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Abstract An edge vertex dominating set(evd-set)E
′

of a connected graph G with edge set
E is said to be a complementary nil edge vertex dominating set(cnevd-set) of G if and only if
E − E

′
is not an evd-set of G. A cnevd-set of minimum cardinality is called a minimum cnevd-

set(mcnevd-set)of G and this minimum cardinality is called the complementary nil edge vertex
domination number of G and is denoted by γcnev(G). We have given a characterization result
for an evd-set to be a cnevd-set and also bounds for this parameter are obtained.

1 Introduction & Preliminaries

Domination is an active topic in graph theory and has numerous applications to distributed com-
puting, the web graph and adhoc networks. Haynes et al.[4] gave a comprehensive introduction
to the theoretical and applied facets of domination in graphs.

A subset D of the vertex set V of G is said to be a dominating set of G, if each vertex in V −D
is adjacent to some vertex of D. The domination number , γ(G) is the minimum cardinality of
the dominating set of G[5]. A subset E

′
of the edge set E of a graph G is said to be an edge

dominating set of G if each edge in E−E
′

is adjacent to some edge in E
′
. The edge domination

number , γ
′
(G) is the minimum cardinality of the edge dominating sets of G[5]. A subset E

′

of E is said to be an edge vertex dominating set of G if and only if each vertex in G is either
incident to an edge in E

′
(or) it is adjacent with an end vertex of some edge in E

′
. The edge

vertex domination number , γev(G) is the minimum cardinality of the edge vertex dominating
set of G[7]. A subset S of the vertex set V of G is said to be a global dominating set of G if it is
a dominating set for G as well as to its complement G. The global domination number γg(G) is
the minimum cardinality of the global dominating sets of G[8].

Many variants of vertex - vertex, edge - edge, vertex - edge, edge - vertex dominating sets
have been studied. In the present paper, we introduce a new variant in edge - vertex dominating
set namely, complementary nil edge vertex dominating set. We have given the characterization
result for edge vertex dominating set to be a complementary nil edge vertex dominating set and
characterized the graphs having cnevd numbers 1, 2, 3, ϵ − 1, ϵ, ϵ being number of edges of G.
Bounds for this parameter are also obtained.

All graphs considered in this paper are simple, finite, undirected and connected. For standard
terminology and notation we refer Bondy & Murthy[1].

2 Characterization and other relevant results

In this section, we initially state characterization result for a proper subset of the edge set of G to
be a cnevd-set of G. There after we have given the bounds for this parameter in terms of various
other parameters.

Theorem 2.1. (Characterization Result) An evd-set E
′

of a (connected)graph G is a cnevd - set
if and only if there is a vertex v in G such that all the edges incident with v and the edges that
are adjacent to v are in E

′
.

Proof. Trivially follows from the definition. completes the proof. 2
Notation: For any graph G with a vertex v,
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Fv = {e ∈ E : v is an end vertex of e or v is adjacent to an end of e}

.
We now give the bounds for cnevd number of connected graphs.

Theorem 2.2. If G is a connected graph, then

γev(G) + δ(G) ≤ γcnev(G)

Proof. Let E
′

be a minimum cnevd-set of G. By the Characterization Result there is a vertex v
in G such that all the edges incident with v and the edges that are adjacent to v are in E

′
. Clearly

E
′ − {e : v is incident to e} is a evd - set of G whose cardinality is γcnev(G)− d(v). Hence

γev(G) ≤ γcnev(G)− d(v) ⇒ γev(G) + δ(G) ≤ γcnev(G).
Furthermore, the lower bound is attained in the case of House graph(i.e the graph C5 together

with an edge obtained by joining a pair of non adjacent vertices in C5). Hence the bound is
sharp.2

A lower bound for γcnev(G) is obtained in terms of the number of vertices n and minimum
degree δ(G) of the vertices of G.

Corollary 2.3. For any graph G,

⌈ n

2∆(G)− 1
⌉+ δ(G) ≤ γcnev(G)

Proof. Let E
′

be an γev(G) - set. Any edge in E
′

dominates atmost 2∆(G)− 1 vertices. Hence,

n ≤ γev(G)(2∆(G)− 1)

This implies,
⌈ n

2∆(G)− 1
⌉ ≤ γev(G)

. Then by the above theorem the inequality follows.2
Note: The bound is sharp as it is attained in the case of C6.

Corollary 2.4. For any k - regular graph G with n vertices,

⌈ n

2k − 1
⌉+ k ≤ γcnev(G).

Proof.The proof follows from the above theorem and the fact that ∆(G) = k = δ(G).2

Theorem 2.5. If G is a connected graph of order n and having ϵ edges, then

⌈6ϵ − n2 + n

4
⌉ ≤ γcnev(G).

