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Abstract In this study, differential transforms of first, second and third dérxiga of a com-
plex function were given. Later, third order complex equations wehkeedausing two dimen-
sional differential transform.

1 Introduction

The differential transform method (DTM) is a method for to solve difféigd equation or dif-
ferential equation systems. This method is a numerical method. One slonddTM was first
proposed and applied by Zahou[1]. Two dimensional DTM was pregdry C.K. Chen and
Shing Huei Ho[3]. Many studies has been made with DTM recently. Famgke, by using
one dimensional DTM was solved nonlinear differential equations ingg]using two dimen-
sional DTM was solved patrtial differential equations , systems of patift@rential equations,
complex partial differential equations in[3],[4],[5],[6].

This method which is consist of computing coeffient of Taylor seriesobft®n by using
initial value ia a iterative method

In this paper we solved third order complex partial differential equatipnasing DTM. .
Firstly we seperated real and imaginer parts equation. Thus from dmown equation was
obtained two unknown equation system. Later using DTM we obtained eifégial transforms
of real and imaginer parts of solutions. In the latest using inverse elifédial transform we
obtained real and imaginer parts of solution.

2 Derivatives of Complex Functions

Letw = w(z, z) be a complex function. Here= z+iy, w(z, z) = u(x,y)+iv(x,y). Derivative
of according to: andz of w(z, z) is defined as follows:
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Similarly second order derivative af(z, z) are defined as follows:
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Theorem 2.1. Third order derivative ofu(z, z) are defined as follows:
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Proof. (2) Definition of (2.1) and (2.5)
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Thus, proof of (2.8) is completed. Similarly proofs of (2.9), (2.&46Y (2.11) can be donel O

3 Two Dimensional differential transform

Two dimensional differential transform of functigtiz, v) is defined as follows

1 ak+hf ’
Filoh) = k.h! [ 3xk3(§hy)]m 0,y=0 Gy

In Equation (3.1),f(z,y) is original function andrF(k, h) is transformed function, which is
calledT - function is brief. Differential inverse transform &f(k, ») is defined as follows

fle,y) =Y > F(kh)aty" (3.2)
k=0 h=0
From (3.1) and (3.2) can be concluded
v 1 {3k+hf($ y)] k, h
(z,y) = "y (3.3)
Z;)z% k!.h! Oxkoyh 2=0.4=0

Equation (3.3) implies that the concept of two dimensional differentiakfam is derived from
two dimensional Taylor series expansion.
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Theorem 3.1.[3, 4], If w(z,y) = u(x,y) Fo(z,y) thenW (k,h) = U(k,h) FV(k,h).
Theorem 3.2. [3, 4] If w(xz,y) = Mu(z,y) thenW (k,h) = AU (k, h).
Theorem 3.3.[3,4] If w(z,y) = “ - y = ZLthenW (k,h) = (k+1)U(k+ 1, h).

Theorem 3.4.[3, 4] If w(z,y) = 2 “’ thenW (k,h) = (h+ 1)U (k,h + 1).

Theorem 35.[3, 4] If w(x,y) = Z54%%) then

W(k,h)=(k+1)(k+2)...(k+7r)(h+1)(h+2)...(h+s)U(k+7rh+s). (3.4)
Theorem 3.6.[3, 4] If w(z,y) = u(z,y).v(z,y) then

T

h
ZUrh—s (k—r,s) (3.5

k=0 s=0

Theorem 3.7.[3, 4] If w(z,y) = 2™y" then

1 k=m,h=n
W(k,h)=036(k—m,h—n)= { 0 otheruise (3.6)

4 Differential Transforms Of Derivatives Of Complex Functions

Theorem 4.1. If w(xz,y) = u(x,y) + iv(z,y), then

W.(k,h) = [(k+1)U(k+21,h)+ (h+ 1)V (k,h+ 1)]

)
1
2
L
2

L DV LR) — (h+ DUk b+ 1) (4.1)

where,W. (k, h) is differential transform of}%.

