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Abstract It is well known that the generating function for any sequence {an}, denoted by the

function g(x) and defined by g(x) =
∞∑
n=0

anx
n. This function is used to solve both homogenous

and non-homogenous recurrence relations. In this study, we find generating function of certain
balancing and Lucas-balancing numbers.

1 Introduction

Balancing numbers n and the balancers r are the solutions of the Diophantine equation 1 + 2 +
. . .+ (n − 1) = (n+ 1) + (n+ 2) + . . .+ (n+ r). The square roots of 8n2 + 1 also generate
a sequence of numbers called as Lucas-balancing numbers. The balancing numbers and the
Lucas-balancing numbers satisfy the same recurrence relation with different initial values, that
is, Bn+1 = 6Bn − Bn−1; B0 = 0, B1 = 1 and Cn+1 = 6Cn − Cn−1; C0 = 1, C1 = 3, where
n ≥ 1 and Bn and Cn are the nth balancing and Lucas-balancing numbers respectively [1, 3].
The details of balancing and Lucas-balancing numbers are available in [1–19].

It is well known that for the sequence a0, a1, . . . of real numbers, the function g(x) =
a0 + a1x+ a2x

2 + . . .+ anx
n + . . . is called the generating function for the sequence {an}.

Also, by letting ai = 0 for i > n; g(x) =
n∑
i=0

anx
n represents the generating function for the

finite sequence {an}. In this study, authors main aim is to establish some generating functions
of certain balancing and Lucas-balancing numbers.

Generating functions are used to solve both homogenous and non-homogenous recurrence
relations. The following example show how generating function is used to solve recurrence
relation for balancing numbers and derive the famous Binet’s formula for these numbers.

Example 1.1. Use generating functions to solve the balancing recurrence relationBn+1 = 6Bn−
Bn−1, where B1 = 1, B2 = 6.

Solution. Let g(x) = B0 +B1x+B2x
2 + . . .+Bnx

n + . . .. be the generating function of
the balancing sequence. Using the recurrence relation Bn+1 = 6Bn−Bn−1, we can find 6xg(x)
and x2g(x) as follows:

6xg(x) = 6B0x+ 6B1x
2 + 6B2x

3 + . . .+ 6Bn−1x
n + . . ..

x2g(x) = B0x
2 +B1x

3 +B2x
4 + . . .+Bn−2x

n + . . .,

which follows that

g(x)− 6xg(x) + x2g(x) = B0 + (B1 − 6B0)x+ (B2 − 6B1 +B0)x
2 + . . . = x,

and therefore, we have

g(x) =
x

(1− 6x+ x2)
=

1
2
√

8

[
1

1− λ1x
− 1

1− λ2x

]
.
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Which implies that

g(x) =
∞∑
n=0

Bnx
n =

∞∑
n=0

(λn1 − λn2 )xn

2
√

8
.

From this expression, it follows that

Bn =
λn1 − λn2
λ1 − λ2

,

which is nothing but the Binet’s formula for balancing numbers.

2 Generating functions for certain balancing and Lucas-balancing numbers

In this section, we establish generating functions of certain balancing and Lucas-balancing num-
bers.

2.1 Generating functions for B3n and B3
n

Let g1(x) be the generating function for B3n. Then

g1(x) = B0 +B3x+B6x
2 + . . .+B3nx

n + . . .,

4xg1(x) = 4xB0 + 4B3x
2 + 4B6x

3 + . . .+ 4B3n−3x
n + . . .,

x2g1(x) = B0x
2 +B3x

3 +B6x
4 + . . .+B3n−6x

n + . . ..

Therefore, we have

(1− 4x− x2)g1(x) = B0 + (B3 − 4B0)x+ (B6 − 4B3 −B0)x
2 + . . . ,

which follows that

g1(x) =
35x+ 6790x2 + . . .

1− 4x− x2 .

