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Abstract In this study, differential transforms of first, second and third derivatives of a com-
plex function were given. Later, third order complex equations were solved using two dimen-
sional differential transform.

1 Introduction

The differential transform method (DTM) is a method for to solve differential equation or dif-
ferential equation systems. This method is a numerical method. One dimension DTM was first
proposed and applied by Zahou[1]. Two dimensional DTM was proposed by C.K. Chen and
Shing Huei Ho[3]. Many studies has been made with DTM recently. For example, by using
one dimensional DTM was solved nonlinear differential equations in [2].By using two dimen-
sional DTM was solved partial differential equations , systems of partialdifferential equations,
complex partial differential equations in[3],[4],[5],[6].

This method which is consist of computing coeffient of Taylor series of solution by using
initial value ia a iterative method

In this paper we solved third order complex partial differential equationsby using DTM. .
Firstly we seperated real and imaginer parts equation. Thus from one unknown equation was
obtained two unknown equation system. Later using DTM we obtained differenatial transforms
of real and imaginer parts of solutions. In the latest using inverse differenatial transform we
obtained real and imaginer parts of solution.

2 Derivatives of Complex Functions

Letw = w(z, z̄) be a complex function. Herez = x+iy, w(z, z̄) = u(x, y)+iv(x, y). Derivative
of according toz andz̄ of w(z, z̄) is defined as follows:
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1
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Similarly second order derivative ofw(z, z̄) are defined as follows:
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∂2w

∂z̄∂z
=

1
4

(

∂2w

∂x2 +
∂2w

∂y2

)

=
1
4

∆w (2.7)

Theorem 2.1. Third order derivative ofw(z, z̄) are defined as follows:
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(2.11)

Proof. (2) Definition of (2.1) and (2.5)
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∂x2∂y
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∂3w

∂y3

)

∂3w
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(2.12)

Thus, proof of (2.8) is completed. Similarly proofs of (2.9), (2.10)and (2.11) can be done.✷

3 Two Dimensional differential transform

Two dimensional differential transform of functionf(x, y) is defined as follows

F (k, h) =
1

k!.h!

[

∂k+hf(x, y)

∂xk∂yh

]

x=0,y=0
(3.1)

In Equation (3.1),f(x, y) is original function andF (k, h) is transformed function, which is
calledT - function is brief. Differential inverse transform ofF (k, h) is defined as follows

f(x, y) =
∞
∑

k=0

∞
∑

h=0

F (k, h)xkyh (3.2)

From (3.1) and (3.2) can be concluded

f(x, y) =
∞
∑

k=0

∞
∑

h=0

1
k!.h!

[

∂k+hf(x, y)

∂xk∂yh

]

x=0,y=0
xkyh (3.3)

Equation (3.3) implies that the concept of two dimensional differential transform is derived from
two dimensional Taylor series expansion.
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Theorem 3.1. [3, 4], If w(x, y) = u(x, y)∓ v(x, y) thenW (k, h) = U(k, h)∓ V (k, h).

Theorem 3.2. [3, 4] If w(x, y) = λu(x, y) thenW (k, h) = λU(k, h).

Theorem 3.3. [3, 4] If w(x, y) = ∂u(x,y)
∂x

thenW (k, h) = (k + 1)U(k + 1, h).

Theorem 3.4. [3, 4] If w(x, y) = ∂u(x,y)
∂y

thenW (k, h) = (h+ 1)U(k, h+ 1).

Theorem 3.5. [3, 4] If w(x, y) = ∂r+su(x,y)
∂xr∂ys

then

W (k, h) = (k + 1)(k+ 2) . . . (k + r)(h+ 1)(h+ 2) . . . (h+ s)U(k+ r, h+ s). (3.4)

Theorem 3.6. [3, 4] If w(x, y) = u(x, y).v(x, y) then

W (k, h) =
r
∑

k=0

h
∑

s=0

U(r, h− s).V (k − r, s) (3.5)

Theorem 3.7. [3, 4] If w(x, y) = xmyn then

W (k, h) = δ(k −m,h− n) =

{

1 k = m,h = n

0 , otherwise
(3.6)

4 Differential Transforms Of Derivatives Of Complex Functions

Theorem 4.1. If w(x, y) = u(x, y) + iv(x, y), then

Wz(k, h) =
1
2
[(k + 1)U(k+ 1, h) + (h+ 1)V (k, h+ 1)]

+
i

2
[(k + 1)V (k + 1, h)− (h+ 1)U(k, h+ 1)] (4.1)

where,Wz(k, h) is differential transform of∂w
∂z

.