Proof. Since thew(x,y) = u(x,y) + iv(z,y) and by the equality (2.1), we have

ow 1[/0u Ov [ Ov  Ou
&—z[(%%—y)“(%‘a—yﬂ (4.2)
It is not diffucult to see that

W.(k,h) = Z[(k+1)U(k+Lh)+ (h+1)V(k,h+1)]

1
2
+%[(k+1)V(k+1, h) — (h+ 1)U (k,h + 1)] (4.3)
is obtained. O

Theorem 4.2. If w(xz,y) = u(x,y) + iv(z,y), then

Wlk,h) = =[(k+U(k+1h) — (h+ D)V (k h+1)]

1
2
+%[(k+1)v(k+ 1.1) + (h+ 1)U (k,h + 1)) (4.4)
where,Wz(k, h) is differential transform of}%.

Proof. By the equality (2.2), the proof is similar to teorem 3.1 O



148 Murat DUZ and WuriLTER

Theorem 4.3. If w(xz,y) = u(x,y) + iv(z,y), then

W..(k,h) = Z[(k+1)(k+2U(k+2,h)+2(k+1)(h+1)V(k+1h+1)

Nl

(et D)+ 2Tk At 2)] + (4 D)+ 2V +2,1)
—2(k+1)(h+1)U(k+1,h+1) — (h+1)(h+2)V(k,h+2)] (4.5)
where, W, (k, h) is differential transform o%.

Proof. By the equality (2.5) we have

Pu_ L[t o L o (o o o
022 4022 a2 0xOy 0xOy oy?  Oy? '
P L[ 0% Fu (P 0 o “n
022 4| 022 Oxdy  Oy? 2 Oxdy  Oy? '
Hence,
1
W..(k,h) = ZKk +1)(k+2U(k+2,h)+2(k+1)(h+1)V(E+1,h+1)
~(h+1)(h+2)U(k,h+2)] + [k + 1) (k + 2V (k +2,h)
2k + D)+ DUk +Lh+1)— (h+1)(h+2)V(kh+2)] (4.8)
is obtained. O

Theorem 4.4. If w(z,y) = u(wz,y) + iv(z,y), then

Wez(k,h) = Z[(k+1)(k+2Uk+2,h)—2k+1)(h+1)V(k+1h+1)

N

—(h+21)(h+2)U(k,h+ 2)] + %[(k + 1) (k+2)V(k+2h)

2+ D)(h+ DUk +Lh+1) — (h+1)(h+2V(k h+2)] (4.9
where,Wz(k, h) is differential transform 0%.
Proof. Proof can be done similar to proof of the teorem 4.3 by using equality. (2.6 O

Theorem 4.5. If w(xz,y) = u(x,y) + iv(z,y), then

W (k,h) = %[(k +1)(k+2)U(k+2,h) + (h+ 1)(h+ 2)U(k,h + 2)
+i(k+1)(k+2)V(k+2,h)+i(h+1)(h+2)V(k,h+2)] (4.10)
where, Wz, (k, h) is differential transform ofm
Proof. Proof can be done similar to proof of the teorem 4.3 by using equality. (2.7 O

Theorem 4.6. If w(z,y) = u(wz,y) + iv(z,y), then

W...(k,h) = [(k+1)(k+2)(k+3) (k+3,h)=3k+1)(h+1)(h+2U(k+1,h+2)
(k+1)(k;+2)(h+1)V(k+2,h+1)—(h+l)(h+2)(h+3)V(k,h+3)

ik+1)(k+2)(k+3)V(k+3,h)—3i(k+1)(h+1)(h+2)V(k+1,h+2)
— Bilk+1)(k+2)(h+1U(k+2,h+1)