Proof. Let E
′

be a minimum cnevd-set of G. Since E − E
′

is not an evd-set of G, there is a
vertex v non adjacent to all the edges in E − E

′
. Hence,

ϵ ≤ nC2 − 2(ϵ− γcnev(G))

This implies,

⌈6ϵ − n2 + n

4
⌉ ≤ γcnev(G).

2

Note: The bound is sharp as it is attained in the case of < v1v2v3v1 >
∪
{v1v4}.
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Theorem 2.6. For a connected graph G,

δ(G)

2
< γcnev(G)

.

Proof. Let E
′

be a minimum cnevd-set of G. Since E − E
′

is not a evd-set of G, there is a
vertex v of G which is non adjacent to any of the edges in E − E

′
. Let S = {v ∈ V :

v is an end point of an edge in E
′}. Then, N [v] ⊂ S ⇒ |N [v]| < |S| ⇒ |N [v]| <

2γcnev(G) ⇒ δ(G)
2 < γcnev(G).2

Theorem 2.7. For a connected graph G of order n(n ≥ 4),

γcnev(G) ≤ ϵ

2
+ δ

′
(G).

(δ
′
(G) being the minimum degree of the edges in G).

Proof. By Theorem.2.3.[1], γev(G) ≤ ϵ
2 . Now the γev(G) - set along with N [e](e ∈ G) is a

cnevd - set of G. Hence,
γcnev(G) ≤ ϵ

2
+ δ

′
(G).

2

Note: The bound is sharp as it is attained in the case of subdivision of star.

Theorem 2.8. If G is a connected graph, then

γcnev(G) ≤ γve(G) + ∆(G)(∆(G)− 1)

.

Proof. Let E
′

be a minimum evd - set for G. Then for any vertex v in G, E
′ ∪

Fv is a cnevd -
set of G. Hence

γcnev(G) ≤ |E
′ ∪

Fv|

≤ |E
′
|+ ∆(G)(∆(G)− 1)

≤ γev(G) + ∆(G)(∆(G)− 1)

2

Note:The bound is sharp as it is attained in the case of C5.
Remark: Since γev(G) ≤ γ

′
(G), follows that

γcnev(G) ≤ γ
′
(G) + ∆(G)(∆(G)− 1).

Theorem 2.9. If G is a connected graph having a pendant vertex, then

γcnev(G) ≤ γev(G) + (∆(G)− 1).

Proof. Suppose that E
′

is a minimum evd - set for G. Let v be a pendant vertex in G. Clearly
E

′ ∪
Fv is a cnevd - set for G. Hence,

γcnev(G) ≤ |E
′ ∪

Fv|

≤ γev(G) + (∆(G)− 1)

2

Note:The bound is sharp as it is attained in the case of P4.

Corollary 2.10. If G = Pn, then

γcnev(G) ≤ γve(G) + 1.
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Proof. Since ∆(G) = 2, the proof follows from the above theorem. 2

Theorem 2.11. If G is a connected graph such that G(the complement of G) is connected, then

γcnev(G) + γcnev(G) ≤ n(n− 1)
2

.

Proof. For any graph G, γcnev(G) ≤ ϵ. Similarly, γcnev(G) ≤ ϵ
′
(ϵ

′
is the number of edges in

G). So,

γcnev(G) + γcnev(G) ≤ ϵ+ ϵ
′
=

n(n− 1)
2

.

Hence,

γcnev(G) + γcnev(G) ≤ n(n− 1)
2

.

2

Note: If G is a connected graph with ϵ edges, then γcneve(G) ≤ ϵ.
Now, we characterize the graphs for which γcnev(G) = ϵ.

Theorem 2.12. For a connected graph G with ϵ edges, γcnev(G) = ϵ if and only if for each
vertex v in G, Fv = E.

Proof. Assume that γcnev(G) = ϵ. Suppose that there is a vertex v in G such that Fv ̸= E.
Consider the set E − Fv.
Let S = {u : u is an end point of an edge in E − Fv }.
If S = ϕ, then Fv(⊂ E) is a cnevd-set of G whose cardinality is less than ϵ.
Suppose S ̸= ϕ.
If there is an edge e between two vertices of S which is not incident or adjacent to v, then E−{e}
is a cnevd - set of G of cardinality less than ϵ.
If there is no edge e(in E − Fv) between two vertices of S, then
E − {e = v1v2}(v1 or v2 /∈ S) is a cnevd - set of cardinality less than ϵ. Hence our supposition
is false.

Assume that the converse holds. Let E
′

be a minimum cnevd-set of G. By the Characteriza-
tion Result for cnevd-set there is a vertex v such that
Fv = E. Hence, γcnev(G) = ϵ.2

Corollary 2.13. If G = Cn,then γcnev(G) = ϵ if and only if n = 3, 4.