Similarly, if g2(x) be the generating function for B3
n, then we have

g2(x) = B3
0 +B3

1x+B3
2x

2 + . . .+B3
nx

n + . . .,

3xg2(x) = 3xB3
0 + 3B3

1x
2 + 3B3

2x
3 + . . .+ 3B3

n−1x
n + . . .,

6x2g2(x) = 6B3
0x

2 + 6B3
1x

3 + 6B3
2x

4 + . . .+ 6B3
n−2x

n + . . .,

3x3g2(x) = 3B3
0x

3 + 3B3
1x

4 + . . .+ 3B3
n−3x

n + . . .,

x4g2(x) = B3
0x

4 +B3
1x

5 +B3
2x

6 + . . .+B3
n−4x

n + . . ..

Therefore, we have

(1− 3x− 6x2 + 3x3 + x4)g2(x) = x+ 213x2 + 42221x3 + . . . .

Which follows that

g2(x) =
x+ 213x2 + 42221x3 + . . .

(1− 3x− 6x2 + 3x3 + x4)
.

2.2 Generating function for B2n+1 and C2n+2

Let g3(x) be the generating function for B2n+1, then

g3(x) = B1 +B3x+B5x
2 + . . .+B2n+1x

n + . . .,

3xg3(x) = 3xB1 + 3B3x
2 + 3B5x

3 + . . .+ 3B2n−1x
n + . . .,

x2g3(x) = B1x
2 +B3x

3 +B5x
4 + . . .+B2n−3x

n + . . ..
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Therefore, we have

(1− 3x− x2)g3(x) = B1 +(B3−3B1)x+(B5−3B3−B1)x
2 + . . . = 1+32x+1083x2 + . . . ,

which follows that

g3(x) =
1 + 32x+ 1083x2 + . . .

(1− 3x− x2)
.

In a similar manner, we can find the generating function g4(x) of C2n+2 as

g4(x) =
C2 + (C4 − 3C2)x+ . . .

(1− 3x+ x2)
.

2.3 Generating functions for Bm+n and Cm+n

The generating function of Bm+n is given by;

∞∑
n=0

Bm+nx
n =

∞∑
n=0

(λ1
m+n − λ2

m+n)xn

λ1 − λ2

=
1

λ1 − λ2

[
λm1

∞∑
n=0

λn1 x
n − λm2

∞∑
n=0

λn2 x
n

]

=
1

λ1 − λ2

[
λm1

1− λ1x
−

λm2
1− λ2x

]
=
Bm −Bm−1x

x2 − 6x+ 1
.

Likewise, it can be shown that

∞∑
n=0

Cm+nx
n =

∞∑
n=0

(λ1
m+n + λ2

m+n)xn

2

=
1
2

[
λm1

∞∑
n=0

λn1 x
n + λm2

∞∑
n=0

λn2 x
n

]

=
1
2

[
λm1

1− λ1x
+

λm2
1− λ2x

]
=
Cm − Cm−1x

x2 − 6x+ 1
.

These two generating functions can be applied to derive identities. For example,

∞∑
n=0

Bn+1x
n =

1
D
,

∞∑
n=0

Bn−1x
n =

6x− 1
D

and

∞∑
n=0

Cnx
n =

1− 3x
D

,

where D = x2 − 6x+ 1. Since 2
( 1−3x

D

)
= 1

D −
6x−1
D , we have

2
∞∑
n=0

Cnx
n =

∞∑
n=0

Bn+1x
n −

∞∑
n=0

Bn−1x
n =

∞∑
n=0

(Bn+1 −Bn−1)x
n,
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which implies that Bn+1−Bn−1 = 2Cn. To prove the identity BmCn−Bm−1Cn−1 = Cm+n−1,
we proceed as follows:

∞∑
m=0

(BmCn −Bm−1Cn−1)x
m = Cn

∞∑
m=0

Bmx
m − Cn−1

∞∑
m=0

Bm−1x
m

= Cn
x

D
− Cn−1

6x− 1
D

=
Cn−1 + (Cn − 6Cn−1)x

D

=
Cn−1 − Cn−2x

D

=
∞∑
m=0

Cm+n−1x
n,

which follows that BmCn −Bm−1Cn−1 = Cm+n−1.