+ i(h+1)(h+2)(h+3)U(k,h+ 3)] (4.11)

where, ... (k, h) is differential transform o%.
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Proof. Sincew(x,y) = u(x,y) + iv(z, y) and equality (2.8) we have:

Pw 1.0 oM ok oM
_ N o . 0% . 412
53 [3 3 (u+iv) — 38x6y2 (u+iv) 3Z—8y8x2)(u +iv) + Z8y3 (u+w)] (4.12)
83w 1.0%u o%u v v v 2% o%u O%u
= 3 3 ——+i(=5 -3 -3 —)]. (4.1
928 [8x3 “0zdy? + Oydx?  Oy3 + ’(ax3 0xdy? Oydz? + 8y3)] (4.13)
Hence it is get that:
1
W...(k,h) = é[(k+1)(k+2)(k+3)U(k+3,h)—3(k+1)(h+1)(h+2)U(k+1,h+2)

+3k+L(k+2)(h+1)V(k+2,h+1)— (h+1)(h+2)(h+3)V(k,h+3)
+i(k+1)(k+2)(k+3)V(k+3h)—3i(k+1)(h+1)(h+2)V(k+1,h+2)
— Bi(k+1)(k+2)(h+1DUk+2h+1)
+ i(h+1)(h+2)(h+3)U(k,h+ 3)] (4.14)

O

Theorem 4.7. If w(z,y) = u(x,y) + iv(z,y), then

Wizz(k,h) = %[(k—l—1)(k+2)(k+3)U(k+3,h)—|—3(k+1)(h—|—1)(h—|—2)U(k—|—1,h+2)
-3k+1)(k+2)(h+1)V(k+2,h+ 1)+ (h+1)(h+2)(h+3)V(k,h+3)
+i(k+1)(k+2)(k+3)V(k+3h)—3i(k+1)(h+1)(h+2)V(k+1,h+2)
+3i(k+1)(k+2)(h+1)U(k+2,h+1)

—i(h+1)(h+2)(h +3)U(k,h+ 3)] (4.15)

A\//‘\,—\
—~ = T =

where,Wzz(k, h) is differential transform o%.
Proof. Proof is similar to the theorem 4.6 using equality (2.9). O

Theorem 4.8. If w(z,y) = u(wz,y) + iv(z,y), then

Wiz (k. h) :%[(lﬂ—i—1)(k+2)(k+3)U(k+3,h)+(k—i—1)(h+1)(h+2)U(k+1,h+2)
—(k+1)(k+2)(h+1)V(k+2,h+1)— (h+1)(h+2)(h+ 3)V(k,h+3)
+i(k+1)(k+2)(k+3)V(k+3,h)+i(k+1)(h+1)(h+2)V(k+ 1 h+2)
+i(k+1)(k+2)(h+1)U(k+2,h+1)
+i(h+ 1) (h+ 2)(h+ 3)U(k, h+ 3)] (4.16)

where,Wzz, (k, h) is differential transform ofm
Proof. Proof is similar to the theorem 4.6 using equality (2.10). ]

Theorem 4.9. If w(xz,y) = u(x,y) +iv(z,y), then

Wo..(kh) — %[(k+1)(k+2)(k+3)U(k+3,h)+(k+1)(h+l)(h+2)U(k+1,h+2)
+(k+1)(k+2)(h+1)V(k+2,h+1)+ (h+1)(h+2)(h+3)V(k,h +3)
+i(k+1)(k+2)(k+3)V(k+3,h)+i(k+1)(h+1)(h+2)V(k+ 1 h+2)

(k+2)(h+1U(k+2,h+1)

—i(k+1
—i(h+1)(h+2)(h+ 3)U(k,h+ 3)] (4.17)

— — = =

where, W, .. (k, h) is differential transform of&%

Proof. Proof is similar to the theorem 4.6 using equality (2.11). O
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5 Using two-dimensional differential tansform solve of Third Order Complex Partial
Differential Equations.