Proof. Since thew(x, y) = u(x, y) + iv(x, y) and by the equality (2.1), we have

∂w

∂z
=

1
2

[(

∂u

∂x
+

∂v

∂y

)

+ i

(

∂v

∂x
−

∂u

∂y

)]

(4.2)

It is not diffucult to see that

Wz(k, h) =
1
2
[(k + 1)U(k+ 1, h) + (h+ 1)V (k, h+ 1)]

+
i

2
[(k + 1)V (k + 1, h)− (h+ 1)U(k, h+ 1)] (4.3)

is obtained.

Theorem 4.2. If w(x, y) = u(x, y) + iv(x, y), then

Wz̄(k, h) =
1
2
[(k+ 1)U(k+ 1, h)− (h+ 1)V (k, h+ 1)]

+
i

2
[(k + 1)V (k+ 1, h) + (h+ 1)U(k, h+ 1)] (4.4)

where,Wz̄(k, h) is differential transform of∂w
∂z̄

.

Proof. By the equality (2.2), the proof is similar to teorem 3.1
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Theorem 4.3. If w(x, y) = u(x, y) + iv(x, y), then

Wzz(k, h) =
1
4
[(k+ 1)(k+ 2)U(k+ 2, h) + 2(k + 1)(h+ 1)V (k + 1, h+ 1)

−(h+ 1)(h+ 2)U(k, h+ 2)] +
i

4
[(k+ 1)(k+ 2)V (k + 2, h)

−2(k+ 1)(h+ 1)U(k+ 1, h+ 1)− (h+ 1)(h+ 2)V (k, h+ 2)] (4.5)

where,Wzz(k, h) is differential transform of∂
2w

∂z2 .

Proof. By the equality (2.5) we have

∂2w

∂z2 =
1
4

[

∂2u

∂x2 + i
∂2v

∂x2 − 2i(
∂2u

∂x∂y
) + i

∂2v

∂x∂y
−

(

∂2u

∂y2 + i
∂2v

∂y2

)]

(4.6)

∂2w

∂z2 =
1
4

[

∂2u

∂x2 + 2
∂2v

∂x∂y
−

∂2u

∂y2 + i

(

∂2v

∂x2 − 2
∂2u

∂x∂y
−

∂2v

∂y2

)]

(4.7)

Hence,

Wzz(k, h) =
1
4
[(k+ 1)(k+ 2)U(k+ 2, h) + 2(k + 1)(h+ 1)V (k + 1, h+ 1)

−(h+ 1)(h+ 2)U(k, h+ 2)] +
i

4
[(k+ 1)(k+ 2)V (k + 2, h)

−2(k+ 1)(h+ 1)U(k+ 1, h+ 1)− (h+ 1)(h+ 2)V (k, h+ 2)] (4.8)

is obtained.

Theorem 4.4. If w(x, y) = u(x, y) + iv(x, y), then

Wz̄z̄(k, h) =
1
4
[(k + 1)(k+ 2)U(k+ 2, h)− 2(k + 1)(h+ 1)V (k + 1, h+ 1)

−(h+ 1)(h+ 2)U(k, h+ 2)] +
i

4
[(k + 1)(k+ 2)V (k + 2, h)

+2(k + 1)(h+ 1)U(k+ 1, h+ 1) − (h+ 1)(h+ 2)V (k, h+ 2)] (4.9)

where,Wz̄z̄(k, h) is differential transform of∂
2w

∂z̄2 .

Proof. Proof can be done similar to proof of the teorem 4.3 by using equality (2.6).