Corollary 2.14. If G = Pn,then γcnev(G) = ϵ if and only if n = 2, 3.

Corollary 2.15. (i) γcnev(Sn) = n, n ≥ 3

(ii) γcnev(Kn) = n, n ≥ 3

(iii) γcnev(Km,n) = m+ n

Theorem 2.16. Let G be a connected graph with diam(G) = 2 and c(G) = 3, then γcnev(G) ̸= ϵ
if and only if there is a triangle T in G, for which there is a vertex in V −V (T ) adjacent to exactly
one vertex in T .

Proof. Assume that γcnve(G) ̸= ϵ.
By Theorem.2.12. there is a vertex v in G such that Fv ̸= E. Since diam(G) = 2 and c(G) = 3,
for e(= v1v2) ∈ E−F there is an edge e

′
(= v2v3) in F , such that < v1v2v3 > (= T ) is a triangle

in G. Clearly v is the vertex in V − V (T ) which is adjacent to exactly one vertex v3 in T .
The converse part is clear.2

Corollary 2.17. G be a tree with ϵ edges, then γcnev(G) = ϵ if and only if G ∼= Sn.
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Proof. Assume that γcnev(G) = ϵ. Then by the Characterization Result for each vertex v in G,
Fv = E. So for any pendant edge uv in G, N(u)

∪
N(v) = V , which implies one of u, v is

adjacent to all the vertices in G. W.l.g assume that v is the vertex adjacent to all the vertices in
G(i.e u is a pendant vertex). Since G is a tree, there is no edge between v1, v2 ∈ V − {v}(i.e. all
the vertices in V − {v} are pendant). Hence G ∼= Sn.

For the converse part, any vertex v in Sn has the property that Fv = E. Hence by the Char-
acterization Result the claimant holds.2

Theorem 2.18. For any tree G of order n(̸= 3) and δ
′
(G) = 1, γcnev(G) ≤ ϵ

2 + 1; Equality
holds if and only if G is isomorphic to subdivision of a star.

Proof. By Theorem.2.3.[1], γev(G) ≤ ϵ
2 . Now a γev(G) - set along with an edge of minimum

degree is a cnevd - set of G. Hence γcnev(G) ≤ ϵ
2 + 1.2

Theorem 2.19. G be a connected graph, then γcnev(G) = 1 if and only if G = P2.

Now we characterize the graphs for which γcnev(G) = 2.

Theorem 2.20. G be a connected graph of order n ≥ 4, then γcnev(G) = 2 if and only if
δ(G) = δ

′
(G) = 1, diam(G) = 3 .

Proof. Assume that γcnev(G) = 2. Then by the Characterization Result, there is a vertex v1 in
G for which Fv1 ⊆ E. By hypothesis and our assumption |Fv1 | = 2 and Fv1 is a cnevd - set of G.
Since |Fv1 | = 2, v1 is a pendant vertex adjacent to v2(say) and there is exactly one edge(v2v3)
adjacent to v1. So δ(G) = δ

′
(G) = 1.

Clearly any diammetral path in G is from v1 to some other vertex in V −{v2} adjacent to v3. Thus
v2v3 is the edge which dominates the vertices in V − {v1, v2, v3}(i.e.v3 dominates the vertices in
V − {v1, v2, v3}). Hence diam(G) = 3.

Conversely if G is acyclic, then G = P3 or G is obtained by adding zero or more leaves to
exactly one support vertex of P3. So γcnev(G) = 2.
Suppose G is cyclic. By our assumption there is a path < v1v2v3 > in which v1 is a pendant ver-
tex and v1v2 is adjacent to exactly one edge i.e.v2v3, the vertices in V − {v1, v2, v3} are adjacent
to v3(only). By the Characterization Result {v1v2, v2v3} is a cnevd - set of G of cardinality two.
By the above theorem {v1v2, v2v3} is a γcnev(G) - set. Hence the result.2

Corollary 2.21. G be a connected unicyclic graph with n(≥ 5) vertices, then γcnev(G) = 2 if
and only if G is obtained by adding exactly one edge between the adjacent pendant vertices of
S1,q(q ≥ 2).