In this section, to demonstrate how to use two-dimensional transform te sofuplex partial
differential equations are solved.

Example 5.1. Solve the following initial value problem

Bw &%w

3 t25= =18 (5.1)

w(z,0) = 23 + 322 (5.2)
2—?(:1:,0) = (322 — 6z) (5.3)
%(x, 0)=—-62—6 (5.4)

Sincew = u + iv, equation (5.1) is equivalent following to equation system (5.5)-(5.6)

1 /0% 9% &% &% 1 /0% &% 5%
(23 - O 2 (O, 0 0T .
8 (axs T 3520y ~ Suay ay3) 3 <8x2 20y 8y2> 8 (9

1 /0% 0u 03 03u 1 (/0% 0%u 0%
s\ 923 39290 2t 55 ) T3\ 522 T %5000 " 92) =©
8 \ dx 0?0y 0xdy y 2\ Ox 0xdy Oy

As a result, we get equalities (5.7)-(5.8) from differential trans®ah(5.5)-(5.6).

(5.6)

(k+L)(k+2)(k+3)U(k+3,h)+3k+1)(k+2)(h+1V(k+2,h+1)
Bk+1)h+1)(h+2Uk+1Lh+2)—(h+1)(h+2)(h+3)V(k,h+3) (5.7)
+4(k + 1) (k+2)U(k+2,h) =8k +1)(h+1)V(k+ L h+1) —4h+1)(h+2)U(k,h+ 2) = 144

(k+1)(k+2)(k+3)V(k+3,h) —3k+1)(k+2)(h+1)U(k+2,h+1)
-3k+1)(h+1)(h+2)V(k+1Lh+2)+ (h+1)(h+2)(h+3)U(k,h+ 3) (5.8)
+4(k+1)(k+2)V(k+2,h)+8k+1)(h+ 1)U+ 1 h+1)
—4(h+1)(h+2)V(k,h+2)=0

Since

w(z,y) = ZZW(k,h)mkyh (5.9)

k=0 h=0
and the equality (5.2), following results are obtained.

U(0,0) = 0,U(L0)=0,U(2,0) =3,U(3,0)=1,U(i,0) = 0(i = 4,5,...),

V(i,00 = 0(:i=0,1,23,..)) (5.10)
Similarly,
aw oo oo 3
i SN hW(k h)aty" Tt (5.11)
k=0 h=0

and the equality (5.3), following results are obtained.

V(0,1) = 0,V(L1) =-6V(21)=3V(i,1)=00=34,5,..),
UGi,1) = 0i=0,12..) (5.12)
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Finally, by

azw oo o0 B
a7 3D (b= 1).W (k, h)aty (5.13)
k=0 h=0

and the equality (5.4), following results are obtained

U(0,2) = -3,U(1,2) = -3,U(i,2) =0(i = 2,3,4,...),V(i,2) =0(i = 0,1,2,...) (5.14)
If £ =0,h = 0 are written in the equation (5.7),

6U(3,0) + 6V (2,1) — 6U(1,2) — 6V (0,3) +8U(2,0) — 8V (1,1) — 8U(0,2) = 144 (5.15)

6.1+ 6.3—6.(—3) — 61/(0,3) + 8.3 8.(—6) — 8.(—3) = 144 (5.16)

are obtained. So, we have
V(0,3) = -1 (5.17)

Whenh = 0 is written in the equality (5.8)

(k+1)(k+2)(k+3)V(k+30) —3(k+1)(k+2U(k+21) —6(k+ DV(k+1,2)
+6U (k,3) + 4(k + 1)(k + 2)V(k +2,0) + 8(k + DU (k + 1,1) — 8V (k,2) = 0 (5.18)

is obtained. It is clear that we havgk,0) = 0,U(k,1) = 0,V (k,2) = 0, from the equalities
(5.10),(5.12) and (5.14), respectively. As a result we get 86