Theorem 4.5. If w(x, y) = u(x, y) + iv(x, y), then

Wz̄z(k, h) =
1
4
[(k+ 1)(k+ 2)U(k+ 2, h) + (h+ 1)(h+ 2)U(k, h+ 2)

+i(k+ 1)(k+ 2)V (k + 2, h) + i(h+ 1)(h+ 2)V (k, h+ 2)] (4.10)

where,Wz̄z(k, h) is differential transform of∂
2w

∂z̄∂z

Proof. Proof can be done similar to proof of the teorem 4.3 by using equality (2.7).

Theorem 4.6. If w(x, y) = u(x, y) + iv(x, y), then

Wzzz(k, h) =
1
8
[(k + 1)(k + 2)(k + 3)U(k + 3, h)− 3(k + 1)(h+ 1)(h+ 2)U(k + 1, h+ 2)

+ 3(k + 1)(k+ 2)(h+ 1)V (k + 2, h+ 1)− (h+ 1)(h+ 2)(h+ 3)V (k, h+ 3)

+ i(k+ 1)(k+ 2)(k+ 3)V (k + 3, h)− 3i(k+ 1)(h+ 1)(h+ 2)V (k + 1, h+ 2)

− 3i(k + 1)(k + 2)(h+ 1)U(k+ 2, h+ 1)

+ i(h+ 1)(h+ 2)(h+ 3)U(k, h+ 3)] (4.11)

where,Wzzz(k, h) is differential transform of∂
3w

∂z3 .
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Proof. Sincew(x, y) = u(x, y) + iv(x, y) and equality (2.8) we have:

∂3w

∂z3 =
1
8
[
∂3

∂x3 (u+ iv)− 3
∂3

∂x∂y2 (u+ iv)− 3i
∂3

∂y∂x2 )(u+ iv) + i
∂3

∂y3(u+ iv)] (4.12)

∂3w

∂z3 =
1
8
[
∂3u

∂x3 − 3
∂3u

∂x∂y2 + 3
∂3v

∂y∂x2 −
∂3v

∂y3 + i(
∂3v

∂x3 − 3
∂3v

∂x∂y2 − 3
∂3u

∂y∂x2 +
∂3u

∂y3 )]. (4.13)

Hence it is get that:

Wzzz(k, h) =
1
8
[(k + 1)(k + 2)(k + 3)U(k + 3, h)− 3(k + 1)(h+ 1)(h+ 2)U(k + 1, h+ 2)

+3(k + 1)(k+ 2)(h+ 1)V (k + 2, h+ 1)− (h+ 1)(h+ 2)(h+ 3)V (k, h+ 3)

+i(k+ 1)(k+ 2)(k+ 3)V (k+ 3, h)− 3i(k+ 1)(h+ 1)(h+ 2)V (k + 1, h+ 2)

− 3i(k + 1)(k + 2)(h+ 1)U(k+ 2, h+ 1)

+ i(h+ 1)(h+ 2)(h+ 3)U(k, h+ 3)] (4.14)

Theorem 4.7. If w(x, y) = u(x, y) + iv(x, y), then

Wz̄z̄z̄(k, h) =
1
8
[(k + 1)(k + 2)(k + 3)U(k + 3, h) + 3(k + 1)(h+ 1)(h+ 2)U(k+ 1, h+ 2)

−3(k + 1)(k + 2)(h+ 1)V (k+ 2, h+ 1) + (h+ 1)(h+ 2)(h+ 3)V (k, h+ 3)

+i(k+ 1)(k+ 2)(k+ 3)V (k+ 3, h)− 3i(k+ 1)(h+ 1)(h+ 2)V (k + 1, h+ 2)

+3i(k + 1)(k + 2)(h+ 1)U(k+ 2, h+ 1)

−i(h+ 1)(h+ 2)(h+ 3)U(k, h+ 3)] (4.15)

where,Wz̄z̄z̄(k, h) is differential transform of∂
3w

∂z̄3 .

Proof. Proof is similar to the theorem 4.6 using equality (2.9).

