if and only ifR is
(ax2n + bx)-f-clean.

Proof. Note that, for anyr ∈ R, −r = s + w with as2n − bs = 0 andw ∈ K(R) if and only
if r = (−s) + (−w) with a(−s)2n + b(−s) = 0 and−w ∈ K(R). Therefore the proof is
complete.
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