U(k,3)=0 (5.19)
for everyk > 0. Whenh = 0 is written in the equality (5.7)

(k+1)(k+2)(k+3)U(k+3,0)+3(k+1)(k+2)V(k+ 2,1)

—6(k+1)U(k+1,2) —6V(k,3)+4(k+1)(k+2)U(k+ 20)

—-8(k+1V(k+1,1) —8U(k,2) =144 (5.21)

Using (5.10), (5.12) and (5.14) in the equality (5.21) foe 1 we get that:
—6V(1,3) +24U(3,0) — 16V (2,1) — 8U(1,2) =0 (5.22)
—6V(1,3)+24—-48+24=0 (5.23)
V(1,3)=0 (5.24)

Similarly using (5.10), (5.12) and (5.14) in the equality (5.21)/or 2
V(k,3)=0 (5.25)
are obtained. Wheh = 1 is written in the equality (5.7) , we have that

(k+1)(k+2)(k+3)U(k+3,1) +6(k+1)(k+2V(k+22) — 180k + 1)Uk +1,3)
—24V (k,4) + 4k + 1) (k + 2)U(k + 2,1) — 16(k + 1)V (k + 1,2) — 24U (k, 3) = 05.26)

If ¥ = 0is written in the equality (5.26), we get that
6U/(3,1) +12V(2,2) — 18U/(1,3) — 24V(0,4) +8U(2,1) — 16V(1,2) — 24U(0,3) = 0 (5.27)
Therefore using equalities (5.10),(5.12), (5.14) and (5.19) btaio
V(0,4)=0 (5.28)
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If &= 1is written in the equality (5.26), we get that
24U (4,1)+36V (3,2)—36U(2,3)—24V(1,4)4+ 24U (3,1) —32V(2,2) —24U(1,3) = 0 (5.29)

Therefore,
V(1,4 =0 (5.30)

is obtained. Ifk = n is written in the equality (5.26), the¥i(n,4) = 0 is obtained. As a resullt,
U(n,m)=V(n,m)=0 (5.31)
are obtained for every > 0, m > 3. If these finding values writing as follows

= iiW(k,h)xkyh (5.32)

k=0 h=0

So, following solution
w(z,y) = 23 — 3zy? + 30% — 3y? +i(32%y — y® — 6ay) = 22 + 3(2)? (5.33)
is obtained.

Example 5.2. Solve the following initial value problem

Bw  Pw  dw

w(z,0) = 2e2* + 3® (5.35)
8—“’(96 0) = i(4e® — 3¢%) (5.36)
oy’ '

82
a—yf(x, 0) = —86% — 3" (5.37)

Sincew = u + iv, equation (5.34) is equivalent following system of equation (5.38)39)6

FPu , Pu P 03
G -3 J’_ -
O3 Ox0y? 0x20y  9y3
0%u v 0%u  _O0u O0v

g L _ 227 _ 222 _ 8, =0 5.38
+8x2+28x8y 9y? 2836 Zay " ( )

v 03 Pu  O%u
9% _3 +3 g
Ox3 Ox0y? 0x20y  9y3

0% Pu 0 _Ov ou
CACI WU NN N W 5.39
+8x2 Zaxay 9y? 2836 + 28y 8 ( )

We get from differential transform of (5.38), (5.39) that:

(k+1)(k+2)(k+3)U(k+3,h) —3(k+1)(h+1)(h+2)U(k+1h+2)
-3k+1)(k+2)(h+1)V(k+2,h+ 1)+ (h+1)(h+2)(h+3)V(k,h+3)
+(k+1)(k+2)Uk+2,h)+2(k+1)(h+1)V(E+ 1 h+1) (5.40)
—(h+1)(h+2U(k,h+2) - 2(k+ 1) U(k+1,h)

—2(h+1)V(k,h+1) —8U(k,h) =0
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(k+1)(k+2)(k+3)V(k+3,h) —3k+L(h+1)(h+2V(k+1h+2)
+3(k+1)(k+2)(h+1)U(k+2,h+1) — (h+1)(h+ 2)(h+ 3)U(k,h+ 3)
+k+1)(k+2)V(k+2,h)—2k+1)(h+1)U(k+1h+1) (5.41)
—(h+1)(h+2)V(k,h+2)—2(k+1)V(k+1h)

+2(h+1)U(k,h+ 1) —8V(k,h) =0

Since o -
y) =D Wk h)a'y" (5.42)
k=0 h=0
and by the equality (5.35), following results are obtained.