Theorem 4.8. If w(x, y) = u(x, y) + iv(x, y), then

Wz̄z̄z(k, h) =
1
8
[(k + 1)(k + 2)(k + 3)U(k + 3, h) + (k+ 1)(h+ 1)(h+ 2)U(k+ 1, h+ 2)

−(k+ 1)(k+ 2)(h+ 1)V (k + 2, h+ 1)− (h+ 1)(h+ 2)(h+ 3)V (k, h+ 3)

+i(k+ 1)(k+ 2)(k+ 3)V (k + 3, h) + i(k + 1)(h+ 1)(h+ 2)V (k+ 1, h+ 2)

+i(k+ 1)(k+ 2)(h+ 1)U(k+ 2, h+ 1)

+i(h+ 1)(h+ 2)(h+ 3)U(k, h+ 3)] (4.16)

where,Wz̄z̄z(k, h) is differential transform of ∂
3w

∂z̄2∂z
.

Proof. Proof is similar to the theorem 4.6 using equality (2.10).

Theorem 4.9. If w(x, y) = u(x, y) + iv(x, y), then

Wzzz(k, h) =
1
8
[(k + 1)(k + 2)(k + 3)U(k + 3, h) + (k + 1)(h+ 1)(h+ 2)U(k+ 1, h+ 2)

+(k + 1)(k + 2)(h+ 1)V (k + 2, h+ 1) + (h+ 1)(h+ 2)(h+ 3)V (k, h+ 3)

+i(k+ 1)(k+ 2)(k+ 3)V (k+ 3, h) + i(k + 1)(h+ 1)(h+ 2)V (k+ 1, h+ 2)

−i(k+ 1)(k+ 2)(h+ 1)U(k + 2, h+ 1)

−i(h+ 1)(h+ 2)(h+ 3)U(k, h+ 3)] (4.17)

where,Wzzz(k, h) is differential transform of ∂
3w

∂z̄∂z2 .

Proof. Proof is similar to the theorem 4.6 using equality (2.11).
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5 Using two-dimensional differential tansform solve of Third Order Complex Partial
Differential Equations.

In this section, to demonstrate how to use two-dimensional transform to solve complex partial
differential equations are solved.

Example 5.1. Solve the following initial value problem

∂3w

∂z3 + 2
∂2w

∂z̄2 = 18 (5.1)

w(x,0) = x3 + 3x2 (5.2)

∂w

∂y
(x,0) = i(3x2

− 6x) (5.3)

∂2w

∂z2 (x,0) = −6x− 6 (5.4)

Sincew = u+ iv, equation (5.1) is equivalent following to equation system (5.5)-(5.6).

1
8

(

∂3u

∂x3 + 3
∂3v

∂x2∂y
− 3

∂3u

∂x∂y2 −
∂3v

∂y3

)

+
1
2

(

∂2u

∂x2 − 2
∂2v

∂x∂y
−

∂2u

∂y2

)

= 18 (5.5)

1
8

(

∂3v

∂x3 − 3
∂3u

∂x2∂y
− 3

∂3v

∂x∂y2 +
∂3u

∂y3

)

+
1
2

(

∂2v

∂x2 + 2
∂2u

∂x∂y
−

∂2v

∂y2

)

= 0 (5.6)

As a result, we get equalities (5.7)-(5.8) from differential transforms of (5.5)-(5.6).

(k + 1)(k+ 2)(k+ 3)U(k+ 3, h) + 3(k + 1)(k + 2)(h+ 1)V (k + 2, h+ 1)

−3(k + 1)(h+ 1)(h+ 2)U(k+ 1, h+ 2)− (h+ 1)(h+ 2)(h+ 3)V (k, h+ 3) (5.7)

+4(k + 1)(k + 2)U(k+ 2, h)− 8(k + 1)(h+ 1)V (k+ 1, h+ 1)− 4(h+ 1)(h+ 2)U(k, h+ 2) = 144

(k+ 1)(k+ 2)(k+ 3)V (k + 3, h)− 3(k + 1)(k + 2)(h+ 1)U(k+ 2, h+ 1)

−3(k+ 1)(h+ 1)(h+ 2)V (k + 1, h+ 2) + (h+ 1)(h+ 2)(h+ 3)U(k, h+ 3) (5.8)

+4(k + 1)(k + 2)V (k+ 2, h) + 8(k + 1)(h+ 1)U(k+ 1, h+ 1)

−4(h+ 1)(h+ 2)V (k, h+ 2) = 0

Since

w(x, y) =
∞
∑

k=0

∞
∑

h=0

W (k, h)xkyh (5.9)

and the equality (5.2), following results are obtained.