3 Exponential generating functions

In this section, we develop the generating functions for Bn
n! and Cn

n! . As et =
∞∑
n=0

tn

n!
, it follows

that

eλ1x =
∞∑
n=0

λ1
nxn

n!
and eλ2x =

∞∑
n=0

λ2
nxn

n!
.

Therefore, we have

eλ1x − eλ2x

λ1 − λ2
=
∞∑
n=0

(λ1
n − λ2

n)

λ1 − λ2

xn

n!
=
∞∑
n=0

Bn
xn

n!
.

Thus, the exponential function
eλ1x − eλ2x

λ1 − λ2
generates the numbers

Bn
n!
. More generally, we can

show that e
λ1
kx−eλ2

kx

λ1−λ2
=
∞∑
n=0

Bkn
xn

n!
.

Likewise, the generating function eλ1x+eλ2x =
∞∑
n=0

2Cn
xn

n!
can derive the formula e3x cosh(

√
8x) =

∞∑
n=0

Cn
xn

n!
. Let us consider the functions A(t) and B(t) defined by A(t) =

∞∑
n=0

an
tn

n!
and B(t) =

∞∑
n=0

bn
tn

n!
, so that their products A(t)B(t) and A(t)B(−t) are given by

A(t).B(t) =
∞∑
n=0

[
n∑
k=0

(
n

k

)
akbn−k

]
tn

n!
, (3.1)

and

A(t).B(−t) =
∞∑
n=0

[
n∑
k=0

(−1)n−k
(
n

k

)
akbn−k

]
tn

n!
.

In particular for A(t) =
e−6λ1t − e−6λ2t

λ1 − λ2
and B(t) = et, we have

et(e−6λ1t − e−6λ2t)

λ1 − λ2
=
∞∑
n=0

tn

n!

∞∑
n=0

Bn
(−6t)n

n!
.
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Which follows that

e(1−6λ1)t − e(1−6λ2)t

λ1 − λ2
=
∞∑
n=0

[
n∑
k=0

(
n

k

)
Bk(−6)k

]
tn

n!
.

Using the characteristic equation λ2 = 6λ− 1, we obtain

e−λ
2
1t − e−λ2

2t

λ1 − λ2
=
∞∑
n=0

[
n∑
k=0

(
n

k

)
Bk(−6)k

]
tn

n!
,

which implies that

1
λ1 − λ2

[ ∞∑
n=0

(−λ1
2t)n

n!
−
∞∑
n=0

(−λ2
2t)n

n!

]
=
∞∑
n=0

[
n∑
k=0

(
n

k

)
Bk(−6)k

]
tn

n!
.

That is,
∞∑
n=0

B2n(−1)n
tn

n!
=
∞∑
n=0

[
n∑
k=0

(
n

k

)
Bk(−6)k

]
tn

n!
.

Equating the coefficients of tn/n!, we have

B2n(−1)n =
n∑
k=0

(
n

k

)
Bk(−6)k.

Replacing B(t) by e−t and proceeding similarly, we get

1
λ1 − λ2

∞∑
n=0

(−2t)n

n!

[ ∞∑
n=0

(−λ1
2t)n

n!
−
∞∑
n=0

(−λ2
2t)n

n!

]
=
∞∑
n=0

[
n∑
k=0

(
n

k

)
Bk(−6)k

]
(−1)n

tn

n!

∞∑
n=0

[
n∑
k=0

(
n

k

)
(−2)k

]
(−1)nB2n

tn

n!