11 2n+l
U(O,O):5,U(1,0):7,U(2,O):7,...,U(n,0)_ n'+3 V(,0)=0(:=0,1,23,..
' (5.43)
Because,
w(z,0) = 2% 4 3¢”
o (2{1})" oo "
= 2) T+ 3y —
n=0 n=0
42 8y z2 a8
= 20+ 2+ S+ gr 4o ) F3 et S t)
1122 193 2.(2" + 3)z™
S By 197 202049 (5.44)
2 6 n!
Similarly,
=3 hW(k h)aty" " (5.45)
k=0 h=0

and by the equality (5.36), following results are obtained.

V(0,1) =1, V(L1) =5V(21) =13/2,...,V(n,1) = (42"-3)/n),...,U(i,1) = 0(i = 0,1,2, ..

(5.46)
Because,
g—t;(x, 0) = i(4e* —3e?)
- ay Bl gy
n=0 n= 0
422 818 z? 28
= 4(1+2 "1‘74'?‘1‘ ) 3Z(1+$+§+§+"')
132 293 4.(2% — 3)x™
= (145 +—+—+- -i-(i)x-l—---) (5.47)
2 6 n!
Finally, from
ZZ h.(h — 1).W (k, h)a*yh—2 (5.48)

=0 h=0
and the equality (5.37), foIIowmg results are obtained

U(0.2) = -3 U(1,2) = 19/2.U(2.2) = ~35/4,....U(n2) = ~(82" +3)/2nl. ..

V(i,2) =0(i=0,1,2,..) (5.49)

)

)
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Because,
2
%(%0) = —8e* — 3"
Y
o (22)" "
N _BZ nl Z n!
n=0 n=0
422 823 2 s
= —8(1+2§C+T+?+' )= 3(1+1’+§+§+ )
2 3 n
S TSR Lo 1 L (5.50)
2 6 n!

Whenh = 0 is written in the equality (5.40) , we have that

(k+1)(k+2)(k+3)U(k+3,0)—6(k+1)U(k+1,2)
—-3(k+1)(k+2)V(k+2,1) +6V(k,3) + (k+1)(k+ 2)U(k + 2,0) (5.51)
+2(k+1)V(k+21,1) - 2U(k,2) — 2(k + 1)U (k + 1,0) — 2V (k,1) — 8U(k,0) = 0
We get the following equality by using the equalities (5.43),(5.46) ardB{5n the equality
(5.51).
(k+1)(k+2)(k + 3) (2% +3)/(k + 3)! + 6(k + 1)(8.2%+Y + 3) /2(k + 1)!
—3(k+1)(k+2) (42542 —3) /(k+ 2)! + 6V (k,3) + (k + 1)(k 4+ 2)(2#%+3 4 3)/(k + 2)!
+2(k 4+ 1)(4.25+Y —3) /(k + 1)! + 2(8.2%F3 /(2.k!) — 2(k + 1) (2572 4 3) /(k + 1)!
—2(42F —3)/k! =82k +1)+3)/k' =0 (5.52)