U(0,0) = 0, U(1,0) = 0, U(2,0) = 3, U(3,0) = 1, U(i,0) = 0(i = 4,5, . . .),

V (i,0) = 0(i = 0,1,2,3, . . .) (5.10)

Similarly,
∂w

∂y
=

∞
∑

k=0

∞
∑

h=0

h.W (k, h)xkyh−1 (5.11)

and the equality (5.3), following results are obtained.

V (0,1) = 0, V (1,1) = −6, V (2,1) = 3, V (i,1) = 0(i = 3,4,5, . . .),

U(i,1) = 0(i = 0,1,2, . . .) (5.12)
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Finally, by
∂2w

∂y2 =
∞
∑

k=0

∞
∑

h=0

h.(h− 1).W (k, h)xkyh−2 (5.13)

and the equality (5.4), following results are obtained

U(0,2) = −3, U(1,2) = −3, U(i,2) = 0(i = 2,3,4, . . .), V (i,2) = 0(i = 0,1,2, . . .) (5.14)

If k = 0, h = 0 are written in the equation (5.7),

6U(3,0) + 6V (2,1)− 6U(1,2)− 6V (0,3) + 8U(2,0)− 8V (1,1)− 8U(0,2) = 144 (5.15)

6.1+ 6.3− 6.(−3)− 6V (0,3) + 8.3− 8.(−6)− 8.(−3) = 144 (5.16)

are obtained. So, we have
V (0,3) = −1. (5.17)

Whenh = 0 is written in the equality (5.8)

(k+ 1)(k+ 2)(k+ 3)V (k + 3,0)− 3(k + 1)(k + 2)U(k + 2,1)− 6(k + 1)V (k + 1,2)

+6U(k,3) + 4(k+ 1)(k+ 2)V (k+ 2,0) + 8(k + 1)U(k+ 1,1)− 8V (k,2) = 0 (5.18)

is obtained. It is clear that we haveV (k,0) = 0, U(k,1) = 0, V (k,2) = 0, from the equalities
(5.10),(5.12) and (5.14), respectively. As a result we get by (5.18)

U(k,3) = 0 (5.19)

for everyk ≥ 0. Whenh = 0 is written in the equality (5.7)

(k + 1)(k + 2)(k + 3)U(k + 3,0) + 3(k + 1)(k + 2)V (k + 2,1)

−6(k+ 1)U(k+ 1,2) − 6V (k,3) + 4(k + 1)(k+ 2)U(k+ 2,0)

−8(k+ 1)V (k + 1,1)− 8U(k,2) = 144 (5.21)

Using (5.10), (5.12) and (5.14) in the equality (5.21) fork = 1 we get that:

−6V (1,3) + 24U(3,0)− 16V (2,1)− 8U(1,2) = 0 (5.22)

−6V (1,3) + 24− 48+ 24= 0 (5.23)

V (1,3) = 0 (5.24)

Similarly using (5.10), (5.12) and (5.14) in the equality (5.21) fork ≥ 2

V (k,3) = 0 (5.25)

are obtained. Whenh = 1 is written in the equality (5.7) , we have that

(k + 1)(k+ 2)(k+ 3)U(k+ 3,1) + 6(k + 1)(k+ 2)V (k + 2,2) − 18(k + 1)U(k+ 1,3)

−24V (k,4) + 4(k + 1)(k + 2)U(k + 2,1)− 16(k + 1)V (k+ 1,2)− 24U(k,3) = 0(5.26)

If k = 0 is written in the equality (5.26), we get that

6U(3,1)+12V (2,2)−18U(1,3)−24V (0,4)+8U(2,1)−16V (1,2)−24U(0,3) = 0 (5.27)

Therefore using equalities (5.10),(5.12), (5.14) and (5.19) we obtain

V (0,4) = 0 (5.28)
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If k = 1 is written in the equality (5.26), we get that