=
∞∑
n=0

[
n∑
k=0

(
n

k

)
Bk(−6)k

]
(−1)n

tn

n!
,

which follows a new combinatorial identity

n∑
k=0

(
n

k

)
(−2)kB2n =

n∑
k=0

(
n

k

)
Bk(−6)k.

4 Some hybrid identities containing both balancing and Lucas-balancing
numbers

In this section, once again we consider the functions A(t) and B(t) to develop some hybrid

identities that contain both balancing and Lucas- balancing numbers. Let A(t) =
eλ1t − eλ2t

λ1 − λ2
and B(t) = eλ1t + eλ2t, where λ1 = 3 +

√
8 and λ2 = 3 −

√
8. Then we have the following

results.

Lemma 4.1. If Bn and Cn respectively denote the nth balancing and Lucas-balancing numbers,

then
n∑
k=0

(
n

k

)
BkCn−k = 2n−1Bn.
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Proof. Using (3.1), we have
∞∑
n=0

[
n∑
k=0

(
n

k

)
BkCn−k

]
tn

n!
=
∞∑
n=0

Bn
tn

n!

∞∑
n=0

Cn
tn

n!

=
e2λ1t − e2λ2t

2(λ1 − λ2)

=
∞∑
n=0

2n−1Bn
tn

n!
,

and hence the result follows.

Lemma 4.2. If Bn and Cn respectively denote the nth balancing and Lucas-balancing numbers,

then
n∑
k=0

(
n

k

)
BkBn−k = 2n−4(Cn − 3n) and

n∑
k=0

(
n

k

)
CkCn−k = 2n−1(Cn + 3n).

Proof. Again using (3.1), we have
∞∑
n=0

[
n∑
k=0

(
n

k

)
BkBn−k

]
tn

n!
=
∞∑
n=0

Bn
tn

n!

∞∑
n=0

Bn
tn

n!

=
(eλ1t − eλ2t)2

(λ1 − λ2)2

=
∞∑
n=0

2n−4(Cn − 3n)
tn

n!
,

and the first result follows. The second result follows analogously.

Lemma 4.3. For nth balancing number Bn and nth Lucas-balancing number Cn, the following
identities are valid:

n∑
k=0

(
n

k

)
BmkCmn−mk = 2n−1Bmn,

n∑
k=0

(
n

k

)
BmkBmn−mk = 2n−4(Cmn − Cnm),

n∑
k=0

(
n

k

)
CmkCmn−mk = 2n−1(Cmn + Cnm).

Proof. In view of (3.1), we have
∞∑
n=0

[
n∑
k=0

(
n

k

)
BmkCmn−mk

]
tn

n!
=
∞∑
n=0

Bmn
tn

n!

∞∑
n=0

Cmn
tn

n!

=
(e2λ1

mt − e2λ2
mt)

2(λ1 − λ2)

=
∞∑
n=0

2n−1Bmn
tn

n!
,

which follows the first result. The other results can be proved similarly.

The following result can be obtained by using the differential operator d/dt. Since A(t) =
∞∑
n=0

(−6)nan
tn

n!
, we have

dr

dtr
A(t) =

∞∑
n=0

(−6)ran+r
(−6t)n

n!
.
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Setting A(t) =
eλ1t − eλ2t

λ1 − λ2
and B(t) = eλ1t, then by using (3.1), we get

∞∑
n=0

[
n∑
k=0

(
n

k

)
(−6)kBk+r

]
tn

n!
=
∞∑
n=0

tn

n!

[ ∞∑
n=0

Bn+r
(−6t)n

n!

]

=
et

(−6)r

[
dr

dtr

∞∑
n=0

Bn
(−6t)n

n!

]

=
et

(−6)r
dr

dtr
(
e−6λ1t − e−6λ2t

λ1 − λ2
)

=
∞∑
n=0

(−1)nB2n+r
tn

n!
,

which yields the identity

n∑
k=0

(
n

k

)
(−6)kBk+r = (−1)nB2n+r.
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