(2544 4 3) /k! + 3(8.2F+V) 4 3) /2k! — 3(4.22) _ 3) /Kl 4 6V (k, 3)
+(2543 £ 3) /k! + 2(4.254D — 3) /k! + (8.2% 4 3) /k!
—2(2%+2) 1 3) /Kt — 2(4.2F — 3) /k! — 8(2F*Y) 4 3) /K1 =0 (5.53)
Therefore we get that:
V(k,3) = (16.2" — 3)/(—6.k!). (5.54)
Similarly, whenh = 0 is written in the equality (5.40) , we have that
(k+1)(k+2)(k+3)V(k+3,0) —6(k+1)V(k+1,2)+3(k+1)(k+2)U(k+2,1)

—6U (k,3) + (k+ 1)(k + 2V (k+2,0) — 2(k + DU (k + 1,1)
—2V(k,2) — 2(k + 1)V (k + 1,0) + 2U (k, 1) — 8V (k,0) = O (5.55)

=

We get the following equality by using the equalities (5.43),(5.46) ardBf5n the equality
(5.55).

U(k,3)=0 (5.56)
Itis clear that we obtain following equalities for evéryh € N U(k,2h+1) =0,V (k,2h) = 0,

Uk, 2h) — ( ¥ ;hZh ) (;;712);!(2’““%3) (5.57)

[ k+2n+1 (—1)h 272
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If these finding values write in following solution

w(z,y) = Z Z W (k, h)xFy"

k=0 h=0
U(0,0) + iV (0,0) + [U(L,0) + iV (L, 0)]z + [U(2,0) + iV(2,0)]22- - - + [U(n, 0) + iV (n, 0)]

+ [U(0,1) +4iV (0, D]y + [U(L, 1) +iV(L, D]xy +---+ [U(n, 1) + iV (n, 1)]z" + - --

+ [U(0,2)+iV(0,2)]y? + [U(1,2) + iV (L, 2)]zy? + - + [U(n, 2) + iV (n, 2)]z"y? + - --
= 5+ 7z+ 171362 +(19%3) /64 - + (2.(2" +3))z" /n! + - --

+ i(1452+ (130%)/2+ (293) /6 + - - - + (4.(2" — 3))z" /! + - )

+ %(—11;,2 — 19y? — 35/22%% — 67/62%y% — ... — (8.(2" + 3))z"/nly® — ...)

4+ i(—13/6y> — 29/62y° — 61/62%y° — ... — (162" —3)/(6.k!) —...)

11 1
54 7z + iy + 7:1:2 + Bizy — 1§y2 +19/623

+ 13i/20% — 19/22y? — 13i/6y° + 35/24* + 116//240%y
—  210/242%y? — 116 /24> + 35/24y* + - -

= B 7((=+9)/2) (=~ D/20) + S (= 4+ /27 +5i((= +)/2) (=~ 2)/2)

- 171((2 —2)/2i)? +19/6((= + 2)/2)° + 131/2((= + 2)/2)*((= — 2)/2i)

— 19/2((2 +2)/2)((= - 2)/2i)* - 13i/6((= — 2)/2i)*
4+ 35/24((z + 2)/2)* + 116 /24((z + 2) /2)3((2 — 2)/2i) — 210/24((z + 2)/2)*((z — 2) /2i)?
— 116/24((z 4 2)/2)((z — 2)/2i)® + 35/24((z — 2)/2i)* + - --

5+72/24 (72)/2+ z/2—z/2+ 171(% + 222+ 2%) + 5/4(2% — 2°) + %(zz — 227+ 2%)

+ 19/48(23 4 3222 + 3222 + 2°) + 13/8(2% + 222 + 2%) (2 — 2) + 19/16(2 + 2) (2 — 222 + 27)
+ 13/48(2° — 3222+ 3222 - 2% + - -
= (24424427 +(82%)/34 (42%)/3+-- )+ (3+32+(32%)/2+ 23/2 + %z“—i-'-')
= 21422+ (22)%/21 + (22)3/31 + (22)4/4 4 - - )
+ 31+ 2+ (2)2/21+ (2)3/31 + ()44 + .. )
= 2% 4+ 3¢%
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