24U(4,1)+36V (3,2)−36U(2,3)−24V (1,4)+24U(3,1)−32V (2,2)−24U(1,3) = 0 (5.29)

Therefore,
V (1,4) = 0 (5.30)

is obtained. Ifk = n is written in the equality (5.26), thenV (n,4) = 0 is obtained. As a result,

U(n,m) = V (n,m) = 0 (5.31)

are obtained for everyn ≥ 0,m > 3. If these finding values writing as follows

w(x, y) =
∞
∑

k=0

∞
∑

h=0

W (k, h)xkyh (5.32)

So, following solution

w(x, y) = x3
− 3xy2 + 3x2

− 3y2 + i(3x2y − y3
− 6xy) = z3 + 3(z̄)2 (5.33)

is obtained.

Example 5.2. Solve the following initial value problem

2
∂3w

∂z̄3 +
∂2w

∂z2 −
∂w

∂z
− 2w = 0 (5.34)

w(x,0) = 2e2x + 3ex (5.35)

∂w

∂y
(x,0) = i(4e2x

− 3ex) (5.36)

∂2w

∂y2 (x,0) = −8e2x
− 3ex (5.37)

Sincew = u+ iv, equation (5.34) is equivalent following system of equation (5.38) - (5.39).

(

∂3u

∂x3 − 3
∂3u

∂x∂y2 − 3
∂3v

∂x2∂y
+

∂3v

∂y3

)

+
∂2u

∂x2 + 2
∂2v

∂x∂y
−

∂2u

∂y2 − 2
∂u

∂x
− 2

∂v

∂y
− 8u = 0 (5.38)

(

∂3v

∂x3 − 3
∂3v

∂x∂y2 + 3
∂3u

∂x2∂y
−

∂3u

∂y3

)

+
∂2v

∂x2 − 2
∂2u

∂x∂y
−

∂2v

∂y2 − 2
∂v

∂x
+ 2

∂u

∂y
− 8v = 0 (5.39)

We get from differential transform of (5.38), (5.39) that:

(k + 1)(k + 2)(k + 3)U(k+ 3, h)− 3(k + 1)(h+ 1)(h+ 2)U(k + 1, h+ 2)

−3(k + 1)(k + 2)(h+ 1)V (k+ 2, h+ 1) + (h+ 1)(h+ 2)(h+ 3)V (k, h+ 3)

+(k + 1)(k + 2)U(k + 2, h) + 2(k+ 1)(h+ 1)V (k+ 1, h+ 1) (5.40)

−(h+ 1)(h+ 2)U(k, h+ 2)− 2(k + 1)U(k+ 1, h)

−2(h+ 1)V (k, h+ 1)− 8U(k, h) = 0
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(k + 1)(k + 2)(k + 3)V (k + 3, h)− 3(k + 1)(h+ 1)(h+ 2)V (k + 1, h+ 2)

+3(k + 1)(k+ 2)(h+ 1)U(k+ 2, h+ 1)− (h+ 1)(h+ 2)(h+ 3)U(k, h+ 3)

+(k + 1)(k+ 2)V (k + 2, h)− 2(k + 1)(h+ 1)U(k+ 1, h+ 1) (5.41)

−(h+ 1)(h+ 2)V (k, h+ 2)− 2(k + 1)V (k + 1, h)

+2(h+ 1)U(k, h+ 1)− 8V (k, h) = 0

Since

w(x, y) =
∞
∑

k=0

∞
∑

h=0

W (k, h)xkyh (5.42)

and by the equality (5.35), following results are obtained.

U(0,0) = 5, U(1,0) = 7, U(2,0) =
11
2
, . . . , U(n,0) =

2n+1 + 3
n!

, . . . , V (i,0) = 0(i = 0,1,2,3, . . .)

(5.43)
Because,

w(x,0) = 2e2x + 3ex

= 2
∞
∑

n=0

(2x)n

n!
+ 3

∞
∑

n=0

xn

n!

= 2(1+ 2x+
4x2

2!
+

8x3

3!
+ · · · ) + 3(1+ x+

x2

2!
+

x3

3!
+ · · · )

= 5+ 7x+
11x2

2
+

19x3

6
+ · · ·+

2.(2n + 3)xn

n!
+ · · · (5.44)

Similarly,
∂w

∂y
=

∞
∑

k=0

∞
∑

h=0

h.W (k, h)xkyh−1 (5.45)

and by the equality (5.36), following results are obtained.