Proof. Assume that γcnev(G) = 2. Then by the above theorem, δ(G) = δ
′
(G) = 1, diam(G) =

3. Since δ(G) = δ
′
(G) = 1 and diam(G) = 3, there is a path < v1v2v3 > in G with d(v1) =

1, d(v1v2) = 1(i.e.v1v2 is pendant edge adjacent to v2v3(only)); any vertex in V − {v1, v2, v3} is
adjacent to v3(only)(in {v1, v2, v3}). By hypothesis there is exactly one cycle Cp(say). Clearly
v3 lies on Cp. Since diam(G) = 3, vertices in Cp−{v3} are adjacent to v3. Since G is unicyclic,
p = 3. Therefore G is obtained by adding exactly one edge between the adjacent pendant ver-
tices of S1,q(q ≥ 2).
The converse part is clear.2

Corollary 2.22. G be a tree with n vertices, then γcnev(G) = 2 if and only if G = P3 or G = P4
or G is obtained by adding zero or more leaves to exactly one support vertex of P4.

Proof. Assume that γcnev(G) = 2.
Clearly n ≥ 3. If n = 3, then G = P3.
Suppose n > 3. By the above theorem G is a tree with diameter three. Let < v1v2v3v4 > be the
diammetral path in G. Since diam(G) = 3 any vertex in V − {v1, v2, v3, v4} is adjacent to v2 or
v3. By our assumption both v2, v3 cannot have neighbours from V − {v1, v4}. Hence G = P4 or
G is obtained by adding zero or more leaves to exactly one support vertex of P4. 2
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Corollary 2.23. G be a connected graph with n(≥ 4) vertices. If δ(G) = δ
′
(G) = 1, diam(G) =

3, then γcnev(G) = γg(G) = 2.

Theorem 2.24. G be a connected graph of order n(≥ 4), then γcnev(G) = 3 if and only if
δ
′
(G) = 2, 1 < diam(G) ≤ 3.

Corollary 2.25. G be a tree with n(≥ 4) vertices, then γcnev(G) = 3 if and only if G = S3 or
G = S2,q(q ≥ 2).

Theorem 2.26. G be a tree and E
′

be the set of all pendant edges in G. Then E
′

is a cnevd - set
if and only if G = Sn.

Proof. Suppose that E
′

is a cnevd-set of G. Then by the Characterization Result for any cnevd-
set, there is a vertex v ∈ V in G such that Fv = E. Clearly diam(G) = 2(otherwise there is a
non pendant edge in G which is a member of E

′
, a contradiction ). Hence G = Sn. The converse

part is clear.

Theorem 2.27. G be a connected graph of order n(≥ 4). Then γcnev(G) = ϵ − 1 if and only if
the following conditions are satisfied:
(i) |E − Fv| ≤ 2, |E − Fv| ̸= 0(for all v ∈ V ).
(ii) Whenever |E − Fv| = 2 for some v ∈ V , < E − Fv > is connected and adjacent to exactly
one edge in Fv, for some v ∈ V .

Proof. Assume that γcnev(G) = ϵ− 1.
Suppose that |E − Fv| = k(k ≥ 3) for some v ∈ V .
If all the edges in E−Fv are adjacent with the edges in Fv,then Fv is a cnevd - set of cardinality
less than ϵ− 1 which is a contradiction to our assumption.
If atleast one of the edges in E − Fv is not adjacent to an edge in Fv, then γcnev(G) < ϵ − 2
again a contradiction to our assumption. Hence |E − Fv| ≤ 2 for all v ∈ V .

By our assumption |E−Fv| ̸= 0 for all v ∈ V . Hence |E−Fv| ≤ 2 for some v ∈ V . Suppose
that |E − Fv| = 2 for some v ∈ V .
If all the edges in E − Fv are adjacent with the edges in Fv, then γcnev(G) = ϵ − 2 which is a
contradiction to our assumption. So there is an edge in E − Fv which is not adjacent to edges in
Fv. Hence < E − Fv > is connected and adjacent to exactly one edge in Fv.

The converse part is clear.2

Corollary 2.28. If G = Cn,then γcnev(G) = ϵ− 1 if and only if n = 5.

Corollary 2.29. If G = Pn,then γcnev(G) = ϵ− 1 if and only if n = 4, 5.

Corollary 2.30. If G is a tree, then γcnev(G) = ϵ− 1 if and only if G = P4 or G = P5.

Proof. Assume that γcnev(G) = ϵ− 1.
Suppose that diam(G) = k(k ≥ 5). Let P =< v1v2...vk−1vk > (k ≥ 6) be a diammetral path
in G.
If G = P , then E(P )− {v3v4, v4v5} is a cnved - set of G of cardinality less than ϵ− 1, which is
a contradiction to our assumption.
Suppose G ̸= P . If min{d(v3), d(v4), d(v5)} ≥ 3 (or) d(v3) = d(v4) = d(v5) = 2, then also
E(P )− {v3v4, v4v5} is a cnevd - set of G of cardinality less than ϵ − 1 which is a contradiction
to our assumption.

Hence diam(G) ≤ 4.
If diam(G) ≤ 4. Clearly G = P4 or G = P5. The converse part is clear.2
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