V (0,1) = 1, V (1,1) = 5, V (2,1) = 13/2, . . . , V (n,1) = (4.2n
−3)/n!, . . . , U(i,1) = 0(i = 0,1,2, . . .)

(5.46)
Because,

∂w

∂y
(x,0) = i(4e2x

− 3ex)

= 4i
∞
∑

n=0

(2x)n

n!
− 3i

∞
∑

n=0

xn

n!

= 4i(1+ 2x+
4x2

2!
+

8x3

3!
+ · · · )− 3i(1+ x+

x2

2!
+

x3

3!
+ · · · )

= i(1+ 5x+
13x2

2
+

29x3

6
+ · · ·+

4.(2n − 3)xn

n!
+ · · · ) (5.47)

Finally, from
∂2w

∂y2 =
∞
∑

k=0

∞
∑

h=0

h.(h− 1).W (k, h)xky(h−2) (5.48)

and the equality (5.37), following results are obtained

U(0,2) = −
11
2
, U(1,2) = −19/2, U(2,2) = −35/4, . . . , U(n,2) = −(8.2n + 3)/2n!, . . .

V (i,2) = 0(i = 0,1,2, . . .) (5.49)
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Because,

∂2w

∂y2 (x,0) = −8e2x
− 3ex

= −8
∞
∑

n=0

(2x)n

n!
− 3

∞
∑

n=0

xn

n!

= −8(1+ 2x+
4x2

2!
+

8x3

3!
+ · · · )− 3(1+ x+

x2

2!
+

x3

3!
+ · · · )

= −11− 19x−
35x2

2
−

67x3

6
− . . .−

8.(2n + 3)xn

n!
− . . . (5.50)

Whenh = 0 is written in the equality (5.40) , we have that

(k+ 1)(k+ 2)(k+ 3)U(k+ 3,0)− 6(k + 1)U(k+ 1,2)

−3(k+ 1)(k+ 2)V (k + 2,1) + 6V (k,3) + (k + 1)(k + 2)U(k + 2,0) (5.51)

+2(k + 1)V (k+ 1,1)− 2U(k,2)− 2(k + 1)U(k+ 1,0)− 2V (k,1)− 8U(k,0) = 0

We get the following equality by using the equalities (5.43),(5.46) and (5.49) in the equality
(5.51).

(k + 1)(k+ 2)(k+ 3)(2(k+4) + 3)/(k+ 3)! + 6(k + 1)(8.2(k+1) + 3)/2(k+ 1)!

−3(k + 1)(k+ 2)(4.2(k+2)
− 3)/(k+ 2)! + 6V (k,3) + (k + 1)(k+ 2)(2(k+3) + 3)/(k+ 2)!

+2(k + 1)(4.2(k+1)
− 3)/(k+ 1)! + 2(8.2(k+3)/(2.k!)− 2(k + 1)(2(k+2) + 3)/(k+ 1)!

−2(4.2k
− 3)/k! − 8(2(k + 1) + 3)/k! = 0 (5.52)

(2(k+4) + 3)/k! + 3(8.2(k+1) + 3)/2k! − 3(4.2(k+2)
− 3)/k! + 6V (k,3)

+(2(k+3) + 3)/k! + 2(4.2(k+1)
− 3)/k! + (8.2k + 3)/k!

−2(2(k+2) + 3)/k! − 2(4.2k
− 3)/k! − 8(2(k+1) + 3)/k! = 0 (5.53)

Therefore we get that:

V (k,3) = (16.2k
− 3)/(−6.k!). (5.54)

Similarly, whenh = 0 is written in the equality (5.40) , we have that

(k + 1)(k+ 2)(k+ 3)V (k + 3,0) − 6(k + 1)V (k + 1,2) + 3(k + 1)(k + 2)U(k+ 2,1)

−6U(k,3) + (k+ 1)(k+ 2)V (k+ 2,0)− 2(k + 1)U(k+ 1,1)

−2V (k,2)− 2(k + 1)V (k + 1,0) + 2U(k,1)− 8V (k,0) = 0 (5.55)

We get the following equality by using the equalities (5.43),(5.46) and (5.49) in the equality
(5.55).

U(k,3) = 0 (5.56)

It is clear that we obtain following equalities for everyk, h ∈ N U(k,2h+1) = 0, V (k,2h) = 0,

U(k,2h) =

(

k + 2h
2h

)

(−1)h

(k + 2h)!
(2k+2h+1 + 3) (5.57)

V (k,2h+ 1) =

(

k + 2h+ 1
2h+ 1

)

(−1)h

(k + 2h+ 1)!
(2k+2h+2

− 3) (5.58)
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If these finding values write in following solution

w(x, y) =
∞
∑

k=0

∞
∑

h=0

W (k, h)xkyh

= U(0,0) + iV (0,0) + [U(1,0) + iV (1,0)]x+ [U(2,0) + iV (2,0)]x2
· · ·+ [U(n,0) + iV (n,0)]

+ [U(0,1) + iV (0,1)]y + [U(1,1) + iV (1,1)]xy + · · ·+ [U(n,1) + iV (n,1)]xn + · · ·

+ [U(0,2) + iV (0,2)]y2 + [U(1,2) + iV (1,2)]xy2 + · · ·+ [U(n,2) + iV (n,2)]xny2 + · · ·

= 5+ 7x+
11
2
x2 + (19x3)/6+ · · ·+ (2.(2n + 3))xn/n! + · · ·

+ i(1+ 5x+ (13x2)/2+ (29x3)/6+ · · ·+ (4.(2n
− 3))xn/n! + · · · )

+
1
2
(−11y2

− 19xy2
− 35/2x2y2

− 67/6x3y2
− . . .− (8.(2n + 3))xn/n!y2

− . . .)

+ i(−13/6y3
− 29/6xy3

− 61/6x2y3
− . . .− (16.2k

− 3)/(6.k!)− . . .)

= 5+ 7x+ iy +
11
2
x2 + 5ixy − 1

1
2
y2 + 19/6x3

+ 13i/2x2y − 19/2xy2
− 13i/6y3 + 35/24x4 + 116i/24x3y

− 210/24x2y2
− 116i/24xy3 + 35/24y4 + · · ·

= 5+ 7((z + z̄)/2) + i((z − z̄)/2i) +
11
2
((z + z̄)/2)2 + 5i((z + z̄)/2)((z − z̄)/2i)

−
11
2
((z − z̄)/2i)2 + 19/6((z + z̄)/2)3 + 13i/2((z + z̄)/2)2((z − z̄)/2i)

− 19/2((z + z̄)/2)((z − z̄)/2i)2
− 13i/6((z − z̄)/2i)3

+ 35/24((z + z̄)/2)4 + 116i/24((z + z̄)/2)3((z − z̄)/2i)− 210/24((z + z̄)/2)2((z − z̄)/2i)2

− 116i/24((z + z̄)/2)((z − z̄)/2i)3 + 35/24((z − z̄)/2i)4 + · · ·

= 5+ 7z/2+ (7z̄)/2+ z/2− z̄/2+
11
2
(z2 + 2zz̄ + z̄2) + 5/4(z2

− z̄2) +
11
8
(z2

− 2zz̄ + z̄2)

+ 19/48(z3 + 3z2z̄ + 3zz̄2 + z̄3) + 13/8(z2 + 2zz̄ + z̄2)(z − z̄) + 19/16(z + z̄)(z2
− 2zz̄ + z̄2)

+ 13/48(z3
− 3z2z̄ + 3zz̄2

− z̄3) + · · ·

= (2+ 4z + 4z2 + (8z3)/3+ (4z4)/3+ · · · ) + (3+ 3z + (3z2)/2+ z3/2+
1
8
z4 + · · · )

= 2(1+ 2z + (2z)2/2! + (2z)3/3! + (2z)4/4! + · · · )

+ 3(1+ z̄ + (z̄)2/2! + (z̄)3/3! + (z̄)4/4! + · · · )

= 2e2z + 3ez̄
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